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Abstract We assessed current status of multi-model

ensemble (MME) deterministic and probabilistic seasonal

prediction based on 25-year (1980–2004) retrospective

forecasts performed by 14 climate model systems (7 one-

tier and 7 two-tier systems) that participate in the Climate

Prediction and its Application to Society (CliPAS) project

sponsored by the Asian-Pacific Economic Cooperation

Climate Center (APCC). We also evaluated seven

DEMETER models’ MME for the period of 1981–2001 for

comparison. Based on the assessment, future direction for

improvement of seasonal prediction is discussed. We found

that two measures of probabilistic forecast skill, the Brier

Skill Score (BSS) and Area under the Relative Operating

Characteristic curve (AROC), display similar spatial pat-

terns as those represented by temporal correlation

coefficient (TCC) score of deterministic MME forecast. A

TCC score of 0.6 corresponds approximately to a BSS of

0.1 and an AROC of 0.7 and beyond these critical threshold

values, they are almost linearly correlated. The MME

method is demonstrated to be a valuable approach for

reducing errors and quantifying forecast uncertainty due to

model formulation. The MME prediction skill is substan-

tially better than the averaged skill of all individual models.

For instance, the TCC score of CliPAS one-tier MME

forecast of Niño 3.4 index at a 6-month lead initiated from

1 May is 0.77, which is significantly higher than the
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corresponding averaged skill of seven individual coupled

models (0.63). The MME made by using 14 coupled

models from both DEMETER and CliPAS shows an even

higher TCC score of 0.87. Effectiveness of MME depends

on the averaged skill of individual models and their mutual

independency. For probabilistic forecast the CliPAS MME

gains considerable skill from increased forecast reliability

as the number of model being used increases; the forecast

resolution also increases for 2 m temperature but slightly

decreases for precipitation. Equatorial Sea Surface

Temperature (SST) anomalies are primary sources of

atmospheric climate variability worldwide. The MME

1-month lead hindcast can predict, with high fidelity, the

spatial–temporal structures of the first two leading empir-

ical orthogonal modes of the equatorial SST anomalies for

both boreal summer (JJA) and winter (DJF), which account

for about 80–90% of the total variance. The major bias is a

westward shift of SST anomaly between the dateline and

120�E, which may potentially degrade global teleconnec-

tion associated with it. The TCC score for SST predictions

over the equatorial eastern Indian Ocean reaches about 0.68

with a 6-month lead forecast. However, the TCC score for

Indian Ocean Dipole (IOD) index drops below 0.40 at a

3-month lead for both the May and November initial

conditions due to the prediction barriers across July, and

January, respectively. The MME prediction skills are well

correlated with the amplitude of Niño 3.4 SST variation.

The forecasts for 2 m air temperature are better in El Niño

years than in La Niña years. The precipitation and circu-

lation are predicted better in ENSO-decaying JJA than

in ENSO-developing JJA. There is virtually no skill in

ENSO-neutral years. Continuing improvement of the one-

tier climate model’s slow coupled dynamics in reproducing

realistic amplitude, spatial patterns, and temporal evolution

of ENSO cycle is a key for long-lead seasonal forecast.

Forecast of monsoon precipitation remains a major chal-

lenge. The seasonal rainfall predictions over land and

during local summer have little skill, especially over

tropical Africa. The differences in forecast skills over land

areas between the CliPAS and DEMETER MMEs indicate

potentials for further improvement of prediction over land.

There is an urgent need to assess impacts of land surface

initialization on the skill of seasonal and monthly forecast

using a multi-model framework.

1 Background

In the past two decades, climate scientists have made

ground-breaking progress in dynamic seasonal prediction.

The advent of dynamic climate prediction can be traced

back to El Niño forecast that used an intermediate-

complexity coupled ocean–atmosphere model (Cane et al.

1986). In the early part of the 1990s, Bengtsson et al.

(1993) proposed a ‘‘two-tier’’ approach for dynamical

seasonal forecast, in which the global SST anomalies are

first predicted, and an atmospheric general circulation

model (GCM) is subsequently forced by the pre-forecasted

SST to make a future seasonal prediction. At that time,

ENSO was recognized as the major source of the predict-

ability of the tropical and mid-latitude climate variations

through ENSO teleconnection, which depends critically on

the correct simulations of mean climatology. However, the

coupled atmosphere–ocean GCMs (CGCMs) then had

considerable errors in simulating the observed mean cli-

matology as well as anomalous conditions of the tropical

ocean and atmosphere (Mechoso et al. 1995). Thus, the

two-tier system had an obvious advantage over the direct

use of the CGCMs.

While the two-tier approach was a useful strategy to

capture better teleconnection, recent research advances

using CGCMs suggest that prediction of certain pheno-

mena (e.g., summer monsoon precipitation) may require

taking into account local monsoon–warm pool ocean

interactions (Wang et al. 2000, 2003; Wu and Kirtman

2005; Kumar et al. 2005). It has been shown that the low

performance of atmospheric GCMs forced by observed

SST in simulation of the Asian summer monsoon vari-

ability is partially attributed to the neglect of atmospheric

feedback on SST (Wang et al. 2004a). In the absence of the

monsoon–ocean interaction, all models yield positive SST-

rainfall correlations that are at odds with observations in

the heavily precipitating summer monsoon region (Wang

et al. 2005).

