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Abstract. This paper investigates the uncertainties in different model estimates of an
expected anthropogenic signal in the near-surface air temperature field. We first consider
nine coupled global climate models (CGCMs) forced by CO2 increasing at the rate of 1%/
yr. Averaged over years 71–80 of their integrations, the approximate time of CO2
doubling, the models produce a global mean temperature change that agrees to within
about 25% of the nine model average. However, the spatial patterns of change can be
rather different. This is likely to be due to different representations of various physical
processes in the respective models, especially those associated with land and sea ice
processes. We next analyzed 11 different runs from three different CGCMs, each forced
by observed/projected greenhouse gases (GHG) and estimated direct sulfate aerosol
effects. Concentrating on the patterns of trend of near-surface air temperature change
over the period 1945–1995, we found that the raw individual model simulations often bore
little resemblance to each other or to the observations. This was due partially to large
magnitude, small-scale spatial noise that characterized all the model runs, a feature
resulting mainly from internal model variability. Heavy spatial smoothing and ensemble
averaging improved the intermodel agreement. The existence of substantial differences
between different realizations of an ensemble produced by identical forcing almost
requires that detection and attribution work be done with ensembles of scenario runs, as
single runs can be misleading. Application of recent detection and attribution methods,
coupled with ensemble averaging, produced a reasonably consistent match between model
predictions of expected patterns of temperature trends due to a combination of GHG and
direct sulfate aerosols and those observed. This statement is provisional since the runs
studied here did not include other anthropogenic pollutants thought to be important (e.g.,
indirect sulfate aerosol effects, tropospheric ozone) nor do they include natural forcing
mechanisms (volcanoes, solar variability). Our results demonstrate the need to use
different estimates of the anthropogenic fingerprint in detection studies. Different models
give different estimates of these fingerprints, and we do not currently know which is most
correct. Further, the intramodel uncertainty in both the fingerprints and, particularly, the
scenario runs can be relatively large. In short, simulation, detection, and attribution of an
anthropogenic signal is a job requiring multiple inputs from a diverse set of climate
models.

1. Introduction

Attempts to detect an anthropogenic signal in the observa-
tions require first that the signal be defined a priori. This is
usually accomplished by sophisticated climate models forced
by various time-dependent anthropogenic “scenarios,” i.e.,
quantitative estimates of how various pollutant gases have
changed in the 20th century [cf. Santer et al., 1996]. The an-
thropogenic “signal” is defined, after removal of long-term
means and the seasonal cycle, from the model output of such
scenario runs. Almost all of the prior detection studies have
taken this approach to signal definition, e.g. Barnett et al., 1991;

Mitchell et al., 1995; Tett et al., 1996; Hegerl et al., 1996, 1997,
1999a; North and Stevens, 1998; North and Kim, 1995.

Until very recently, detection studies did not address ques-
tions such as how similar are the predicted anthropogenic
signals that we wish to detect when they are obtained from
different models? Certainly, we might expect models forced by
the same anthropogenic source to differ if for no other reason
than the way the forcing is incorporated into the models. Also,
the expressions for internal atmospheric physics in the models
vary, for example, the radiation code, and that may introduce
differences in response and sensitivity via cloud formulations
[e.g., Cess et al., 1990; Senior and Mitchell, 1993]. Intermodel
differences of this kind lead to uncertainty in conclusions
drawn from a single model run, and here we refer to this as
intermodel variability [cf. Hegerl et al., 1999a]. Finally, the large
levels of internal dynamical variability within the complex cli-
mate models are well documented [e.g., Palmer et al., 1994;
Barnett, 1995]. So we can expect that repeated model simula-
tions made using the same model and identical representations
for the forcings will give somewhat different results (in-
tramodel variability) if they are started from slightly different
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initial conditions. This effect will be particularly marked during
times when the anthropogenic signal predicted by the models
is weak relative to the internal model noise [Cubasch et al.,
1994; Santer et al., 1995a].

The key question we address here is how important to the
detection problem are the uncertainties in predicted anthro-
pogenic signals due to both intermodel and intramodel vari-
ability (i.e., due to differences in model formulation and inter-
nal climate variability within a single model). We note the
current study is complementary to that of Hegerl et al. [1999a]
which approaches the problem from another perspective than
used here. To answer the question, we not only compare the
model signals with observations but also estimate the size of
the intermodel and intramodel differences relative to the pre-
dicted signal in a selected set of models. We will also estimate
the pattern similarity between different estimates of the
“same” anthropogenic response signal, as most modern detec-
tion methods use, at least partially, some form of pattern rec-
ognition. Large differences in the spatial patterns of model
response to the same forcing would make detection and attri-
bution more difficult, for we do not know which model, if any,
is correct. Note our approach may not detect biases common to
all models, unless they appear in the comparisons with obser-
vations.

The paper is arranged as follows: Section 2 describes the
model data used in this study and some of the analysis tech-
niques employed. We next explore the behavior of nine cou-
pled climate models (CGCMs) forced by increasing CO2 in an
effort to see if large differences exist between different models’
response to this relatively strong but idealized anthropogenic
forcing. Section 4 concentrates mainly on intramodel differ-
ences arising in 11 simulations from three different models
forced by greenhouse gases (GHG) and the direct sulfate aero-
sol effect (SUL). Sections 5 and 6 discuss implications for
detection studies based on the results of sections 3 and 4. A
final section summarizes the main points of this work.

2. Methods and Data

2.1. Data Sources

Two major sets of CGCM scenario run data were used in
this study. The first comes from the coupled model intercom-
parison project (CMIP) [Meehl et al., 1997], an element of the
Program for Climate Model Diagnosis and Intercomparison
(PCMDI) [Gates, 1992; Gates et al., 1999]. The annual mean
data we used here were part of the CMIP2 subproject and
kindly provided by Curt Covey. In CMIP2, nine different
CGCMs were first run for 80 years in control run mode. The
initial conditions for these runs were selected from a longer
control run of the individual models that had achieved steady
state. The same models were then run for another 80 years
with forcing corresponding to an increase of CO2 at a rate of
1% per year compounded. The long-term mean, annual near-
surface temperature from the 80 year control run was com-
puted for each model and subtracted from that model CO2 run
to form annual anomalies that would be subjected to future
analysis. The models, their resolution, etc., are given in Table
1, and additional information may be found on the World
Wide Web (www.pcmdi.llnl.gov/modeldoc/cmip/).

