
Demand for more accurate predictions of regional climate necessitates a unified  

modeling approach explicitly recognizing that many processes are common  

to predictions across time scales.

T	 he global coupled atmosphere–ocean– 
	 land–cryosphere system exhibits a  
	 wide range of physical and dynami-

cal phenomena with associated physical, 
biological, and chemical feedbacks that 
collectively result in a continuum of 
temporal and spatial variability. The tra-
ditional boundaries between weather and 
climate are, therefore, somewhat artificial. 
The large-scale climate, for instance, de-
termines the environment for microscale 
(1 km or less) and mesoscale (from several 
kilometers to several hundred kilometers) 
processes that govern weather and local 
climate, and these small-scale processes 
likely have significant impacts on the evo-
lution of the large-scale circulation (Fig. 1; 
derived from Meehl et al. 2001).

The accurate representation of this con-
tinuum of variability in numerical models 
is, consequently, a challenging but essential 
goal. Fundamental barriers to advancing 
weather and climate prediction on time 
scales from days to years, as well as long-
standing systematic errors in weather and 
climate models, are partly attributable to 
our limited understanding of and capabil-
ity for simulating the complex, multiscale 
interactions intrinsic to atmospheric, oce-
anic, and cryospheric fluid motions.

The purpose of this paper is to iden-
tify some of the research questions and 
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Fig. 1. Schematic illustrating interactions between various time 
and space scales in the climate system. (left) Space scales and 
(right) possible forecasts are indicated. Though “synoptic” is 
the smallest time scale, these interactions could continue to 
infinitely short time scales and small space scales.

1819december 2009AMERICAN METEOROLOGICAL SOCIETY |



challenges that are raised by the movement toward 
a more unified modeling framework that provides 
for the hierarchical treatment of forecast and cli-
mate phenomena that span a wide range of space 
and time scales. This has sometimes been referred 
to as the “seamless prediction” of weather and cli-
mate (WCRP 2005; Palmer et al. 2008; Shapiro et al. 
2009, manuscript submitted to BAMS; Brunet et al. 
2009, manuscript submitted to BAMS). The central 
unifying theme is that all climate system predic-
tions, regardless of time scale, share processes and 
mechanisms that consequently could benefit from 
the initialization of coupled general circulation 
models with best estimates of the observed state of 
the climate (e.g., Smith et al. 2007; Keenlyside et al. 
2008; Pohlmann et al. 2009). However, what is the best 
method of initialization, given the biases in models 
that make observations possibly incompatible with 
the model climate state, and how can predictions best 
be performed and verified?

Hurricane prediction, for example, has tradition-
ally been regarded as a short-term weather prediction 
from an initialized atmospheric model. However, 
hurricanes generate a cold wake as they churn up the 
ocean and not only extract considerable amounts of 
heat through evaporative cooling but also mix heat 
down into the thermocline (e.g., Emanuel 2001, 2006; 
Trenberth and Fasullo 2007; Korty et al. 2008). Feed-
back from the cold wake is now thought to be impor-
tant to improving the forecast accuracy of intensity 

and track, and the heat and freshwater fluxes could 
contribute to multidecadal variability in the Atlantic 
Ocean climate system (e.g., Hu and Meehl 2009). 
Hence, hurricane forecasting is a short-term coupled 
problem as well as a longer-term climate problem 
requiring not only an initialized atmospheric model 
but also the initialization of a model of the ocean and 
its heat content.

SCALE INTERACTIONS AND CLIMATE 
SYSTEM PREDICTIONS. Scale interactions, 
both spatial and temporal, are the dominant feature 
of all aspects of atmospheric and oceanic prediction. 
The hope is that predictions will improve as models 
begin to explicitly resolve processes on ever-finer 
spatial scales. Weather and climate predictions, 
consequently, have been major drivers for higher-
resolution models requiring advanced numerical and 
physical techniques and for sophisticated computing 
systems.

State-of-the-art weather forecasting is carried 
out using atmospheric general circulation models 
(AGCMs) that have traditionally been forced with 
sea surface temperature (SST) anomalies observed at 
some initial time, but are then projected and damped 
toward climatological conditions as the integrations 
proceed out to typically 10–14 days. On these time 
scales, dynamical interactions of the atmosphere 
with other climate system components were gener-
ally thought to be unimportant and, therefore, have 
typically not been included.