Toward the end of the twentieth century, a new era of

seasonal forecast with coupled GCMs (also known as the

one-tier approach) began, due to rapid progress made in

coupled climate models (Latif et al. 2001; Davey et al.

2002; Schneider et al. 2003) and due to a concerted

international effort (through the Tropical Ocean–Global

Atmosphere program) to monitor tropical ocean variations.

Although the CGCMs still have significant systematic

errors, many have demonstrated their capacity to reproduce

realistic characteristics of ENSO (e.g., Latif et al. 1994; Ji

et al. 1994; Rosati et al. 1997; Kirtman and Zebiak 1997;

Vintzileos et al. 1999a, b; Guilyardi et al. 2004) and the

major modes of interannual variability for the Asian–

Australian monsoon system (Wang et al. 2008). It has been

increasingly recognized that the CGCMs are the most

promising ultimate tools for seasonal prediction. The

unprecedented 1997 El Niño was fairly well predicted 3–

6 months in advance using a CGCM (Anderson et al.

2003). Since the beginning of the twenty-first century, a

number of meteorological centers worldwide have imple-

mented routine dynamical seasonal predictions using
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coupled atmosphere–ocean–land climate models (Alves

et al. 2003; Palmer et al. 2004; Saha et al. 2006).

For the two-tier systems, the physical basis for seasonal

prediction lies in slowly varying lower boundary forcing,

especially the anomalous SST (as well as the land surface)

forcing (Charney and Shukla 1981; Shukla 1998). For the

one-tier systems, prediction of ENSO and associated cli-

mate variability is essentially an initial value problem

(Palmer et al. 2004). The slowly varying lower boundary of

the atmosphere is evolving as a result of feedback among

various components of the climate system. The climate

predictability in nature and in CGCMs comes from ‘‘slow’’

coupled (atmosphere–ocean–land–ice) dynamics and initial

memories in ocean and land surfaces.

Atmospheric chaotic dynamics may cause seasonal

forecast errors, inherently limiting seasonal climate pre-

dictability. Since the seasonal predictability does not

depend on atmospheric initial conditions, an ensemble

forecast with different atmospheric initial conditions was

developed to reduce the errors arising from atmospheric

chaotic dynamics. Another considerable source of seasonal

forecast errors arises from uncertainties in model parame-

terizations of unresolved sub-grid scale processes. In an

individual model, stochastic physics schemes have been

developed to alleviate the uncertainty arising from the sub-

grid scales (Buizza et al. 1999; Shutts 2005; Bowler et al.

2008), which are now operationally used in European

Centre for Medium-range Weather Forecast (ECMWF) and

United Kingdom Meteorological Office for medium-range

forecast. Meanwhile, a more effective way, the multi-model

ensemble (MME) approach, was designed for quantifying

forecast uncertainties due to model formulation near the

turn of this century (Krishnamurti et al. 1999, 2000; Doblas-

Reyes et al. 2000; Shukla et al. 2000; Palmer et al. 2000).

The idea behind the MME is that if the model parameteri-

zation schemes are independent of each other, the model

errors associated with the model parameterization schemes

may be random in nature; thus, an average approach may

cancel out the model errors contained in individual models.

In general, the MME prediction is superior to the pre-

dictions made by any single-model component for both

two-tier systems (Krishnamurti et al. 1999, 2000; Palmer

et al. 2000; Shukla et al. 2000; Barnston et al. 2003) and

one-tier systems (Hagedorn et al. 2005; Doblas-Reyes et al.

2005; Yun et al. 2005). A number of international projects

have organized multi-model intercomparison and synthe-

sis, among which the most comprehensive projects are the

European Union-sponsored ‘‘Development of a European

Multi-model Ensemble System for Seasonal to Inter-

Annual Prediction (DEMETER; Palmer et al. 2004) and the

Climate Prediction and its Application to Society (CliPAS)

project, sponsored by the Asian-Pacific Economic Coop-

eration (APEC) Climate Center (APCC).

The APCC/CliPAS project was formally established in

April 2005 as a research and development component of

APCC. One of the objectives of CliPAS is to develop a

well-validated MME prediction system and to study the

predictability of the seasonal and sub-seasonal climate

variations. Some of CliPAS models aim to become opera-

tional. The current CliPAS team is a coordinated research

body consisting of 12 institutions and involving a large

group of climate scientists from United States, South

Korea, Japan, China, and Australia. The CliPAS team has

analyzed historical retrospective predictions made by seven

DEMETER one-tier systems for the 1980–2001 period and

14 CliPAS model systems for the 1980–2004 period. A

number of published papers have documented the error

growth and predictability of ENSO (Jin et al. 2008), the

predictability of the major modes of Asian-Australia

monsoon variability (Wang et al. 2008), the predictability

and prediction skill of the intraseasonal variations (Kim

et al. 2008), the performance of coupled models on mean

states and its relation to seasonal prediction skills (Lee

et al. 2008), and the optimal MME method for seasonal

climate prediction (Kug et al. 2008). Here we present an

overall assessment of the seasonal forecast skills of the

state-of-the-art MME by bringing together high-quality

retrospective forecast data issued from both the DEME-

TER and CliPAS project in order to gain a better

understanding of the factors that limit our capability to

improve seasonal prediction. Issues important for MME

approach and methodology are discussed.

2 Models and evaluation methods

2.1 The models

The CliPAS project has 14 climate prediction models.