The second set of scenario runs represents a more realistic
set of experiments, albeit still limited by forcings known to be
radiatively important that were omitted from the numerical
experiments. Three different CGCMs were forced with a com-
bination of greenhouse gases (GHG) and the direct effects of
sulfate aerosols (SUL), the latter being expressed as changes in
surface albedo in the models. The simulations began in the late
1800s and continued into the 21st century (see Table 2 for
details). The observed/estimated gas concentrations were used
up to modern times to force the models, and then an IPCC
scenario for concentrations into the future was used. The im-
portant feature of these runs is that they were conducted in
ensemble mode. There were two realizations of the Max
Planck Institute (MPI) run [Cubasch et al., 1997], five realiza-

Table 1. CGCM Control and 1% CO2 Runs

Model
Flux

Adjustment

Resolution* in
Atmosphere and

Ocean Components

CERFACS (European Centre for Research and
Advanced Training in Scientific Computation)

none A: 5.6 3 5.6 L30
O: 2.0 3 2.0 L31

CSIRO (Commonwealth Scientific and Industrial
Research Organization)

heat, water A: 3.2 3 5.6 L9
momentum O: 3.2 3 5.6 L21

GFDL (Geophysical Fluid Dynamics Laboratory) heat, water A: 4.4 3 7.5 L9
O: 4.5 3 3.8 L12

GISS (Goddard Institute for Space Sciences) none A: 4.0 3 5.0 L20
O: 4.0 3 5.0 L13

LMD (Laboratoire de Meteorologie Dynamique) none A: 1.6 3 3.8 L15
O: 2.0 3 2.0 L31

MPI (Max Planck Institute for Meteorology) heat, water A: 5.6 3 5.6 L15
(ECHAM3 1 LSG) momentum O: 3.5 3 3.5 L11

MRI (Meteorological Research Institute) heat, water A: 5.0 3 4.0 L17
O: 2.0 3 2.5 L21

NCAR (National Center for Atmospheric Research)
(CSM)

none A: 2.8 3 2.8 L18
O: 2.0 3 2.0 L45

HadCM2 (Hadley Centre, UK Meteorological Office) heat, water A: 2.5 3 3.8 L15
O: 2.5 3 3.8 L20

*Approximate latitude and longitude intervals and number of levels in the vertical. Latitude intervals
are variables in some cases, for example, atmosphere models using spectral transform techniques, or ocean
models with enhanced resolution near the equator. Latitude-longitude resolution in the CMIP database
is interpolated from the original (finer) grid.
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tions of the Geophysical Fluid Dynamics Laboratory (GFDL)
run [Knutson et al., 1999], and four realizations of the Hadley
Center run [Tett et al., 1999]. In all cases the different realiza-
tions varied only in that their initial conditions which were
taken from different states of a long control run separated by
50–130 years. The mean near-surface air temperature aver-
aged over June, July, and August (JJA) derived from a long
control run was used with the scenario runs to compute anom-
alies for the JJA period. This part of the year was selected
because recent detection and attribution studies have concen-
trated on this period [e.g., Santer et al., 1995b; Hegerl et al.,
1996, 1999a; Barnett et al., 1998].

Observed near-surface temperature data were also used in
the study. This data set is a combination of land air tempera-
ture anomalies [Jones, 1994] and sea surface temperature
anomalies [Parker et al., 1995] on a 58 3 58 grid-box basis. The
merging of the two data sets is discussed by Parker et al. [1994].
Both components of the data set are expressed as anomalies
from 1961 to 1990. The data set has been extensively used in
the various IPCC reports [e.g., Nicholls et al., 1996]. The recent
study of Hegerl et al. [1999b] showed that the observational
sampling errors in these data were not large enough to seri-
ously affect detection studies.

All of the data used below has been projected onto a com-
mon T42 grid, ;2.88 3 2.88 on a side. This was done via
bidirectional linear interpolation. Notice that in most cases the
original model runs were at a resolution lower than the T42, so
the interpolation process did not introduce high wave number
noise to the data. The fields were further limited to the domain
where a reasonable amount of observations exist, 5219 grid
points out of a possible 8192. In practice, this means regions in
the Southern Hemisphere below about 408S were largely ig-
nored, as were the highest latitudes of the Northern Hemi-
sphere.

2.2. Analysis Methods

Two main types of analysis were used. Pattern correlations
were used to quantify the level of similarity between various
patterns of climate change produced by the models. Also,
common empirical orthogonal functions (cEOFs) were used to
study the relative magnitudes of the differences between
model simulations of anthropogenic responses, something sim-
ple pattern correlations cannot do.

Similarities between patterns of change produced by differ-
ent models (i and j) are easily quantified via the pattern (P)
correlation [e.g., Richman, 1986] defined as

Pij 5
^~Ti 2 ^Ti&x!~Tj 2 ^Tj&x!&

@^~Ti 2 ^Ti&x!
2&^~Tj 2 ^Tj&x!

2&#1/ 2 , (1)

where Ti 5 Ti( x , t), say, is the near-surface air temperature
anomaly field from the ith model or realization relative to its
climatology from a specific ensemble. The brackets represent
an averaging operation over x . The mean that is removed in
the calculation should be computed as a spatial average over
the T field at a single time “t .” Given the normalization in (1),
P will have value 1.0 if the two patterns being compared are
identical and 0.0 if they are orthogonal. Note that the T field is
area weighted by the cosine of the latitude prior to estimation
of P .

The significance of the pattern correlations was determined
relative to the GFDL control run. Successive patterns of 50
year summer trends were estimated from this run. The pdf of
these trend patterns was used to determine the significance of
the same length trend patterns estimated from the scenario
runs (section 4). This same procedure was used to estimate
significance of trends in smoothed data, the control run smooth-
ing being the same as that for the scenario runs (section 5.1).

The common EOFs were computed in the manner described
by Barnett [1999]. The model temperature fields were concat-
enated as shown by Barnett and Preisendorfer [1987] to form a
“single” data set; that is,

T9~ x , t9!

5 5
T1~ x , h! , t9 5 1, 2, · · · , m; h 5 1, 2, · · · , m

T2~ x , h! , t9 5 m 1 1, · · · , 2m h 5 1, 2, · · · , m
···

···
···

(2)

where Ti is the near-surface air temperature anomaly field for
the ith CGCM (i 5 1, 2, z z z , N), x is a spatial grid point
counter for locations where data exist ( xmax 5 5219) and is the
same for all the models, each grid point time series is m terms
long, and t9 is a dummy time variable that describes the order
of concatenation.

Each model’s time series has been adjusted to have zero
mean at each grid point. This means the array T9 can be
immediately subjected to a standard EOF (empirical orthogo-
nal function) analysis of its covariance matrix. Prior to estima-
tion of the covariance matrix, each grid point time series is
weighted by the cosine of its latitude. Note also that models
with higher variability will tend to dominate the analysis if the
covariance matrix is used. Since such model properties are
something of keen interest, the covariance matrix is more in-
formative than analysis of the correlation matrix which would
suppress intermodel variance differences.

The results of the above analysis produce what we term
common EOFs or cEOFs (not be to be confused with complex

Table 2. GHG 1 SUL Scenario Runs

Model
Flux

Correction

Control Run
Length
(year) Run Period

Number
Realizations

Resolution in
Atmosphere and

Ocean Components

GFDL yes 675 1865–2014* 5 A: 3.75 3 2.25, L 5 14
O: 1.9 3 2.25, L 5 18

HadCM2 yes 1700 1861–2099 4 A: 3.75 3 2.5, L 5 19
O: 3.75 3 2.5, L 5 20

MPI yes 1500 1880–2049 2 A: 5.625 3 5.625, L 5 19
O: 3.5 3 3.5, L 5 11

*Runs continuing.
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EOFs or CEOFs). The eigenvectors, after correction for the
cosine weighting, represent the patterns of variability that the
N CGCM runs share in common. It is convenient to define a
partial eigenvalue, Sni, to represent the relative contribution
of the ith model to the energy of the nth eigenmode as follows:

Sni 5
1
m O

j51

m

an
2~t9j! , (3)

where the sum is over the ith individual m-component data
blocks defined by (3), of which there are N . The distribution of
the Sni with mode n gives an approximation of the eigenvalue
spectrum for model “i .” This offers an immediate way to
quantitatively intercompare both the patterns and the levels of
internal variability of the runs as a function of pseudo-
wavenumber (EOF mode number). See also the use of com-
mon EOFs described by Stouffer et al. [1999].