For decadal-to-centennial predictions, the radia-
tive forcings and coupled interactions and feedbacks 
among the climate system components are critical. 
Usually, these coupled model integrations are ini-
tialized from an arbitrary and relatively stable cli-
mate state obtained from a several-century control 
(without external forcing) integration. Such coupled 
“atmosphere–ocean general circulation models” 
(“AOGCMs”) typically include components of the 
atmosphere, ocean, land surface, and sea ice.

These two time scales address two distinct sci-
entific problems. For a weather forecast on the scale 
of days, deterministic time evolution of individual 
synoptic systems must be forecast as an initial value 
problem, and the effects of longer-term coupled pro-
cesses, such as the meridional overturning circulation 
(MOC) in the ocean, are small. For seasonal climate 
time scales and beyond, statistics of the collections of 
weather systems are of interest and are crucial to the 
fidelity of the climate simulation and/or prediction, 
but the deterministic time evolution of the weather 
systems cannot be predicted.
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For seasonal predictions, coupled air–sea inter-
actions are especially important, but it is an open 
question whether the prediction of an El Niño event 
depends critically on aspects of the climate system that 
evolve on even longer time scales, such as the MOC 
or the state of the Pacific decadal oscillation (PDO). 
For even longer time scales, however, interactions of 
the atmosphere with not only the ocean but also the 
sea ice, land, snow cover, land ice, and freshwater 
reservoirs become very important. Biogeochemistry 
and interactive vegetation, and external effects, such 
as changes in solar activity, volcanic eruptions, and 
human influences, all influence the evolution of the 
climate system.

While the validity of the assumptions made in 
designing and conducting numerical experiments 
must be evaluated in the context of the problem being 
studied, a more unified approach explicitly recognizes 
the importance of processes and mechanisms shared 
across the time and space scales, and the potential 
benefit of the greater convergence of methods used 
in weather and climate forecasting, in particular with 
regard to the initialization of the climate system.

The El Niño–Southern Oscillation (ENSO) phe-
nomenon, for example, can now be predicted with 
some skill with an initialized state of the atmosphere 
and at least an upper-ocean model of the tropical 
Pacific but profound gaps in our prediction abilities 
remain. Large systematic errors in the coupled models 
mean that i) the coupled model mean state does not 
agree with the observed mean state with sufficient 
fidelity; and ii) the space–time evolution of the simu-
lated climate anomalies is not sufficiently realistic.

Historically, these two problems have been 
addressed from semiempirical perspectives. The first 
approach is to improve the individual physical param-
eterizations in the component models (e.g., Toniazzo 
et al. 2008), a specific example of which (Fig. 2) is 
the improvement in the simulation of ENSO by the 
Community Climate System Model (CCSM; Collins 
et al. 2006) after improvements to the parameteriza-
tion of deep convection in the atmospheric model 
component (Neale et al. 2008). The second approach 
has centered on how best to use imperfect models to 
make predictions, for example, through calibration 
analysis (Rodwell and Palmer 2007; Palmer et al. 
2008), by utilizing a multimodel ensemble, or through 
stochastic–dynamic parameterization (e.g., Palmer 
et al. 2009, manuscript submitted to J. Climate; see the 
“Single versus multiple model predictions” section).

Another relevant consideration is that current 
climate models have been limited to a relatively coarse 
resolution compared to that of numerical weather 

prediction (NWP) models. The coarse resolution 
limits the accurate simulation of atmospheric [e.g., 
the Madden–Julian oscillation (MJO) and synoptic 
weather systems] and oceanic (e.g., tropical instabil-
ity waves) dynamics and, thus, their interactions 
with climate. A way forward is to better resolve the 
weather–climate link (e.g., Palmer et al. 2008), but the 
question remains: how best to represent the important 
missing elements of the simulation of day-to-day 
weather in climate models?

The typical assumption for subgrid-scale param-
eterization is to assume that the statistics of subgrid-
scale processes can be parameterized in terms of the 
grid-scale variables. However, in many cases this 
assumption may be seriously f lawed. An alterna-
tive strategy has been to reduce the grid size of the 
model and resolve more of the motions explicitly, as in 
NWP (e.g., Shapiro and Thorpe 2004); however, this 
approach has been limited, so far, by available com-
puting power. The history of climate prediction has 
been marked by compromise between model resolu-
tion, the inclusion of additional processes, the length 
and number of simulations, and available computing 
resources. Global climate predictions would certainly 
benefit from running AOGCMs at resolutions near 
or at current NWP models (Shapiro et al. 2009, 
manuscript submitted to BAMS), but it has not yet 
been feasible to marshal the considerable computer 
resources necessary (e.g., Shukla et al. 2009).