Table 1 lists the acronyms of the institutions and models

mentioned in the text. Tables 2 and 3 present a brief

summary of model specifications for the seven two-tier and

seven one-tier models, respectively, as well as the current

status of retrospective forecasts. The APCC/CliPAS mod-

els have generated ensemble retrospective forecasts for the

approximately common period of 1980–2004. Each model

has a different forecast length and ensemble size (Tables 2,

3), but all models were integrated from around 1 May to at

least 30 September for the boreal summer season (JJA

hereafter), and integrated from 1 November to at least 31

March for the boreal winter season (DJF hereafter).

All two-tier models except NCEP GFS were forced by the

global SST field pre-forecasted by the Seoul National Uni-

versity (SNU) statistical–dynamical forecast model (Kug

et al. 2007a). The SNU statistical–dynamical SST forecast

system for global SST prediction is based on four different
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models: an intermediate dynamic model for tropical Pacific

SST, a lagged linear regression model for Indian Ocean SST

(Kug et al. 2004), a pattern projection model for global SST,

and a persistent prediction model. Detailed description of

this method is referred to Kug et al. (2007a). The NCEP GFS

was forced by the forecast SST from its coupled version

CFS. All models used the same initial conditions from

NCEP/DOE Reanalysis-2 and have 10 ensemble members

except SNU GCPS, LASG/IAP GAMIL and NCEP GFS,

which have 6, 6, and 15 members, respectively.

Table 1 Acronym names of

institutions and models used in

the text

Acronym Full names

APCC Asia-Pacific Economic Cooperation Climate Center

BMRC Bureau of Meteorology Research Center (BMRC)

CES Climate Environment System Research Center

CFS Climate Forecast System

CliPAS Climate Prediction and its Application to Society

COLA Center for Ocean–Land–Atmosphere Studies

DEMETER Development of European Multimodel Ensemble system

for seasonal-to-interannual prediction

FRCGC Frontier Research Center for Global Change

FSU Florida State University

GAMIL Grid-point Atmospheric Model of IAP/LASG

GCPS Global Climate Prediction System

GFDL Geophysical Fluid Dynamic Lab

GFS Global Forecast System

IAP Institute of Atmospheric Physics

KMA Korean Meteorological Administration

LASG Laboratory of Numerical Modeling for Atmospheric Sciences

and Geophysical Fluid Dynamics

NASA National Aeronautics and Space Administration

NCEP National Center for Environmental Prediction

POAMA Predictive Ocean–Atmosphere Model for Australia

SINTEX-F Scale INTeraction Experiment-FRCGC

SNU Seoul National University

UH University of Hawaii

Table 2 Description of APCC/CliPAS two-tier prediction models

Institute AGCM Ensemble

member

SST BC Period and forecast

lead time

Reference

FSU FSUGSM

T63 L27

10 SNU SST forecast 1979–2004

5-month

Cocke and LaRow (2000)

GFDL AM2

2�lat 9 2.5�lon L24

10 SNU SST forecast 1979–2003

5-month

GFDL GAMD Team (2004)

LASG/IAP GAMIL

2.8�lat 9 2.8�lon L26

6 SNU SST forecast 1979–2004

6-month

Wang et al. (2004b)

NCEP GFS

T62 L64

15 CFS SST forecast 1981–2004

6-month

Saha et al. (2006)

SNU/KMA GCPS

T63 L21

6 SNU SST forecast 1979–2002

4-month

Kang et al. (2004)

UH CAM2

T42 L26

10 SNU SST forecast 1979–2003

6-month

Liu et al. (2005)

UH ECHAM4

T31 L19

10 SNU SST forecast 1979–2003

6-month

Roeckner et al. (1996)
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All seven coupled models (one-tier systems) do not

apply any flux correction. Three coupled models (BMRC

POAMA1.5, NCEP CFS, and GFDL CM2.1) use ocean

data assimilation for initialization; other coupled models

use either a SST nudging scheme (FRONTIER SINTEX-F,

NASA, SNU) or a SST and thermocline-depth nudging

scheme (UH). No coupled model has land initialization

schemes. The NCEP CFS and SNU models use the NCEP

reanalysis data as land surface initial conditions, and other

coupled models use climatological land surface condition

as the initial condition.

Persistent forecast was performed as a benchmark on

predicting SST and 2 m air temperature since a skillful

forecast must be significantly superior to the persistent

forecast. In the case of May (November) initial condition,

the observed April (October) anomaly was used as an

anomaly persistent forecast for all forecast lead time.

The observed data used for verification were obtained

from the Climate Prediction Center (CPC) Merged Ana-

lysis of Precipitation (CMAP) data set (Xie and Arkin

1997) and from the NCEP/DOE (department of Energy)

reanalysis data (Kanamitsu et al. 2002) for atmospheric

variables, and from the improved Extended Reconstructed

Sea Surface Temperature Version 2 (ERSST V2) data

(Smith and Reynolds 2004) for SST.

2.2 Forecast quality measures

To measure the forecast quality of a deterministic forecast,

MME prediction was made using simple average of 14

models’ ensemble means. For probabilistic forecast, we

selected ten models that have nine or more ensemble

members. Forecast probabilities were derived from simple

democratic counting using 109 individual realizations from

the ten models (5 one-tier and 5-two tier models) after

normalizing each simulation with respect to its own mean

and standard deviation. All skill measures for deterministic

and probabilistic prediction were cross-validated (refer to

Appendix A in Saha et al. 2006).