3. Results: Idealized CO2 Forcing
This set of runs, although for an idealized anthropogenic

scenario, offers an excellent opportunity to determine the mag-
nitude of intermodel differences relative to the signal they are
producing since they have similar forcing. Some of the uncer-
tainty will come from internal model variability, but time av-
eraging over the last 10 years of each run should reduce po-
tential impacts of this intramodel variability. We expect the
larger differences will come from differences in model physics,
for example, the manner in which the changes in CO2 affect
the radiative forcing in each model and the associated feed-
backs.

3.1. Traditional Analysis

It is useful when analyzing anthropogenically forced runs to
show a map of the expected signal at some time in the future
and/or the global average temperature changes expected as a
function of time. These quantities are summarized in this sec-
tion.

The time-dependent near-global mean was computed for
each model and is shown in Figure 1. All models produce a
change of about 1.58C over the last 70 years (years 11–80) of
the integrations, the first 10 years being omitted from analysis
to avoid any potential start-up problems. The results look
rather similar. Close inspection shows that by the end of the
runs the global temperature estimate varies between 1.28 and
2.08C, and the final decadal averages vary between 1.18 and
1.88C. These ranges, centered on the mean of about 1.58C,
suggest the models agree to within about 625% at the end of
the 80 years of integration, a surprisingly small value given the
differences in natural variability in the models and differences
in the climate sensitivity due to different physical parameter-
izations.

The spatial pattern of change was computed by first averag-
ing the last 10 years of each integration. (Averaging over the
last 20 years produced basically the same result. A comple-
mentary analysis via cEOFS of the CMIP2 models giving much
the same results and is given in the Appendix.) The resulting
nine maps of the spatial signal over this period were then
averaged together at each grid point, i.e., a nine model average
of the spatial distribution of the “signal” (SMEAN) with the
global average temperature left in. The intermodel standard
deviation of this mean, due to both response differences and
internal climate noise, was computed at each grid point from
the nine model realizations and denoted by “N .” The global
mean of the nine model average computed over all grid points
was removed to isolate better the spatial characteristics of the
anthropogenic signal (SNOMEAN) without the global average
temperature. The signal to noise ratios (SMEAN/N) and
(SNOMEAN/N) are shown in Figure 2, along with the nine
model average before removal of the global mean.

The results show that retention of the global mean provides
a signal that is robust relative to the intermodel variability, i.e.
the ratio SMEAN/N is greater than 1.0 over most of the globe
(Figure 2, middle). Conversely, removal of the global mean
(Figure 2, bottom, SNOMEAN/N) gives a signal that is poorly
defined over most of the tropical and midlatitude ocean areas
of the Earth (stippled areas), since SNOMEAN/N is less than
1.0. Together, these results mean the agreement of the model
is driven by their estimates of global mean temperature and
enhanced warming over land. Removal of this mean produces
signal patterns that vary greatly between models. In detection
work, the changes in global mean would be useful for detecting
“climate change” but would be of modest use in “attributing”
changes to specific physical processes (see Tett et al. [1999] for
an example).

3.2. Pattern Similarity

The strongest signal was at the end of the integrations and
was isolated by taking an average of the last 10 years of each
model run. The pattern correlations between the nine esti-
mates of this spatial signal are given in Table 3. Values range
from 0.08 to 0.72 with values above 0.46 being significantly
different than the 80 year long CMIP2 control run values at the
0.05 level. Note that most of the anthropogenic model pattern
correlations are significantly higher than were obtained from
their respective control run alone.

The reasons for the largest disparities in Table 3 become
clear when we investigate the patterns that contribute to the
extremes of this range of correlations (Figure 3). The global
mean temperature has been removed from each panel to em-
phasize better the patterns. The MPI-NCAR patterns (corre-

Figure 1. Near-global average surface temperature (degrees
C) from nine CGCMs forced by idealized CO2 signal increas-
ing at 1% per year. The last 70 years of 80 year integrations are
shown.
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lation 0.08, Figures 3a–3b) show the former model to produce
a much larger signal over most of the continental regions than
the latter model, especially over South America, North Amer-
ica, and Africa. We speculate that land processes, for example,
soil moisture, are handled quite differently between these
models, an idea supported by the recent work of Räisänen
[1999]. Note the large response in the NCAR simulation in the
Bering Sea and Greenland-Iceland area, regions where MPI
has little response. The most likely cause for these differences
is in the way the models account for sea ice. In contrast the
GFDL-MPI comparison (correlation 0.72, Figures 3b–3c)
shows most of the main features are in qualitative agreement.
The main differences are in small displacements between the
main response regions, for example, compare results over
North America and, in the highest latitudes, for example, the
Bering Sea region. This is the best case of pattern agreement in
Table 3.

3.3. Summary

Patterns of near-surface air temperature change predicted to
occur as CO2 increases at a rate of 1%/yr by nine (9) different
global climate models agree well with respect to the global
mean. The spatial patterns of change which accompany the
changing mean agree moderately well and demonstrate clearly
the strong contrast in land-ocean temperature change and
high-latitude warming. Consideration of the largest spatial re-
sponse shows that the various change patterns predicted by the
model share a substantial 46% of their variance in common
(compare the Appendix). Visual inspection of the individual
model results leads us to speculate that the differences in
responses may be due to the basic model physics, or param-
eterizations, especially those affecting land and sea ice pro-
cesses, an idea supported by the recent work of Räisänen
[1999].

4. Results: GHG and Direct Sulfate Aerosols
The group of simulations discussed below is more realistic

than those presented above but still lacking forcing by key
chemical constituents, for example, indirect sulfate aerosols,
ozone, etc. Even the forcings they do use differ in fundamental
ways; for example, the direct sulfate forcing has a time-
independent pattern, with a time-varying amplitude, in the
Hadley Centre simulations [Mitchell et al., 1995] but a time
varying pattern and amplitude in the MPI runs. Nevertheless,
at least two models forced by the combination of GHG and
direct sulfate aerosols (SUL) produce surface temperature
changes over 1945–1995 which are consistent with those found
in the observations [e.g., Hegerl et al., 1997, 1999a; Tett et al.,
1996, 1999; Knutson et al., 1999; Barnett et al., 1999, section 6],
although these results carry numerous caveats (compare same
authors). It is for this reason that this section will concentrate
on the characteristics of those model signals during this recent
(1945–1995) period, the latter year being selected to avoid
trend estimate distortion associated with the huge El Niño/
Southern Oscillation (ENSO) event of 1997–1998. We further
restrict the analysis to the northern summer (June/July/August,
JJA), a time of the year when signal to noise is a maximum and
detection chances particularly for sulfate signals enhanced
(Hegerl et al. [1997], Barnett et al. [1998], Santer et al. [1995b]
results suggest SON might also be a good season for detec-
tion).