IMPROVING CLIMATE MODELS. Upscaling 
research. The climate research community is begin-
ning to use higher-resolution (~50 km) models for 
the decadal prediction problem (e.g., Meehl et al. 
2009), but global modeling frameworks that resolve 
mesoscale processes are needed to improve our 
understanding of the multiscale interactions in the 
coupled system, identify those of greatest importance, 
and document their effects on climate. Ultimately, 
such basic research will help determine how to better 
represent small-scale processes in relatively coarse-
resolution Earth system models (ESMs). We refer to 
the impacts of small-scale processes on larger scales 
as “upscaling.”

There is a wide range of upscale interactions to be 
considered. Current parameterization schemes do 
not adequately handle the mesoscale organization of 
convection, which is a critical missing link in the scale 
interaction process (e.g., Moncrieff et al. 2007, 2009, 
manuscript submitted to BAMS). The limited repre-
sentation of convection and cloud processes is likely a 
major factor in the inadequate simulation of tropical 
oscillations (Fig. 3). Cloud and convective processes 
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also appear to play a role in the well-known double 
intertropical convergence zone (ITCZ) bias issue 
(e.g., Fig. 4, top), though coupled processes involving 
a systematically intense equatorial cold tongue in the 
ocean also likely contribute to this persistent system-
atic error (Randall et al. 2007).

Uncertainty in the representation of clouds (on 
all scales) is also a major influence in the response 
of the climate system to changes in radiative forcing. 
Improved simulation of cloud processes in the multi-

scale modeling framework (MMF; Randall et al. 2003), 
which embeds two-dimensional cloud-resolving 
physics within three-dimensional weather-scale 
physics, has shown improved MJO variability and 
reduced the bias in Kelvin wave propagation (Fig. 3; 
see Khairoutdinov et al. 2008).

Another scale interaction problem is the challenge 
in modeling the subtropical eastern boundary (STEB) 
regimes off the coasts of southwest Africa, Peru–
Ecuador–Chile, and Baja–southern California. These 

Fig. 2. Summary statistics of Niño-3.4 (5°N–5°S, 170°–120°W) monthly SST anomalies. Time series 
(K) and wavelet analysis (K2 per unit frequency) for 100 simulated years from (a) CCSM3 (Collins et al. 
2006), (b) after modifications to the CCSM3 parameterization for deep convection, and (c) the most 
recent 80 yr of the observed Hadley Centre Global Sea Ice and SST (HadISST) record, in addition to 
(d) power spectra, (e) autocorrelation, and (f) average variance for each calendar month, for all model 
runs. See Neale et al. (2008) for details.
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regimes are marked by marine stratus, equatorward 
alongshore winds, and ocean upwelling. Large and 
Danabasoglu (2006) suggest that better resolution of 
these features produce not only a better simulation 
of the regional climate but also effects that propagate 
and strongly influence the large-scale climate system, 
reducing rainfall biases across the tropical oceans 
(Fig. 4, bottom).

Other examples of “hot spots” with significant 
upscaled effects include the monsoon regions of India 
and Tibet and Central and South America, where 
steep topographical gradients and mesoscale pro-

cesses, such as low-level jets and mesoscale convective 
complexes, play an important role in the water and 
energy budgets locally and remotely (e.g., Webster 
2006). Over the Maritime Continent, Lorenz and 
Jacob (2005) presented a study of two-way coupling 
using global and regional models and demonstrated 
large and positive impacts on the tropospheric tem-
perature and large-scale circulation in the global 
climate simulation.

Clearly, addressing these errors is critical to cli-
mate prediction on all time scales. Therefore, there is 
a strong need to develop pilot projects to demonstrate 

the methodologies and impacts 
of multiscale interactions on the 
regional and global climate. While 
numerical models and techniques 
will be central to this effort, so too 
will be sophisticated theoretical and 
physical research to both understand 
and specify the critical interactions. 
Significant increases to computing 
resources to facilitate explicit simu-
lation of smaller-scale processes and 
their interactions with the larger 
scale will be essential.

Value of testing models on all time 
scales. A paradigm has long been 
that it is not essential to get all of 
the details of weather correct as 
long as their statistically averaged 
effects on the climate system are 
adequately captured. A key question 
is whether the rectification effects 
of small-scale and high-frequency 
weather events can be adequately 
captured if the details are not explic-
itly represented. Water resources are 
a case in point because they rely on 
good predictions of precipitation. 
This means not only precipitation 
amount but also precipitation inten-
sity, frequency, duration, and type 
(snow versus rain). The character 
of precipitation affects runoff and 
flooding, and thus soil moisture and 
streamflow.