The metrics used to measure prediction skill of MME

mean forecast includes the anomaly pattern correlation

coefficient (PCC) and the root mean square error (RMSE)

normalized by the corresponding observed standard devi-

ation. A temporal correlation coefficient (TCC) was used

for a specific time series of a predictand. For convenience

of comparison, we also calculated the time-averaged

anomaly PCC and RMSE over the global tropics (30�S–

30�N, 0–360�E) and its sub-domains for 23 years (1981–

2003). To make unbiased estimates of the mean PCC and

RMSE, we firstly averaged quadratic measures, such as

variance, covariance, and mean square error and then cal-

culated PCC and RMSE. A similar way was taken to

calculate the zonal mean and area mean of TCC.

The probabilistic forecast skills were evaluated using the

Brier Skill Score (BSS) and the Relative Operating Char-

acteristic (ROC; Mason 1982; Wilks 1995; Richardson

2000; Zhu et al. 2002). The definition of BSS is based on

the Brier Score (BS), which is a scalar measure of the

accuracy of a probabilistic forecast of a dichotomous event

and is sdefined by:

BS ¼ 1

n

Xn

i¼1

ðfi � oiÞ2;

where n is the number of forecasts, fi the forecast

probability of occurrence for the ith forecast, and oi is

the ith observed probability, which is defined to be 1 if the

Table 3 Description of APCC/CliPAS one-tier prediction models

Institute AGCM OGCM Ensemble

member

Period and forecast

lead time

Reference

BMRC

POAMA1.5

BAM 3.0d

T47 L17

ACOM2

0.5–1.5�lat 9 2�lon L31

10 1980–2002

9 months

Zhong et al. (2005)

FRCGC

SINTEX-F

ECHAM4

T106 L19

OPA 8.2

2�cos(lat) 9 2�lon L31

9 1982–2004

6 months

Luo et al. (2005)

GFDL AM2.1

2�lat 9 2.5�lon L24

OM3.1 (MOM4)

1/3�lat 9 1�lon L50

10 1979–2005

12 months

Delworth et al. (2006)

NASA NSIPP1

2�lat 9 2.5�lon L34

Poseidon V4

1./3�lat 9 5/8�lon L27

3 1980–2004

5 months

Vintzileos et al.

(2003)

NCEP

CFS

GFS

T62 L64

MOM3

1/3�lat 9 1�lon L40

15 1981–2004

9 months

Saha et al. (2006)

SNU SNU

T42 L21

MOM2.2

1/3�lat 9 1�lon L32

6 1980–2001

6 months

Kug et al. (2007b)

UH ECHAM4

T31 L19

UH Ocean

1�lat 9 2�lon L2

10 1982–2003

12 months

Fu and Wang (2004)
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event occurs and 0 otherwise. The BS can be decomposed

as three terms related to uncertainty, reliability, and

resolution as follows (Wilks 1995):

BS ¼ �oð1� �oÞ þ 1

n

Xm

k¼1

nkðfk � �okÞ2 �
1

n

Xm

k¼1

nkð�ok � �oÞ2;

¼ BSunc þ BSrel � BSres;

where �o indicates the climatological probability of the

event, m indicates the number of probability bins, fk
represents the forecast probability for bin k, and �okdenotes

the relative frequency of occurrence of the event when the

forecast probability is fk. Brier score of a climatological

forecast BSclim = BSunc. Then, the Brier Skill Score is

BSS ¼ 1� BS

BSc lim

¼ BSres � BSrel

BSunc

:

Thus, for a climatological prediction the BSS is 0. In the

present study, a probabilistic forecast of an event for each

tercile category was performed. The three categories are

‘‘below-normal’’, ‘‘normal’’, and ‘‘above-normal’’ based on

climatological terciles.

Another measure of probabilistic forecast is the area

under the ROC curve (AROC), which is calculated by

integrating the area beneath the ROC curve in the graph of

hit rates against false-alarm rates within a range of pro-

bability threshold (Green and Swets 1966). It is equal to the

unit for a perfect deterministic forecast, while it is equal to

0.5 for a no skill forecast in which the hit rate and false-

alarm rate are equal.

3 SST forecast quality

In this section, the current status of SST forecast is assessed

using seven coupled models in APCC/CliPAS project and

their MME prediction. In some occasions, 14 coupled

model MME is examined, which includes seven DEME-

TER and seven CliPAS coupled models.

3.1 Equatorial SST

The SST anomalies along the equator are of central

importance for determining tropical and global telecon-

nection, and thus, they have been recognized as a major

source of global atmospheric climate variability. An effort

is made here to evaluate the coupled model performance in

forecast of equatorial SST anomalies averaged between

10�S and 5�N where SST variability is largest. To facilitate

evaluation, an Empirical Orthogonal Function (EOF)

analysis of the seasonal mean SST anomalies along the

global equatorial region was performed during the common

hindcast period of 1983–2002. The observed first mode

accounts for 77% (62%), while the second mode accounts

for 12% (17%) of the total variance during the DJF (JJA)

season. Thus, the first two modes account for 89% (79%) of

the total variance during the DJF (JJA).