4.1. Traditional Analysis

The smoothed near-global mean temperature for June/July/
August (JJA) from 1910 to 2010 is shown in Figure 4 for all 11
realizations from the three models. We note other phases of
the seasonal cycle might be useful for detection, for example,
winter [Santer et al., 1996]. The observed near-global mean is
shown for comparison. All series have been filtered with a 10

Figure 2. (top) Annual temperature anomaly averaged over
the last decade over all nine model simulations forced by 1%
per year increase in CO2 concentrations. (middle) Ratio of the
signal shown in the top panel divided by the standard deviation
about this mean computed from the nine member ensemble.
(bottom) Same as middle panel but with global mean removed.
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year smoother. The trend over the period 1945–1995 from the
simulations varies between 0.0168 and 0.0488C per decade for
the models. The trends of the averaged GFDL and Hadley
Centre ensembles are 0.0388 and 0.0318C per decade, respec-
tively. Analysis of the observations gave a value of 0.0288C per
decade over the 1945–1995 period. So the average properties
of the raw trend from the models and observations are in
relatively good agreement, a result whose statistical signifi-
cance is verified in section 6. The model results do not take
into account any volcanic or solar influences [e.g., Cubasch et
al., 1997; Tett et al., 1999; Stott et al., 1999]. Note also the single
model integration that shows warming until about 1940 and
cooling afterward, much like the observations. This interesting
result is from a GFDL realization (GF3 in Tables 4 and 5 and
G3 in Plate 1) and discussed by Knutson et al. [1999].

The spatial patterns of trend over 1945–1995 are shown in
Figure 5 for both the observations and the average of all of the
11 realizations from the three models. (Use of trend to repre-
sent change between 1945 and 1995 is a good first-order ap-
proximation but suboptimal from a detection point of view [cf.
Santer et al., 1996; Wigley et al., 1998]. It is, however, the metric
used in many current detection studies and so its use here
facilitates comparison with the recent work.) Inspection of the
figure shows the models have both overestimated and under-
estimated the rate at which the temperature has changed in
some regions of the world. However, the fundamental patterns
appear to have some key differences, especially over the
Northern Hemisphere landmasses and oceans, where negative
trends are observed, while average model trends are positive
(see also Knutson et al. [1999] who obtained a similar result).
These differences are thought to be due to a number of factors,
including those associated with indirect sulfate aerosol forcing
and differing representations of ENSO, Pacific Decadal Oscil-
lation [e.g., Trenberth and Hurrell, 1994; Barnett et al., 1999b],
and other “natural” climate modes. Note the averaged model
pattern will be smoother and will have less distinctive features
than the observations, simply as a result of the variance reduc-
tion produced by the averaging. There is only one realization
of the observations, and so it will be noisy.

4.2. Pattern Similarity

The differences between the simulation of different models
with what was supposed to be essentially the same forcing were
investigated as above. Each realization from each model was
used to estimate the linear trend in surface air temperature
between 1945 and 1995, as a function of spatial location. This
resulted in 11 different maps, one for each model/realization,
of gridded trend values over the data-adequate regions. The

globally averaged means of these trends, discussed in section
4.1 above, were removed from their respective maps and the
pattern correlations computed. The observed trends also were
included in this analysis set.

The results are shown in Table 4. The raw 50 year JJA trend
maps correlate with each other in the range 20.11 to 0.45, with
values exceeding 0.30 being likely from an identical analysis of
the GFDL control run only 10% of the time. In this case, the
GFDL control run is taken to represent natural, internal vari-
ability in a climate system with no anthropogenic forcing.
Twelve of the 55 individual realization interpattern correla-
tions equal or exceed 0.30. The models pattern-correlate with
the observed pattern in the range 20.10 to 0.29. Values of 0.23
or greater are exceeded 10% of the time if one replaces the
anthropogenically forced patterns with comparable length seg-
ments of the GFDL control run; that is, only two of the 12
individual realization correlations are significant. Note that
this test basically asks if the agreement between the observa-
tions and the anthropogenic runs differs at all from that found
between the observations and the control runs. We obtained
essentially the same results by replacing the observations with
comparable chunks from the GFDL control run and then com-
paring these with the anthropogenic runs.

The pattern correlation between the ensemble averages of
the GFDL and HadCM2 ensembles is 0.37, a value that oc-
curred just 10% of the time in an identical analysis of the
pseudoensembles drawn from the GFDL control run, so the
ensemble averages from the two anthropogenically forced
models are said to be similar to each other. The correlations
between each of these ensemble mean patterns and the ob-
served pattern of trend are 0.09 and 0.17, respectively. Neither
of these last values is significantly different than expected from
the GFDL control run compared to observations. Finally, the
grand average of all 11 runs (“AVG” in Table 4) significantly
correlates with all of the individual runs (except HC4) and the
observations. So ensemble averaging enhances agreement by
reducing model-induced noise, such that there is clearly sub-
stantial agreement between the various model realization es-
timates of the temperature trend over the last 50 years. How-
ever, these simple patterns of trend change are not correlated
significantly with the observations. As we shall see in section 6,
use of optimal detection techniques gives just the opposite result.

The reasons for the largest disparities can be seen on the
individual, unsmoothed trend maps (after removal of the glo-
bally averaged trends) associated with the largest positive and
negative correlations in Table 4 (Figure 6). The top two panels
correlate at 20.15, the largest model-model disagreement

Table 3. Pattern Correlation for the Idealized CO2 Runs

HadCM2 NCAR MRI LMD GISS GFDL MPI CSIR CERF

CERF (0.59) 0.18 0.42 (0.60) (0.56) (0.64) (0.70) (0.57)
CSIR (0.58) (0.48) (0.47) 0.45 0.44 (0.60) (0.51)
MPI (0.62) 0.08 0.39 (0.70) 0.45 (0.72)
GFDL (0.58) 0.22 0.44 (0.53) (0.51)
GISS (0.58) 0.27 (0.51) 0.49
LMD (0.62) 0.17 0.35
MRI (0.57) 0.17
NCAR 0.36
HadCM2

Values (in parentheses) of pattern correlations were likely to occur in the selected model control run
less than 10% of the time.
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found in Table 4. The Hadley Centre model (HadCM2) real-
ization 4 (denoted by HC-4) shows a relative warming trend
over most of the Northern Hemisphere, while the MPI model
realization “A” shows large areas of relative cooling over the
same region, especially over Eurasia, the western Pacific, and
North Atlantic. These are the regions where the sulfate forcing
is strongest. Hegerl et al. [1997, 1999a] show the sulfate signal

in the MPI models is substantially stronger than in the Hadley
Centre model. It seems probable, then, that the difference in
forced response between the two models is due to this fact. We
cannot, however, discount the fact that the HC run 4 is a
statistical outlier produced mainly by internal model variabil-
ity, a suggestion that will be confirmed in section 6 (see Plate
1). In any event the existence of results such as that from HC-4
clearly show that future detection work on CGCM simulations
needs to be done on ensembles of scenario runs, not individual
runs. Such an approach to detection is present in the studies of
Tett et al. [1996, 1999], Stott et al. [1999], and Hegerl et al. [1999a].

The bottom two panels of Figure 6 have one of the highest
pattern correlations of any of the simulations (0.40). Here the
agreement is due to the coexistence of large regions of tropical
and Southern Hemisphere with relative warming and relative
northern midlatitude cooling in both the MPI realization “A”
and the Hadley Centre realization 3 simulations. Remember
the global average trend was removed, so the apparent cooling
is relative to this global averaged trend which was positive.