The diurnal and annual cycles 
provide excellent tests for model 
evaluation. The model response to 
these well-known climate forcings 
can provide crucial insights on a host 
of important physical processes. For 

Fig. 3. Space–time spectrum of the 15°S–15°N symmetric compo-
nent of precipitation, divided by the background spectrum. (top) 
Observational estimates from an atmospheric reanalysis product and 
(bottom) results from a coupled climate model simulation.

1823december 2009AMERICAN METEOROLOGICAL SOCIETY |



example, the diurnal cycle is strongest in summer over 
land and affects the timing, location, and intensity of 
precipitation events. Models typically have an onset 
of precipitation that is too early in the day and with 
insufficient intensity compared with observations, 
demonstrating the need to improve boundary layer 
and convective processes in models (e.g., Trenberth 
et al. 2003; Trenberth 2008a). The annual cycle is an 
obvious strong test for measuring the response of a 
model to a major climate forcing, albeit one that af-
fects only those parts of the climate system capable 
of responding on such a short time scale. Interan-
nual variability, such as how well models simulate 
ENSO, provides another necessary but insufficient 

test of models. These tests highlight 
the shortcomings and help identify 
steps to be taken to build confidence 
in models (WCRP 2008).

P R E D I C T I O N  A C R O S S 
SCALES. Effect of initial conditions. 
For weather prediction, detailed 
analyses of the observed state of the 
atmosphere are required, but un-
certainties in the initial state grow 
rapidly over several days. Other 
components of the climate system 
are typically fixed as observed. For 
climate predictions, the initial state 
of the atmosphere is less critical, 
and states separated by a day or 
so can be substituted. However, 
the initial states of other climate 
system components become vital. 
For predictions from a season to a 
year or so, the SSTs, sea ice extent 
and upper-ocean heat content, soil 
moisture, snow cover, and state of 
surface vegetation over land are all 
important. Such initial value pre-
dictions are already operational for 
forecasting El Niño, and extensions 
to the global oceans are under way. 
For the decadal prediction problem, 
increased information throughout 
the ocean could be essential (Smith 
et al. 2007; Trenberth 2008b; Meehl 
et al. 2009; Shukla et al. 2009). Initial 
conditions for the global ocean could 
conceivably be provided by existing 
ocean data assimilation exercises. 
However, hindcast predictions for 
the twentieth century, which are de-

sirable to test models, are severely hampered by poor 
salinity reconstructions prior to the early 2000s when 
Argo floats began to provide much better depictions 
of temperature and salinity in the upper 2000 m of 
the near-global ocean. Some challenging research 
tasks are developing optimal methods for initial-
izing climate model predictions with the current 
observational network and identifying an optimal set 
of ocean observations to use for initializing climate 
predictions (Meehl et al. 2009).

The mass, extent, thickness, and state of sea ice and 
snow cover are vital at high latitudes. The states of soil 
moisture and surface vegetation are especially impor-
tant in understanding and predicting warm-season 

Fig. 4. (top) Difference between annual mean precipitation from 
a multicentury control simulation with CCSM3 and observational 
estimates (1979–2007) from the Global Precipitation Climatology 
Project (Adler et al. 2003). (bottom) Changes in simulated CCSM3 
oceanic precipitation in a fully coupled simulation, but with ocean 
temperature and salinity restored to observed values in the STEB 
regimes off the coasts of southwest Africa, Peru–Ecuador–Chile, and 
Baja–southern California. Note the reduction in rainfall biases not 
only locally but across the tropical oceans. Adapted from Large and 
Danabasoglu (2006).
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precipitation and temperature anomalies along with 
other aspects of the land surface, but they are difficult 
to quantify. Any information on systematic changes 
to the atmosphere (especially its composition and 
influences from volcanic eruptions) as well as external 
forcings, such as from changes in the sun, are also 
needed; otherwise, these are specified as being fixed 
at climatological average values. The errors induced 
by incorrect initial conditions should become less 
apparent as the simulations evolve as systematic 
“boundary” and external influences become more 
important, but they could still be evident through 
the course of the simulations.

A good rule of thumb for prediction is that an 
upper bound on predictability corresponds ap-
proximately to one life cycle of the phenomenon being 
considered. Hence, one could hope to predict a single 
convective element, cyclone wave, MJO cycle, ENSO 
warm event, or fluctuation of the Atlantic MOC over 
its life cycle, but not the second-generation event. This 
rule of thumb is consistent with the climate system 
being a chaotic dynamical system with limited pre-
dictability. Additional predictability, however, could 
arise from the slowly evolving components of the 
climate system.