To what extent can the seven one-tier CGCM MME 1-

month lead hindcasts capture these two leading modes? We

found that the hindcasts replicate realistic spatial–temporal

structures of the first two leading modes for both the JJA

and DJF seasons, and especially for the DJF season

(Figs. 1, 2). For the DJF season, the observed first mode

represents equatorial SST anomalies (SSTA) associated

with the mature phase of ENSO: The maximum positive

anomaly is located in the Niño 3.4 region with a comple-

mentary negative anomaly in the western Pacific and a

weak positive anomaly in the Indian Ocean (Fig. 1a). The

longitudinal distribution of SSTA in the Indo-Pacific

Oceans, along with its temporal evolution, is captured very

well by the MME forecast except for a slight westward

shift of the SSTA in the western Pacific. The observed

second mode shows a maximum SSTA located near the

dateline with negative SSTAs in both the eastern Pacific

(east of 130�W) and far western Pacific-eastern maritime

continent (100�E–150�E), which resembles a so-called

‘‘Modoki’’ mode (Weng et al. 2006) (Fig. 1b). The

observed second principal component shows variability on

decadal time scale: a negative phase in the prolonged cold

events during the period of 1998–2001 and a positive phase

around the lasting warm event in the early 1990s (1990–

1994). The CGCM MME captured the major features of the

second mode in spatial pattern reasonably well, but the

spatial phase has a significant westward shift in the western

Pacific by about 15� of longitude.

During the northern summer (JJA), the observed

leading mode exhibits a peak SSTA in the Niño 3 region,

rather than the Niño 3.4 region (Fig. 2a). An accompa-

nied SSTA dipole pattern occurs with a negative SSTA

in the western Pacific and a positive SSTA in the western

Indian Ocean. The eastern Indian Ocean SST is nearly

normal. The first principal component suggests that this

mode most often occurs in the developing phase of El

Niño/La Niña but sometimes also occurs in the decaying

phase of El Niño (in 1983, for instance) or during pro-

longed warm or cold events. The observed second mode

shows a wide peak in the Niño 3.4 region with com-

plementary cooling in both the eastern and western

Pacific (Fig. 2b). The MME prediction captures the gross

longitudinal distribution, but an evident westward shift of

the SSTA exists in the western Pacific between 120�E

and 180�E for both modes. Large errors are seen over the

Indian Ocean in JJA for the second mode, indicating that

the MME model has difficulty in predicting JJA Indian

Ocean SSTA in the years of a decaying strong El Niño

(e.g., 1983, 1998).
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Although the individual models show a large spread in

skill, especially for longitudinal distribution, the current

coupled MME prediction generally outperforms the

dynamic-statistical prediction for the two leading modes of

SST variability except in the mature phase of ENSO. In

particular, the current MME captures the temporal

variation of the two leading modes realistically. The tem-

poral correlation skill of PC time series of the coupled

MME prediction (dynamical–statistical model) is 0.94

(0.87) for the first mode and 0.90 (0.78) for the second

mode in JJA. However, the spatial shift of the MME pre-

diction could potentially cause errors in the global

EOF of DJF Equatorial SST [10S-5N]
(a) (b)

Fig. 1 Spatial patterns (upper
panels) and principal

components (lower panels) of

the first (a) and second (b)

empirical orthogonal mode of

the equatorial SST variations in

DJF, derived from observation,

the CliPAS coupled model

MME prediction, the SNU

dynamic-statistical SST

prediction, the persistence

forecast and the individual

coupled models (dashed lines)

EOF of JJA Equatorial SST [10S-5N]

(a) (b)

Fig. 2 Same as in Fig. 1 except

for JJA
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teleconnection that is associated with equatorial SSTA,

degrading seasonal climate prediction skills over both the

tropics and extratropics. Over the Atlantic, the observed

SSTA for all modes is uniformly negative except for the

first mode in DJF, for which SST is normal. The predicted

SSTA in the Atlantic is generally good, but large errors are

seen off the coast of Brazil (Figs. 1, 2).

In terms of the fractional variance, the hindcast leading

mode of MME accounts for a larger percentage of the total

variance, i.e., 88% (83%), for DJF (JJA), while the second

mode accounts for a smaller fractional variance, 8% (9%)

for DJF (JJA) compared to the corresponding observational

counterparts. Most of individual models have more realistic

values of the fractional variance although the model spread

is large. The range of the percentage variances for the

individual coupled models is 77–87% (55–85%) in DJF

(JJA) for the first mode and 6–13% (5–18%) in DJF (JJA)

for the second mode.

The fractional variance accounted for by the first two

modes of MME is 96% (92%) for the DJF (JJA) season.

This suggests that the MME hindcast tends to overestimate

the variance contribution of the first mode and is unable to

capture the third and higher modes of variability. The

reason is partially due to the effect of the multi-model

ensemble mean, which tends to suppress the higher modes

that may be more associated with stochastic processes.

3.2 ENSO

ENSO forecast is at the heart of the seasonal prediction.