Close inspection of Table 4 reveals that different simulations
made by the same basic model often have low correlation. In
places, the simulation-to-simulation difference is as big or big-
ger than the mean signal itself. The conclusion we draw is that
the intramodel variability, due to internal model dynamics, is
generally at least as large in the three models (at this time) as
the anthropogenic signal they are producing. We shall see
below that this problem can be overcome through use of en-
semble properties of the various model integrations but not for
observations where we have only one realization.

4.3. Common EOFs

The cEOFs were computed over a uniform record length for
each model from 1900 to 1995, the same length as the obser-

Figure 3. Average of the last decade annual near-surface
temperature (degrees C) from three members of the ensemble.
(a) from the NCAR model, (b) from the Max Planck Institute
model, and (c) from the GFDL (R15) model.

Figure 4. Near-global average surface temperature for JJA
(degrees C) from the 11 member ensemble of coupled models
forced by a combination of greenhouse gases (GHG) and di-
rect sulfate effects (SUL) shown by solid lines. Observational
equivalent shown by connected asterisks. All data were put
through a 10 year filter.
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vational record used in this paper. The data used to form the
covariance matrix were anomalies of near-surface temperature
from the models only, computed as described above and
smoothed with a 10 year filter to eliminate interannual vari-
ability such as ENSO and weighted by cosine of the latitude.
Note that a simple analysis will be most influenced by the
GFDL and Hadley Centre realizations simply because there
are more of them. A weighting scheme inversely proportional
to the number of individual model realizations was used prior
to estimation of the covariance matrix to correct for this po-
tential bias. We note that there are a number of ways this
analysis could have been done (e.g., correlation matrix, differ-
ent spatial weighting, etc.) which could potentially change the
details of the results shown here. Hence we concentrate only
on the major results which we feel are insensitive to the details
of the cEOF analysis.

The leading cEOF (Figure 7) accounted for 39.4% of the
common variance. The signal has a pattern of almost uniform
sign over the study region with positive maxima over the land
masses, especially the tropics. A notable minimum exists over
the central North Pacific Ocean. However, the results suggest
the response is far from spatially uniform, so there is a clear
fingerprint for detection studies to attempt to find in the ob-
servations. That fingerprint essentially is one of land/sea tem-
perature contrasts, with larger response in the middle of the
major continents. It is this pattern that detection schemes must
seek to discover. Note the high-latitude signal is weaker than

found with CO2 forcing only (Figure A1). The second cEOF
(not shown) accounts for only about 6% of the variance and is
statistically degenerate. Such information may represent a
“correction” to the leading mode associated with time-
dependent spatial changes in the cEOF1 pattern and so cannot
be neglected out of hand.

The eigenvalue spectrum (Figure 8) shows the energy (am-
plitude squared) of the principal anthropogenic signal illus-
trated in Figure 7 varies considerably between models, being
strongest in the GFDL simulations and weakest in the MPI
runs. Interestingly, the signal energy variations within the
GFDL or HadCM2 model ensembles are about the same size
as the intermodel ensemble differences. The MPI runs contain
considerably less energy (a smaller signal) than the other two
models. This is likely due to the ocean component of that
model, the large-scale geostrophic model, which is known to
demonstrate weak interannual and interdecadal variability
[e.g., von Storch, 1994; Pierce et al., 1995]. The relative large
difference in signal strength between the models suggests that
detection schemes ought to include signal magnitude (e.g.,
optimal detection methods), something simple pattern corre-
lation schemes do not do.

Also shown in Figure 8 is the projection of the observational
record onto cEOF1. Obviously, the recent changes in an an-
nual temperature project only moderately well onto the signal
pattern predicted by the combined models, with weaker load-
ing than the models. This result is somewhat better than ex-

Table 4. Pattern Correlation of Surface JJA Temperature Trends (1945–1995)

OBS AVG GF-5 GF-4 GF-3 GF-2 GF-1 EC-B EC-A HC-4 HC-3 HC-2 HC-1

HC-1 (0.29) (0.60) 0.25 0.16 0.06 (0.33) (0.34) 0.25 0.22 0.18 0.08 (0.44)
HC-2 0.19 (0.59) 0.24 0.25 0.13 0.15 (0.37) 0.28 0.21 0.13 0.16
HC-3 0.19 (0.52) 20.02 (0.41) 20.01 0.29 0.12 (0.34) (0.40) 0.09
HC-4 20.10 0.23 0.03 20.02 20.03 0.05 0.04 20.05 20.11
EC-A (0.26) (0.57) 0.09 (0.32) 0.19 0.21 0.23 (0.45)
EC-B 0.19 (0.57) 0.01 0.19 0.05 (0.36) 0.26
GF-1 0.13 (0.62) (0.39) 0.26 0.22 0.29
GF-2 0.17 (0.56) 0.05 0.17 0.10
GF-3 0.04 (0.37) (0.35) 0.01
GF-4 0.12 (0.50) 0.06
GF-5 0.20 (0.44)
AVG (0.30)
OBS

Values (in parentheses) of pattern correlations were likely to occur from analysis of the GFDL control runs less than 10% of the time. HC-1 5
HadCM2, realization 1; HC-2 5 HadCM2, realization 2, etc.; AVG is the average of all 11 runs.

Table 5. Pattern Correlation of Smoothed Surface JJA Temperature Trends (1945–1995)

OBS AVG GF-5 GF-4 GF-3 GF-2 GF-1 EC-B EC-A HC-4 HC-3 HC-2 HC-1

HC-1 0.37 (0.74) 0.45 0.43 0.29 (0.52) (0.69) 0.44 0.39 0.16 0.25 (0.65)
HC-2 0.25 (0.76) (0.50) (0.56) 0.39 0.34 (0.62) 0.42 0.36 0.34 0.33
HC-3 0.26 (0.63) 0.12 (0.60) 0.16 0.45 0.30 (0.53) (0.70) 20.01
HC-4 20.20 0.18 0.21 0.11 0.00 20.14 0.19 20.11 20.27
EC-A 0.34 (0.71) 0.22 (0.54) 0.36 (0.46) 0.41 (0.72)
EC-B 0.29 (0.68) 0.11 0.35 0.19 (0.61) 0.45
GF-1 0.23 (0.81) (0.61) (0.53) 0.44 (0.53)
GF-2 0.26 (0.66) 0.15 0.36 0.32
GF-3 0.12 (0.58) (0.61) 0.31
GF-4 0.15 (0.72) 0.32
GF-5 0.23 (0.61)
AVG 0.34
OBS

Values (in parentheses) of pattern correlations were likely to occur from analysis of the GFDL control runs less than 10% of the time. HC-1 5
HadCM2, realization 1; HC-2 5 HadCM2, realization 2, etc.; AVG is the average of all 11 runs.
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pected from the low correlations between observations and
various realizations (compare Table 4), principally due to the
filtering of high wave number information by the cEOF anal-
ysis. Remember, however, the observations contain signals due
to volcanoes, solar variability, etc., signals not included in the
model simulations and not completely eliminated by the tem-
poral filtering.