The pathways leading from high-frequency pro-
cesses to low-frequency phenomena, however, may 
progressively involve more aspects of the climate 
system. For example, convection associated with the 
MJO needs the ocean mixed layer to be accurately 
specified in the initial state. Thus, it follows that the 
MJO influence on ENSO needs an accurate depiction 
of the initial state of the Southern Oscillation and the 
thermocline slope across the equatorial Pacific. A 
unified modeling approach to climate system predic-
tion, in principle, lets all of these interactions occur 
as they do in nature. If the models fall short, one can 
track how and learn why.

Effect of systematic errors. Another significant obstacle 
is the systematic errors present in current AOGCMs. 
Some of these errors, such as the double ITCZ (Fig. 4, 
top), are very persistent and have been present in mul-
tiple generations of coupled models. One approach to 
addressing such errors is to vary the parameters in 
various physical parameterizations within the range 
of uncertainty based on observations in an effort to 
reduce the known biases and to form an ensemble 
of the uncertainty. A second approach is to improve 
the models so that they more accurately simulate 
the phenomena in question. This can occur through 
enhanced resolution, improved knowledge of the 
relevant physics from observations, improvements 

in the parameterizations of unresolved physics, and 
numerical experimentation to better understand 
existing parameterizations.

Efforts to reduce the systematic errors are crucial, 
because biases in the mean state could affect a climate 
model’s climate sensitivity (the response to altered 
radiative forcing) and, thus, its utility as a predictive 
tool. Quantifying the effects of systematic errors is 
difficult because of the highly nonlinear nature of 
the climate system. One promising approach, at least 
for the atmospheric component, is to run it in NWP 
hindcast mode and observe the biases as they develop 
(Phillips et al. 2004).

To understand the implication of systematic errors 
on forecast skill, it is important to note how coupled 
forecasts are initialized. Because of the limitations 
of both observational ocean data and computer re-
sources, one way to initialize a coupled model is to 
start with initial states determined separately for the 
atmosphere and ocean (e.g., coupling an atmospheric 
initial state to an ocean reanalysis product). However, 
the subsurface ocean thermal state associated with 
the ocean initial condition is likely significantly dif-
ferent than the climate of the free-running coupled 
model. As a consequence, at forecast initialization, the 
coupled model rapidly adjusts away from the observed 
climate estimate toward the coupled model climate 
that is itself a product of its own systematic errors. 
This adjustment in the tropics is primarily accom-
plished via Kelvin waves, which ultimately lead to an 
erroneous SST response 2–4 months into the forecast 
evolution. This is often referred to as an “initializa-
tion shock” or “coupling shock.” One approach to 
address coupling shock is through “anomaly initial-
ization” (Schneider et al. 1999; see also Smith et al. 
2007; Keenlyside et al. 2008; Pohlmann et al. 2009). 
In this approach, models are initialized with observed 
anomalies added to the model climate, rather than 
initialized with observed values, and the model cli-
mate is removed to obtain forecast anomalies.

Ultimately, the solution to this problem is to 
improve the simulation of the coupled modes of 
the climate system. For example, preliminary re-
sults with the National Oceanic and Atmospheric 
Administration (NOAA) climate forecast system 
(CFS) indicate that a higher horizontal resolution 
model has more irregularity of tropical eastern Pacific 
SST associated with ENSO, and the amplitude of the 
SST variability is in better agreement with observed 
estimates. Atmospheric model resolution experiments 
conducted with the Italian Decadal and Interdecadal 
Climate Variability: Scale Interaction Experiment 
(SINTEX) coupled model also indicate significant 
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improvements in simulated ENSO periodicity with 
increasing atmospheric model resolution (Navarra 
et al. 2008). However, as shown in Fig. 2, improve-
ments to the parameterization of deep atmospheric 
convection have also led to a better simulation of 
ENSO frequency in the CCSM (Neale et al. 2008), 
and Toniazzo et al. (2008) demonstrate the sensitivity 
of the simulation of ENSO in a version of the Hadley 
Centre coupled model to perturbed atmospheric 
parameters. Therefore, improvements in model fidel-
ity with increasing resolution are likely part of the 
solution, but not the entire answer. Active research 
efforts on how to initialize the coupled modes of the 
coupled models, given that they do not agree with 
those of nature (Zhang et al. 2007), recognize that 
the best state estimate for the individual component 
models may not be best for coupled forecasts. Much 
of the research focuses on how to identify the slow 
manifold described by the observed estimates and 
the coupled model, and how a mapping between them 
can be derived. A promising avenue is the use of fully 
coupled assimilation systems (S. Zhang et al. 2007).