Here the Niño 3.4 SST anomaly (averaged over the region

5�S–5�N, 120�W–170�W) is used as an ENSO index for

gauging prediction skill. Figure 3 shows TCC skill of

MME prediction of the Niño 3.4 SST anomaly for 21 years

of 1981–2001 as a function of forecast lead time, initiated

from May 1 and November 1, respectively. The average

skill of the seven individual coupled models and the range

of the models’ spread are also presented. Here the range of

spread is denoted by the distance from the worst to the best

model skill. For comparison, Fig. 3b shows the counter-

parts made by seven different DEMETER coupled models

for the same period. The correlation skill of the CliPAS

MME forecast at a 6-month lead reaches 0.77 and 0.81 for

predictions starting from 1 May and 1 November, respec-

tively. These skills are slightly lower than the DEMETER

MME prediction (Palmer et al. 2004). The reason is that the

Correlation Skill for Nino 3.4 SSTA (1981-2001)

(a) (b)

Fig. 3 a Temporal correlation

skill of prediction of Nino3.4

SST index as a function of

forecast lead time, initiated

from 1 May and 1 November for

the period of 1981–2001

derived from 7 CliPAS coupled

models. b The same as in a but

derived from 7 DEMETER

coupled models. The green lines
indicate the averaged skill of the

individual models and the bars
show the range of the best and

worst coupled model skills. For

comparison, the skills of

persistent forecast (blue), the

SNU dynamic-statistical model

forecast (red), and the 14-model

MME from both DEMETER

and CliPAS (purple) are also

shown
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averaged skill of the individual models in DEMETER is

better than CliPAS. If both DEMETER and CliPAS models

were used, the 6-month lead forecast skill reaches 0.86 for

the average of all May and November initial conditions.

Using CliPAS and DEMETER coupled models, Jin et al.

(2008) found that the forecast skill depends strongly on

season, ENSO phases, and ENSO intensity. A stronger El

Niño or La Niña is more predictable and ENSO-neutral

years are far less predictable than warm and cold events.

Given that only about a half a dozen warm and cold events

occurred during the hindcast period, the conclusions that

have been drawn here need verification using a longer

hindcast record.

3.3 Indian Ocean SST

Recent studies have reported that the Indian Ocean Dipole

(IOD) mode has a considerable influence on climate vari-

ability in the surrounding continental regions including

South Asia, eastern Africa, Australia, and even East Asia

(Guan and Yamagata 2003; Saji and Yamagata 2003).

Although some IOD events concur with ENSO events, the

IOD events can be independent of ENSO, because IOD

development depends on Indian Ocean air–sea interaction,

including the Bjerknes (1969) feedback in the equatorial

Indian Ocean (Saji et al. 1999; Webster et al.1999; Saji and

Yamagata 2003) and the off-equatorial moist Rossby wave-

SST dipole interaction (Wang et al. 2000, 2003). An effort

is made to assess the performance of coupled models on the

prediction of Indian Ocean SST.

Figure 4a and b show the TCC skill as a function of the

forecast lead month for the West Indian Ocean (WIO;

50�E–70�E, 10�S–10�N) and the East Indian Ocean (EIO;

90�–110�E, 10�S–0) SSTA, respectively. For the EIO SST

prediction, the correlation skill reaches 0.68 at a 6-month

lead forecast for both initial forecast times (1 May and 1

November). But there is a considerable dip in skill in July

for the forecast initiated from early May and a dip in

December for the forecast initiated from early November.

For the western Indian Ocean, the MME skill is 0.80 for a

6-month lead forecast with November initial condition, but

only 0.43 for the 5-month lead forecast with May initial

condition. The MME initiated from 1 November has gene-

rally better skill than the forecasts initiated from 1 May

for both the EIO and WIO. These skills surpass the cor-

responding persistent skill and statistical–dynamical

forecast, especially for predictions with November initial

condition.

While the SST predictions in the WIO and EIO show

some useful skills, the skill for prediction of the IOD SST

index (SST at EIO minus SST at WIO) is reduced

(Fig. 4c). The TCC skill of IOD forecast drops below 0.4 at

a 3-month lead forecast for both May and November initial

conditions. The results indicate the existence of a July

prediction barrier and a severe, unrecoverable January

prediction barrier for the IOD index prediction. The winter

barrier for prediction of IOD and the EIO SSTA is related

to its strong phase lock to the annual reversal of the

monsoon (Luo et al. 2007). For the forecasts started from

early May, while a July barrier exists, there is a robust

bounce-back after July, suggesting that the mature phase of

IOD in October–November is more predictable (if it starts

from early May) probably due to the predictability of the

EIO pole where the SST dominates the mature phase of

IOD. We suggest that the EIO SSTA should be predicted

rather than IOD index.

In summary, the results in Figs. 1 through 4 indicate that

(1) significant improvement of forecast skill can be

obtained through MME approach, and (2) the seven cou-

pled models’ MME prediction skill outperforms the SNU

statistical–dynamical model and is far better than persis-

tence forecast.

4 Spatial and seasonal dependence of prediction skills

In this section, we examine the MME skills in the 1-month

lead seasonal prediction of 2 m air temperature, precipi-

tation, and three-dimensional circulation fields. The seven

one-tier and seven two-tier predictions are all used to make

MME prediction. The first two variables have been chosen

because they are important surface variables. In order to

understand the transition of predictable signal between the

tropical phenomena into global fields, we further evaluate

forecast skills of stream function at 850 and 200 hPa, and

geopotential height at 500 hPa.

4.1 Two-meter air temperature

Figure 5a and b (upper panels) show the spatial distribution

of the 1-month lead seasonal forecast skills for 2 m air

temperature in terms of TCC at each grid point for the

period of 1981–2003. The significance of temporal corre-

lation coefficient was tested using t test. The region of

statistical significant TCC at the confidence level of 0.05

and 0.01 are outlined. Since the near surface air tempera-

ture over the ocean has well known persistence due to the

influence of the underlying SST, a skillful forecast must be

significantly superior to the persistence forecast. For this

reason, the differences between the MME prediction and

persistence forecast are shown in lower panels of Fig. 5.