The PCs of the leading cEOF (Figure 9) explain the results
obtained in the eigenvalue spectrum. The trend in recent years
is slightly larger in the GFDL runs, hence the larger partial
eigenvalues. The opposite situation is seen for the MPI runs,
which have relatively little variability outside an increasing
temperature trend in the last 30 or so years of integration. The
projection of the observations onto the anthropogenic signal is
represented by a pseudo-PC that has low variability and shows
a small increasing trend, a trend similar to that produced by
many of the simulations.

4.4. Summary

The global average trends predicted by all the models are in
rather good agreement among themselves and with the obser-
vations over the last 50 or so years. The raw unsmoothed
individual patterns of the near-surface air temperature trend
predicted to occur as a result of GHG and direct sulfate aero-

sol forcing by three different models exhibit a moderate level
of similarity among themselves in their spatial characteristics,
but they do not have a statistically significant relation with
observed patterns of change. Consideration of the lowest wave-
number response, the scales used in detection studies, shows
that the various models share 39% of their variance in com-
mon. The intermodel differences appear about the same size as

Figure 5. (top) Trend in JJA temperature averaged over all
11 GHG 1 SUL runs over the period 1945–1995 (degrees C
per decade). (bottom) Same as top panel but for the observa-
tions. Hatched areas correspond to negative trends.

Figure 6. Patterns of temperature trend (10 3 C/decade)
between 1945 and 1995 from three members of the GHG 1
SUL ensemble. The global mean of each pattern was removed
before plotting. See Table 2 for model identification codes.

15,533BARNETT ET AL.: UNCERTAINTY IN ANTHROPOGENIC CLIMATE CHANGE



the intramodel differences due to internal variability for two of
the models.

5. Implications for Detection
5.1. Noise Suppression

The above results make it abundantly clear that several types
of noise conspire to obscure the anthropogenic signal pro-
duced by the models. We demonstrate briefly here that in
principle this noise contamination largely can be overcome.

The outstanding message is that spatial filtering and ensemble
averaging are nearly mandatory prior to any attempts to detect
and attribute climate change and anthropogenic signal pre-
dicted by CGCMs. The most recent anthropogenic signal de-
tection studies have made good use of both of these preanalysis
operations [cf. Tett et al., 1999; Hegerl et al., 1999a].

Figure 7. First common empirical orthogonal function of the 11 model ensemble forced by GHG 1 SUL.
This mode captured 39.4% of the joint model variance in near-surface JJA air temperature. Data were put
through a 10 year smoother prior to analysis.

Figure 8. Eigenvalue spectrum of the 11 member ensemble
common EOF analysis (units of 8C2).

Figure 9. Leading principal components that go with com-
mon EOF 1 of the temporally smoothed data shown in Figure
7. The model identifications are given in Table 4. The pseu-
do-PC for the observations projected onto the model cEOF1 is
shown in the bottom panel. The ordinate is offset in incre-
ments of 100 units to separate the models.
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It was noted that regional climate noise was an obvious con-
tributor to the low correspondence between the individual simu-
lations. To minimize this factor and assess the effect of spatial
filtering, we spatially smoothed the trend patterns used to com-
pute Table 4, eliminating scales less than those corresponding
to about zonal wavenumber 6. The remaining information is
similar in scale to that suggested by Stott and Tett [1998] as the
minimum useful for detection purposes. Table 5 shows the
pattern correlations computed from this smoothed data.

Inspection of Table 5 shows the correlations are generally
higher, as expected, with values equaling or exceeding 0.46
being likely from an identical analysis of the GFDL control run
only 10% of the time. Seventeen of the pattern correlations
between individual realizations are now significant versus 12
for the unsmoothed data. For instance, the GF 4 versus EC
“A” pattern correlation has increased from 0.32 to 0.55. Note,
however, that the spatial smoothing does not eliminate appar-
ent outlier simulations; for example, the correlation between
HC-4 and EC “A” has gone from 20.11 to 20.27. These two
runs generally have the opposite spatial trend patterns and no
amount of spatial smoothing will change that fact.

The intramodel variability that produced HC-4 can be par-
tially overcome by ensemble averaging. We noted above the
pattern correlation between the HadCM2 and the GFDL en-
semble averages was 0.37. If we first spatially smooth and then
ensemble average the simulations from the GFDL and
HadCM2 model, the pattern correlation between them rises to
0.64, a value likely to occur less than 5% of the time in an
identical analysis of the GFDL control run. This shows that the
low wavenumber properties of the ensembles from those two
models are rather similar. Although we have only one realiza-
tion of the observations, we can still spatially smooth it and
correlate it with the smoothed ensemble averages from GFDL
and HadCM2. The correlations were between 0.21 and 0.23,
modestly better agreement between the prediction of the mod-
els of the last 50 year temperature trend and that observed
than the values noted in section 4.2, but still likely to occur in
an identical analysis of the GFDL control run over 20% of the
time. Finally, if all 11 realizations are smoothed and then
averaged together, they were found to correlate with the
smoothed observations at 0.34 (cf. Wigley et al. [1998] who
estimated such a current value from a perfect model study).
This suggests there is good gain to be realized through simple
ensemble averaging and that an appropriate ensemble size
could well be of the order of 10.

In summary, ensemble averaging and spatial smoothing are
prerequisite analyses prior to any attempts to detect and at-
tribute climate change using CGCM results. The ensemble
averaging is especially important: If one had only the HC-4 run
as the estimated anthropogenic signal, then one would con-
clude that there was no anthropogenic signal in the atmo-
sphere (smoothed pattern correlation with observations equal
to 0.20). By the same token, one could just as easily obtain a
single simulation with a large positive correlation with the
observations, thereby concluding an anthropogenic signal has
been both detected and attributed to human activity (compare
Figure 4 and Knutson et al. [1999, Figure 1] for impressive
examples). Either conclusion, based on a single simulation, is
apt to be misleading. This again shows the pressing need to
analyze ensembles of scenario runs for detection work and to
account for the statistical properties of these finite ensembles,
something that the latest studies are beginning to do [cf. Hegerl
et al., 1999a; Tett et al., 1999]. It also highlights the problems

inherent in using the single realization of real-world observa-
tions which is available to us.

5.2. Model Spread

Clearly, the models do not all produce the same estimate of
the anthropogenic signal nor should we expect them to. So it is
of interest to see how the range of model estimates of near-
surface temperature change compares with observations. In
this case we use a display akin to that shown by Knutson et al.
[1999] to determine where in physical space the models/
observations might be in agreement. The GHG 1 SUL forced
model grid point temperature trends between 1945 and 1995
(spatially smoothed), predicted by the 11 model runs, repre-
sent a range of possible trend values.

We checked this range with the spatially smoothed, observed
trend at each grid point. The regions where the observed trend
fell within the extremes of the model trend estimates were left
blank in Figure 10. The regions where the observed trend was
above/below the model extrema were stippled/hatched, respec-
tively. Of the grid points inspected, 18% had observed trends
greater than the largest positive trend predicted by the 11
model group, while 29% had observed trends less than the
smallest of the model group.

Over roughly one half of the grid points, the trends from at
least some of the model runs bounded the observed trend. This
is a reasonably good correspondence given the facts that im-
portant forcings are omitted, linear trends used, etc. However,
what of the regions where the observed trend was different
from any of the model runs? Inspection of Figure 10 shows
these to be the regions mostly inhabited by the Pacific Decadal
Oscillation [cf. Latif and Barnett, 1994; Barnett et al., 1999b]
and the North Atlantic Oscillation. Knutson et al. [1999] found
model/observed differences in the same regions for the GFDL
model. This suggests that the models are not adequately rep-
resenting the changes expected in these major climate modes.
Whether this is due to the fact the models simply do not
represent the climatological character of these modes well or
to the fact that they do not capture the anthropogenic impact
on the variability of these modes is an open question, one that
will be considered elsewhere.