Predictability. Although deterministic atmospheric 
predictability is limited to approximately two weeks 
(e.g., Kleeman 2007), on longer time scales at least 
two types of predictions may be possible. The first is 
a prediction of the internal variability of the climate 
system based on an initialized state of the ocean, 
atmosphere, land, and cryosphere system. Coupled 
ocean–atmosphere interactions, for instance, are 
likely important for understanding the temporal 
evolution of some extratropical, regional modes 
of climate variability, such as the North Atlantic 

Oscillation (Hurrell et al. 2006) and local modes of 
coupled variability in the Atlantic and Indian Ocean 
basins (e.g., Xie and Carton 2004; Webster 2006). 
Moreover, land surface processes, and the influence of 
the stratosphere on the state of the troposphere, might 
also be a significant source of predictability, at least on 
seasonal time scales (e.g., Baldwin et al. 2003).

First attempts at “decadal prediction” with an 
AOGCM showed reduced error growth in large-scale 
averaged surface temperature over 10-yr periods as 
a result of the initialized climate state (Smith et al. 
2007; Keenlyside et al. 2008; Pohlmann et al. 2009). 
Decadal-scale predictability in the ocean may occur 
from the thermal inertia of the initialized anomalies 
in ocean heat content, but additional predictability 
may also arise from fluctuations in gyre and over-
turning circulations (e.g., Delworth and Mann 2000; 
Dong and Sutton 2005), particularly in the Atlantic 
(Fig. 5). Multidecadal variations in Atlantic SSTs 
have been linked to low-frequency boreal summer 
changes in rainfall and drought in the continental 
United States (e.g., Schubert et al. 2004; Sutton and 
Hodson 2005) as well as hemispheric-scale tempera-
ture anomalies (R. Zhang et al. 2007). They may also 
have implications for North Atlantic hurricane fore-
casts (e.g., Zhang and Delworth 2006). It is possible 
that decadal-scale predictability exists in the Pacific 
Ocean as well (e.g., Meehl and Hu 2006).

In addition to the potential sources of predictabil-
ity from the initial values of the system, predictability 
may also be derived from past and future changes in 
radiative forcing (Hansen et al. 2005; Solomon et al. 
2007; Smith et al. 2007). Past emissions of greenhouse 
gases have committed the climate system to future 

Fig. 5. One example of decadal-scale predictability 
of the Atlantic MOC as computed in the Geophysical 
Fluid Dynamics Laboratory Climate Model version 2.1 
(GFDL CM2.1) global coupled climate model. A five-
member ensemble of predictability experiments is 
shown, in which each ensemble member used identical 
initial conditions for the ocean, land, and sea ice. These 
are taken from 1 Jan 1101 in a long control integration. 
The ensemble members differed in their atmospheric 
initial conditions, which come from 6, 11, 16, 21, and 26 
Jan from the same year in the control integration. The 
quantity plotted is an index of the MOC, defined as the 
maximum streamfunction value in the North Atlantic 
each year, indicating the northward mass flow in the 
upper layers of the North Atlantic (1 Sv = 106 m3 s−1). 
The relatively low spread among ensemble members 
in the first 10 yr suggests substantial decadal predict-
ability. Additional ensembles were calculated, some of 
which had similar predictability, and others of which 
had very little predictability.
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warming as the ocean comes into equilibrium with 
the altered radiative forcing. In addition, the best-
possible estimates of future emissions of radiatively 
important pollutants are needed for making predic-
tions, as well as modeling capabilities, to accurately 
simulate both how these pollutants affect the global 
energy, carbon, and sulfur cycles, and how the cli-
mate system subsequently responds to that altered 
forcing. In this regard, the phase and amplitude of 
the solar cycle and unpredictable volcanic eruptions 
can be significant “wild cards” to such predictions 
(Ammann and Naveau 2010).

Single versus multiple model predictions. The purpose 
of ensemble prediction is to quantify the uncertainty 

in the forecast from errors in the initial conditions, 
errors in the model (or multiple models), or a fun-
damental lack of predictability in the phenomenon 
itself (e.g., Hawkins and Sutton 2009). This technique 
is commonly used for NWP where many ensemble 
members are generated from the same model. It is 
also relevant for seasonal forecasting where more than 
one model can be used, because a simulation average 
across different models is presently more skillful than 
a simulation from a single model (e.g., Glecker et al. 
2008; Kirtman and Min 2009).