During the DJF season, useful skill is seen in a horseshoe

region extending from the Maritime continent and the

eastern Indian Ocean toward the extratropics in the north-

eastern and southeastern Pacific, and also in North

America, Europe, the Middle East, southern Africa, and
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Southeast Asia. Most of these additional skills originate

from the influence of ENSO via teleconnection during its

peak phases. During JJA, the MME temperature prediction

outperforms persistence over the northern Indian Ocean,

northeastern Asia, and the tropical eastern North Pacific-

Caribbean Sea. Note, however, in many regions of the

world, MME prediction may not necessarily be better than

persistence, suggesting that persistence forecast can be a

complementary tool for JJA temperature prediction. In

particular, persistence is relatively strong after 1998 (not

shown).

In the tropical Pacific between 10�N and 20�N (north of

the ITCZ), the JJA skill is higher than the DJF skill (upper

panels of Fig. 5). But, this higher skill is mainly due to

persistence (lower panels of Fig. 5), suggesting that as the

thermal equator moves northward in JJA, the northern

hemisphere’s tropics are more predictable than in the

boreal winter due to SST persistence. In the Indian Ocean,

the SST is better predicted in the local summer than in the

local winter season. But, in the South Pacific Convergence

Zone, the local winter prediction is better than prediction in

summer.

4.2 Precipitation

Figure 6a and b show the geographic distribution of the

TCC skill for 1-month lead seasonal precipitation predic-

tion. High skill (0.5–0.7) in both JJA and DJF is observed

over the tropical Pacific and Atlantic between 10�S and

20�N, the Maritime continent, northeastern Brazil, and the

subtropical South Pacific Convergence zone.

During DJF, the high skill regions expand in the global

tropics and subtropics and over both the ocean and land,

particularly in the following regions: (a) the subtropical

North Pacific and North Atlantic between 20�N and 40�N;

(b) the equatorial Indian Ocean and the east coast of

equatorial Africa; (c) tropical South America, (d) southern

subtropical Africa; (e) Mexico and the southern United

States, and (f) Southeast Asia. The overall expansion of the

good forecast skill regions is a result of the model’s

capacity to capture the ENSO teleconnection. During DJF,

ENSO events mature and exert robust influence on remote

regions through atmospheric teleconnection. While DJF

prediction is generally better than JJA prediction, there are

exceptions. The most evident exceptions are seen over the

Correlation Skill for Indian Ocean SSTA

(a) (b) (c)

Fig. 4 a Same as in Fig. 3a except for the West Indian Ocean (WIO,

10S-10N, 50–70E) SST anomaly. b Same as in a except for the East

Indian Ocean (EIO, 10S-0, 90–110E) SSTA. c Same as in a except for

the Indian Ocean Dipole (IOD) SST index, which is difference

between WIO and EIO SSTA
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subtropical southeastern South America and the south-

western Atlantic Ocean (20�S–35�S, 10�W–50�W), and

over the eastern Australia. These areas are under local

winter monsoon regimes.

Forecast skill (as well as predictability) is a function of

latitude and longitude. The zonally averaged TCC skill

shows that the highest mean skill over the equator exceeds

0.6 at 5�S in JJA and reaches 0.7 at 5�N in DJF (Fig. 7a).

The prediction of DJF precipitation is superior to that of

JJA precipitation primarily in the northern hemisphere

between the equator and 40�N, and especially between

20�N and 40�N. However, in the southern hemisphere,

precipitation prediction for JJA is better than that for DJF

south of 30�S. We suggest that during the ENSO-deve-

loping phases the teleconnection associated with

convective anomalies over the Maritime continent enhan-

ces the Austral winter teleconnection in the southern

subtropics, thus increasing the prediction skills. The mes-

sage from Fig. 7a is that precipitation prediction in the

local winter is better than in the local summer in both the

southern and northern hemispheres. Figure 7b shows how

the correlation skills averaged over the tropics (30�S–

30�N) for precipitation in both JJA and DJF decrease

moving away from the El Niño/La Niña region. The

highest mean skill exceeding 0.6 is found near the dateline

from 150�E to 170�W in JJA and from 150�E to 140�W in

APCC/CliPAS MME Skill for 2m Air Temperature (1981-2003)

(b)(a)

Fig. 5 Temporal correlation

coefficients for 2 m air

temperature between

observation and 1-month lead

seasonal prediction for 1981–

2003 obtained from 14 CliPAS

models’ MME system in a JJA

and b DJF, respectively. The

lower panels indicate the skill

difference between MME

prediction and persistence for

each season. The thin (thick)

solid contours represent

statistically significance of the

correlation coefficients at 0.05

(0.01) confidence level. One-

month lead persistence was

obtained from the observed

anomalies in April for JJA

forecast and those in October

for DJF forecast, respectively

APCC/CliPAS MME Skill for Precipitation (1981-2003)

(a) (b)

Fig. 6 Temporal correlation

coefficients for precipitation

between observation and 1-

month lead seasonal prediction

for 1981–2003 obtained from 14

APCC/CliPAS models’ MME

system in a JJA and b DJF,

respectively. The thin (thick)

solid contours represent

statistical significance of the

correlation coefficients at 0.05

(0.01) confidence level
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DJF. The lowest skill is found over tropical Africa. The

DJF prediction skill is considerably higher than prediction

skill in JJA mainly in the Asian–Australian monsoon sector

from 40�E to 140�E and over the tropical American sector

between 60�W and 90�W. Skill over land regions is gen-

erally lacking except in some specific regions during DJF.