6. Optimal Detection
The results presented above show that the various models’

estimates of an anthropogenic signal appear to differ substan-
tially when viewed with conventional analysis methods. How-
ever, modern detection schemes first optimize the anthropo-
genic signal to maximize the signal-to-noise ratio prior to
attempting to find the signal in the observations [e.g., Hassel-
mann, 1997; Hegerl et al., 1997; North and Stevens, 1998]. This
transformation can substantially change the appearance of the
signal to be detected. Modern detection methods also consider
the largest spatial scales by retaining only low-order EOFs, a
filtering operation designed to avoid the small-scale noise.
Both of these actions appear to avoid many of the concerns
noted above for detection and attribution purposes.

To determine directly the impact of intermodel and in-
tramodel differences on detection, we applied the fingerprint
detection methods described by Hegerl et al. [1997] to each of
the 11 GHG and direct sulfate aerosol scenario runs analyzed
in section 4, as well as their ensemble averages. The analysis
was applied to various runs both including their global means
and after the global means had been removed. The results are

15,535BARNETT ET AL.: UNCERTAINTY IN ANTHROPOGENIC CLIMATE CHANGE



presented in a detection and attribution diagram (see Hegerl et
al. [1997, 1999] for details) based on the MPI fingerprint from
model ECHAM3/LSG and the Hadley Centre fingerprint from
model HadCM2 with (Plate 1) and without the global mean
(Plate 2). “Fingerprint” here refers to the patterns of anthro-
pogenic change predicted by the various models due to GHG
and SUL forcing.

When projected onto the fingerprints, each model run and
the observations become single points in the “detection space”
defined by the fingerprints. The uncertainty in the position of
the observations is represented by an elliptical region (thick
line) defining the region of the space where the actual obser-
vations are expected to lie with 90% confidence. This uncer-
tainty region is estimated from the levels of natural variability
inherent in the HadCM2 model control run which we assumed
to be the same as the observations [e.g., Hegerl et al., 1997,
1999a]. Single ensemble members are surrounded by a similar
range of uncertainty (not shown) as the observations, so even
simulations outside the observed uncertainty ellipse can be
consistent with the observations. For ensemble averages, the
uncertainty range of the average is substantially smaller, since
the variance of the Gaussian distribution shown in the ellipse
diminishes by a factor of 1 over the ensemble size. Therefore
comparing ensemble averages with the observations is a much
more rigorous test for the model. Note that each of the three
ensembles has different uncertainties due to the differing num-
ber of realizations and because the internal variability of each
model is different.

Projecting the various GHG 1 SUL runs onto the MPI
fingerprint (Plate 1, top) illustrates at once the behavior of the
different model ensembles. The five GFDL runs (pluses) and
their ensemble mean (thick pluses) group closely together. The
simulation that reproduces the early century warming well
(labeled GF-3, Plate 1, top [Knutson et al., 1999]) is rather close

to the observations. A Hotelling-T2 test on the difference
between individual ensemble members and the observations
shows that two of the GFDL ensemble members are not con-
sistent with the observations (shown with gray pluses and de-
noted GF-2 and GF-5 in Plate 1), while the other three simu-
lations are consistent with observations (shown with pink
pluses). “Consistency” in this case means the observed trend
patterns and those produced by the model forced by a combi-
nation of GHG and direct sulfate aerosols are statistically
indistinguishable.

The realizations from the Hadley Centre are more scattered
in the detection space. Three of the runs (blue, circle) and the
ensemble mean (HadC, thick circle) are consistent with the
observations, while HC-4 is not (gray, circle). By itself, HC-4,
lying below the zero line of the orthogonal sulfate patterns
signal strength, implies a Northern Hemisphere warming due
to direct sulfate effects, just the opposite of what is expected.
In other words, an event of internal model variability over-
whelms the effect of sulfate forcing in this case. Both of the
MPI runs (red, cross) and the ensemble mean (H3L, thick
cross) are consistent with the data.

The average of all of the 11 runs (“all,” thick black circles)
falls well inside the observed uncertainty. This means the ob-
served and grand ensemble averaged near-surface air temper-
ature trends over the last 50 years from the models are con-
sistent with each other in the detection space used here.
Exclusion of the global mean trend (Plate 2, top) gives much
the same story as above except that all GFDL simulations are
now consistent with observations. Note that either with (Plate 1,
top) or without (Plate 2, top) the spatial mean, the ellipses do not
include the origin. This means both greenhouse and sulfate
signals have been detected, subject to the caveats given below.

The same scenario runs were next projected onto the Hadley
Centre fingerprint, a different measure of the expected re-

Figure 10. Range test for model trends versus observation. Areas where the observed 1945–1995 trend is
within the 11 model trend range are open. Areas where the observed trend is above or below the model range
are stippled or hatched, respectively. The percent of grid points where observed trend is above/below the
model trend range is given in the legend.
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Plate 1. Detection diagram based on MPI (top) and HadCM2 (bottom) anthropogenic fingerprints (see
Hegerl et al. [1997] for details of figure construction). Horizontal axis gives the amplitude of the GHG signal.
Vertical axis gives the amplitude of the SUL signal that is orthogonal to the GHG signal. The five GFDL runs
(pink) are noted with pluses and their ensemble mean with a boldface plus and denoted GFDL. The four
HadCM2 runs (blue) are noted with circles, their ensemble mean with a boldface circle and denoted HadC.
The two MPI runs (red) are noted with crosses and their ensemble mean with a boldface cross and denoted
H3L. The average of all 11 runs is denoted by a thick black circle and “all.” The current observed climate trend
1945–1995 is given by a boldface asterisk and denoted “obs.” The ellipse represents the 90% confidence limits
on the current observed state. The near-global mean trend is included in this analysis. Points “consistent” with
the observations according to a Hotelling-T2 test are colored. Runs not consistent with the observations at the
10% level (ensemble average, GF-2, GF-5 from GFDL and HC-4 from HadCM2) have gray symbols. The line
marked “GS” is the one-dimensional projection of the GHG 1 SUL signal (see Hegerl et al. [1997] for details).
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Plate 2. Same as Plate 1 except the near-global mean trend has been removed prior to analysis.
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sponse to GHG and SUL forcing Plate 1, bottom (see Hegerl et
al. [1999a] for a more complete discussion). In this case, the
interpretation is rather different. The ensemble mean of the
GFDL runs in this case is not consistent with the observations,
but three out of five of its realizations are consistent. The
Hadley Centre realizations and their mean are consistent with
the observations except for the previously discussed HC-4 sim-
ulation. The MPI runs and their mean (H3L) are all consistent
with the observations. Note that the observational uncertainty
ellipse includes the origin. This means the observed changes in
climate, in this coordinate system, could be due also to natural
variability. However, an anthropogenic signal can be detected
beyond that expected from natural variability if the test is
conducted in a one-dimensional space defined by the total
anthropogenic signal (cf. Hegerl et al. [1999a], and Barnett et al.
[1999a] for details). This latter type of test makes it impossible
to estimate the relative roles of GHG and SUL in producing
the observed signal.