The rainfall variability simulated by nine-member 
ensembles of several state-of-the-art AGCMs forced 
by observed SSTs (Fig. 6) is very different in the 
rainfall (signal) variance (first column) despite the 

Fig. 6. Rainfall variability simulated by several AGCMs forced with observed sea surface temperatures. Each 
model simulation includes an ensemble of nine initial conditions, the differences in which are designed to mimic 
potential observational errors. The first column shows the rainfall variance of the ensemble mean of each model. 
This is the signal variance. The second column shows the variance about the ensemble mean or the variance 
resulting from atmospheric internal dynamics. The last column is the ratio of the ensemble mean variance 
divided by the internal dynamics variance, i.e., a signal-to-noise ratio. [Results are from WCRP/CLIVAR/WGSIP 
SMIP project and the figure is courtesy of In Sik Kang Seoul National University.]
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common SST forcing. This uncertainty reflects dif-
ferences in model formulation, and it is larger than 
the uncertainty resulting from the initial conditions 
(middle column), highlighting the utility of the mul-
timodel approach.

There are a number of different strategies currently 
employed to combine models for the purpose of pre-
diction. The simplest and most common approach is 
to have the various modeling centers make ensemble 
predictions and then devise statistical strategies (i.e., 
Bayesian, linear regression) for combining the models 
(e.g., Palmer et al. 2004). It is also possible to take a spe-
cific model and systematically probe the uncertainty 
in the model formulation by varying the parameters 
in the model (Stainforth et al. 2005). Both approaches 
have strengths and weaknesses, but neither strategy is 
completely satisfactory in terms of adequately resolving 
the uncertainty. Another recently proposed method-
ology is to use stochastic–dynamic parameterization 
techniques, which perturb parameterizations in such 
a way as to improve on the benefits of a multimodel 
ensemble by using a single model (Palmer et al. 2009, 
manuscript submitted to J. Climate).

Verif ication. A quick scan through the Journal of 
Climate reveals a dizzying array of different climate 
metrics that are both interesting and important. 
Furthermore, the attraction to use metrics to select 
the “best” model for an application is problematic 
(Gleckler et al. 2008). Metrics differ in variable, time 
scale, space scale, or functional representation. The 
same is not true in weather prediction, where some 
estimates of both prediction limits and the impact 
of different weather prediction metrics can be de-
termined. The skill of daily weather forecasts can be 
verified many times, and a quantification of model 
skill is relatively straightforward. The problem is 
more difficult for seasonal prediction because a large 
number of seasons and those forecast states must pass 
in order to build up forecast verification statistics.

For decadal and longer time scales, the problem 
of quantifying prediction skill becomes even more 
difficult, and the metrics will likely involve how the 
forecasts are used in applications. Even if we could test 
long-term climate models with all possible climate 
metrics proposed in the last decade of journal papers, 
we have no current method to prioritize or weight 
their impact in measuring uncertainty in predicting 
future climate change for temperature, precipitation, 
soil moisture, and other variables that are of critical 
interest to society.

There has been some recent progress in this di-
rection using perturbed physics ensembles (PPEs; 

Stainforth et al. 2005). PPEs are climate models that 
perturb uncertain physical parameterizations instead 
of initial conditions. The nondimensional error in 
Fig. 7 (from Murphy et al. 2004) is defined as the ratio 
of the climate model rms error versus observations to 
the interannual natural variability of the same climate 
variable metric; in essence, it is a signal-to-noise mea-
sure. A large range of a given nondimensional climate 
metric indicates sensitivity. The whisker plots in Fig. 7 
confirm the intuition that climate variables associated 
with energetics (cloud, radiation, and sea ice) appear 
more sensitive than classical weather dynamical vari-
ables (e.g., 500-hPa streamfunction). Further work 
along these lines is critically needed to discover meth-
odologies to define rigorous climate metrics that are 
capable of determining climate prediction uncertainty. 
The essential question is this: what climate metrics for 
hindcast climate prediction accuracy can be used to 
determine the uncertainty bounds on future climate 
prediction accuracy? If this question can be answered, 
a second benefit will be the ability to more rigorously 
define climate observation requirements.