Removing the global mean from the realizations and then
projecting the results onto the Hadley fingerprint gives rather
different results (Plate 2, bottom). Remarkably, all of the 11
realizations and their ensemble means fall on or within the
confidence ellipse of the observations, seemingly a resounding
case for detection and attribution (D/A) of an anthropogenic
signal. Unfortunately, the confidence ellipse for the observa-
tions still includes the origin, so the observed climate change
could still be due to natural variability. Put another way, we
cannot distinguish between the anthropogenic and the natural
forcing mechanisms, and so we cannot attribute the climate
change to a specific cause if we disregard the global mean in
the Hadley fingerprint. However, Stott et al. [1999] and Tett et
al. [1999] detect a HadCM2 greenhouse gas and a sulfate
signal, with and without spatial mean, if both spatial and tem-
poral patterns were used in a fingerprint approach. This sug-
gests that using information about the time evolution of an-
thropogenic signals beyond simple linear trends, as we do here,
enhances the prospects for detecting such signals if they are
present in the observations.

In summary, the filtering and ensemble averaging techniques
used in D/A studies are largely adequate to suppress the types
of noise and uncertainty discussed above. The results show the
need to use ensembles of scenario runs in D/A work to avoid
being fooled by an “outlier” simulation, for example, the single
realization (gray circle, HC-4) lying below the abscissa in Plate
1. It is also clear that leaving the global mean in the analysis or
removing it can make a difference in the answer one obtains
(compare Plates 1 and 2 [Hegerl et al., 1999b]). However, the
average of all simulations was consistent with the observations
in either case. Finally, while many features and results derived
from two different estimates of the expected fingerprints agree,
some do not. This, in turn, suggests we cannot rely on just one
model estimate of expected anthropogenic change for detec-
tion work, a result already seen in sections 3 and 4.

7. Conclusions
This study has examined the relative differences between

different model estimates of anthropogenically forced signals.
Our main conclusions are as follows:

1. Nine models forced by CO2 increasing at the rate of
1%/yr produce near-global mean near-surface temperature sig-
nals at the end of an 80 year integration which agree to within
about 25% of the nine model average.

We next analyzed 11 different runs from three different
CGCMs, each forced by observed/projected GHG and direct
sulfate aerosol effects. Concentrating on the trend of near-
surface temperature change over approximately the last 50
years (1945–1995), we found the following:

2. The individual, unsmoothed model simulations bore
only weak similarity to each other and to the observations.

3. One cause of the above result was the small-scale spatial
noise that characterized all the model runs. Spatial smoothing
improved the magnitude of statistically significant agreement
between individual model runs and also with data, a result
anticipated by Stott and Tett [1998].

4. A major reason for the apparent dissimilarity between
the individual runs was due to internal model variability. En-
semble averaging the runs produced patterns that were more
similar between models and observations than noted (item 3)
above. Intermodel ensembles produced even better results.
The existence of large differences between members of a single
CGCM ensemble almost requires that detection and attribu-
tion work be done with ensembles of scenario runs, for single
runs cannot represent the range of possible results due to
internal variability [see also Tett et al., 1996, 1999; Stott et al.,
1999; Hegerl et al., 1999a]. This also raises the issue of whether
it is better to go for lower-resolution runs with larger ensem-
bles or higher resolution and smaller ensembles.

5. Recent detection and attribution methods, coupled with
ensemble averaging methods, produced a reasonably consis-
tent match between model predictions of expected tempera-
ture trends due to a combination of GHG and direct sulfate
aerosols and those observed [see also Tett et al., 1999; Hegerl et
al., 1999a]. The reader should weigh this statement carefully,
for the runs we studied do not include many of the anthropo-
genic pollutants thought to be important (e.g., indirect sulfate
aerosol effects, tropospheric ozone) nor do they have addi-
tional natural forcing by volcanoes, solar changes, etc. Recent
results show that these latter natural forcings cannot by them-
selves fully explain recent climate change signals [cf. Cubasch
et al., 1997; Tett et al., 1999; Stott et al., 1999; Hegerl et al., 1997,
1999a; North and Stevens, 1999.]

6. Finally, our results demonstrate the need to use differ-
ent estimates of the anthropogenic fingerprint in detection
studies. Different models give different estimates of these fin-
gerprints, and we do not currently know which is most correct.
Further, the intramodel uncertainty in both the fingerprints
and the scenario runs can be relatively large. In short, simula-
tion, detection, and attribution of an anthropogenic signal is a
job requiring inputs from different, high-quality models.

Appendix
The common EOFs (cEOFs) of the CMIP2 models were

computed from the last 70 years of the nine model data. For
each model grid point, the long-term annual mean from its
respective control run was removed first. The nine fields were
then concatenated and the EOFs computed from the associ-
ated covariance matrix.

The main feature accounting for the substantial energy in
cEOF1 is (Figure A1, 45.8% of total variance) clearly the
land-sea contrast in temperature change expected with anthro-
pogenic warming [cf. North and Stevens, 1998]. Also notable is the
relatively strong warming at high latitudes. All models seem to
produce these features, although as shown in Figure 3 there is
considerable variation in its relative strength between models.
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The small-scale details of the spatial patterns of surface
temperature change produced by the various models in re-
sponse to a 1% CO2 increase are only moderately similar
(Table 3). This result, seen in section 3.2, can be explained
partially by the presence of high wave number noise in the
patterns (in spite of the decadal time averaging) since the
second- and higher-order modes are, for all intents and pur-

poses, statistically degenerate. The leading PC in Figure A2
contains little of this noise since it is dominated by trends. The
cEOF analysis focuses on the largest scales of variability, the
same ones that detection schemes rely on [e.g., Allen and Tett,
1999], and so effectively, low-pass filters this noise for mode 1.

The eigenvalue spectrum (Figure A3), together with Figure
A2, illustrates that even moderate dissimilarities on the largest
scales might have an impact on detection results. The partial
eigenvalues of the leading mode, often taken in detection stud-

Figure A1. First common empirical orthogonal function of the nine CMIP2 model ensemble. This mode
captured 45.8% of the joint model variance.

Figure A2. Leading principal component that goes with com-
mon EOF 1 shown in Figure A1. The model identifications are
given in Table 1. The ordinate is offset in increments of 100
units to separate the various models.

Figure A3. Eigenvalue spectrum from the common EOF
analysis of the 1% per year CO2 ensemble (units of 8C2).
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ies as the “signal to be detected,” vary between models approx-
imately in the range 1950 to 700 variance units (degrees C2),
with a mean of about 12508C2. The ratio of signal amplitudes
(square roots of the variance) to the mean signal ranges from
1.23 to 0.56. The GFDL simulation gives the largest response
to the 1%/yr CO2 forcing and will tend to dominate the results
of the cEOF analysis, while the NCAR simulation gives the
weakest response and will be least well represented in the
analysis. Without further information we conclude that the
simplest anthropogenic scenario (increasing CO2 forcing case),
as represented by the leading eigenmode, is in agreement be-
tween different model simulations to within a scaling factor
ranging from 0.56 to 1.23. The detection scheme discussed by
Stott and Tett [1998] estimates a scaling factor that can be
directly compared with this range.
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