CONCLUDING REMARKS. Strategies for a 
more unified approach to climate system prediction 
currently include the following: i) using Intergovern-
ment Panel on Climate Change (IPCC) class coupled 
climate models for predictions on time scales from 
days to decades; ii) using NWP class models for 
seasonal-to-decadal prediction, after modification 
to properly account for changing radiative forcing; 
and iii) developing very high-resolution models with 
mesoscale processes explicitly resolved, either glob-
ally or by nesting high-resolution regional models 
within global climate models. There are other emerg-
ing approaches as well, such as the concept of begin-
ning integrations with higher resolutions to satisfy 
weather forecast requirements, and then cascading 
down to lower-resolution versions of the model with 
consistent physical parameterization schemes for 
longer time-scale predictions. All of these approaches 
attempt to remove the distinction between weather 
and climate by taking advantage of the processes and 
mechanisms that characterize the climate system at 
all time and space scales. Quesitons are being raised 
as to whether model development efforts should be 
focused on improving AOGCMs before attempting 
ESMs, with their added complexities of coupled car-
bon and nitrogen cycles, chemistry, aerosols, dynamic 
vegetation, and other components. With a unified 
modeling approach, the common processes can be 
addressed in both classes of models and progress can 
be made on both fronts.
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There are other potential 
benefits of using similar 
models for predictions on 
different time scales; among 
them are skill improve-
ment in both weather and 
climate forecasts, stronger 
collaboration and shared 
knowledge among those 
in the weather and climate 
“communities” working on 
physical parameterization 
schemes, data assimilation 
schemes and initialization 
methods, and shared in-
frastructure and technical 
capabilities.

A significant step for-
ward is a planned set of 
coordinated climate change 
experiments ca l led the 
Coupled Model Intercom-
parison Project phase 5 
(CMIP5; K. Taylor et al. 
2009, personal commu-
nication; online at http://
cmip.llnl.gov/cmip5/docs/
Taylor_CMIP5_design.pdf). 
The strategy is to approach 
the climate change predic-
tion problem in a unified 
way with two classes of 
related climate models to 
address two time scales: 
higher-resolution (~50 km) 
AOG CMs for  dec ad a l 
predications out to about 
the year 2035 (Meehl et al. 
2009), and lower-resolution 
(~200 km) versions of the 
same models, but with a 
coupled carbon cycle and 
perhaps simple chemistry, 
dynamic vegetation, and 
prognostic aerosols for century and longer climate 
change integrations. The latter experiments would 
quantify the magnitude of important feedbacks that 
will determine the ultimate degree of climate change 
in the second half of the twenty-first century (Meehl 
and Hibbard 2007; Hibbard et al. 2007).

Computer resource and other limitations will 
likely dictate that resolving certain processes and phe-
nomena could still require alternative strategies for 

many years into the future. A case in point is the need 
to represent hurricanes in a special class of climate 
models that could include embedded regional models 
with resolutions of about 5 km in order to adequately 
depict their extreme intensity and their effects on the 
ocean and the energy and water cycles. 

Additionally, current and future efforts with ESMs 
will allow for more complete assessments of the physics 
of climate change by including additional components 

Fig. 7. Values of the climate prediction index (CPI) of Murphy et al. (2004), 
and its 32 components (black boxes and bars, representing surface and atmo-
spheric variables) from the PPE. The components are calculated as the rms 
difference between simulated and observed present-day climatological mean 
patterns divided by the rms value of the standard deviation of simulated inter-
annual variations. The plot shows averages of values calculated separately for 
each season of the year. Bars show the full range of the ensemble distribution 
of values, boxes show the range encompassed by the 5th and 95th percentiles, 
and the horizontal line within each box shows the median. The CPI is calcu-
lated as the rms value of the 32 components for a given ensemble member. 
Adapted from Murphy et al. (2004, see their article for more detail).
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and processes that are not essential to the shorter time 
scales. The computational burden of the ESMs will test 
the feasible limits of the explicit resolution of multiscale 
interactions and more regional discrimination of cli-
mate change impacts. Moreover, given relatively large 
systematic errors, the additional feedbacks from more 
interactive components of ESMs clearly increase the 
uncertainty in the magnitude and nature of the climate 
changes projected in future scenario simulations. The 
time-evolving ingredients required for future scenario 
integrations with ESMs also still must be estimated as 
a range of possible outcomes based, to a large extent, 
on the unpredictable nature of human actions. These, 
along with observational data needs, logistical issues 
related to coupling strategies and coupled initializa-
tion, and the scientific questions related to the myriad 
of unconstrained and poorly understood feedbacks, 
are significant aspects of these emerging ESMs that 
will continue to stretch both computational and hu-
man resources for the foreseeable future. However, 
activities that have already begun indicate that we are 
moving into a new and exciting era of climate system 
prediction that will, by nature of the converging in-
terests, modeling tools, and methodologies, produce 
greater interactions among previously separate com-
munities, and thereby provide better predictions of the 
climate system at all time and space scales.
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