4.3 Atmospheric circulation fields

In general, prediction for atmospheric circulation fields

shows higher skill than that for temperature and precipi-

tation. One-month lead seasonal prediction of the 850 hPa

streamfunction field shows high skill over the western

Pacific and Asian continents in JJA, and in the eastern

Pacific (east of 180�E) and North America, as well as over

the maritime continent in DJF (Fig. 8). Prediction of the

200 hPa streamfunction shows good TCC skill almost

everywhere between 40�S and 60�N except in the equato-

rial region. High prediction skill for the 500 hPa

geopotential height is confined to the global tropics with a

meridional seasonal migration of the high skill region. Note

also that DJF skill is considerably higher than JJA skill for

all of the variables at the three levels.

The season-dependence and spatial patterns of the cir-

culation forecast skills can be reasonably explained in

terms of ENSO impact (Kumar and Hoerling 2003). Skill

tends to increase from JJA to DJF because ENSO forcing

increases from JJA to DJF. The remarkable eastward shift

of the high skill region in 850 hPa rotational flow anom-

alies from JJA to DJF is attributed to the eastward shift in

the teleconnection pattern associated with ENSO-induced

maximum equatorial convective anomalies from the

developing (JJA) to mature (DJF) phases of ENSO. In the

decaying ENSO phase (also in JJA), the 850 hPa rotational

flow remains strong in the eastern hemisphere mainly due

to local warm pool-atmosphere interaction (Wang et al.

2000; Lau and Wang 2006). The off-equatorial 200 hPa

streamfunction is the atmospheric Rossby wave response

and teleconnection to the equatorial dipole heat source/sink

associated with El Niño and La Niña, which have a wide

meridional scale and global zonal scale. During El Niño,

the entire tropics warm up due to rapid propagation of the

equatorial Kelvin and Rossby waves excited in the eastern

Pacific warming. The opposite is true during La Niña. As a

result, the 500 hPa geopotential height rises up in El Niño

and decreases during La Niña in accord with temperature

changes. Thus, nearly all of the high skill regions are due to

the influence of ENSO teleconnection through atmospheric

internal dynamics.

In summary, the prediction skills vary with location and

season. The variations in the spatial patterns and the sea-

sonality of the correlation skills suggest that ENSO

variability is the primarily source of global seasonal pre-

diction skill. Winter monsoon precipitation in both

hemispheres is more predictable due to teleconnection

associated with ENSO. Precipitation predictions over land

and the local summer monsoon region show little skill.

5 Interannual variation of MME skill

5.1 Dependence on ENSO amplitude and season

Figure 9 shows that the anomaly PCC between the

observed 2 m air temperature and the MME’s 1-month lead

temperature prediction in the global tropics (30�S–30�N)

varies from year-to-year and ranges from 0.25 to 0.70 in

JJA and from 0.20 to 0.80 in DJF. Surprisingly, the time-

mean PCC score during 24 years is better for JJA (0.53)

than for DJF (0.50). The DJF correlation skill decays more

(a)

(b)

Fig. 7 a Zonal mean temporal correlation skill of precipitation

predicted by APCC/CliPAS MME system in JJA (solid line) and DJF

(dashed line), respectively. b Same as in a except for latitudinal mean

temporal correlation skill between 30S and 30N. The light shaded bar

indicates the fraction of land between 30S–30N at each longitude

104 B. Wang et al.: Advance and prospectus of seasonal prediction

123



sharply poleward away from the equator than during JJA,

although DJF skill is higher than JJA skill over the equa-

torial band between 15�S and 10�N. The reason is that as

the thermal equator moves northward in JJA, the northern

hemisphere tropics are more predictable than the boreal

winter due to SST persistence. Note that the range of

interannual variation in the PCC score in DJF (0.18–0.80)

is larger than that in JJA (0.25–0.70). In DJF of 1982/1983

and 1997/1998, the correlation skill reaches about 0.80,

while in DJF of 1981/1982 and 1989/1990, the skill is only

around 0.20.

Obviously, the year-to-year variation in overall skill

depends on ENSO variability. The MME PCC skill has a

clear relationship with the amplitude of Niño 3.4 SST

variation especially in the boreal winter with a correla-

tion coefficient of 0.76. The worst years tend to occur

during transition or normal ENSO phases. The major

failures in the prediction of DJF temperature occurred in

the 1980s (in the northern winters of 1981/1982 and

1989/1990) and were either 1-year before the mature

phase of El Niño or 1-year after the mature phase of a

La Niña.

In contrast to the surface air temperature skill, the

tropical mean anomaly PCC score for precipitation pre-

diction is higher in DJF (0.57) than in JJA (0.46) over the

global tropics (Fig. 10). Similar to the air temperature, the

range of interannual skill variation in DJF (-0.2 to 0.8) is

much larger than in JJA (0.2–0.7). The DJF of 1989/1990

shows extremely low skill of -0.2, which deserves a

special case study. The MME anomaly PCC of precipita-

tion also shows strong relationship with the amplitude of

Niño 3.4 SST variation especially in the boreal winter with

a correlation coefficient 0.75.

Figures 9 and 10 indicate that although the MME pre-

diction does not necessarily outperform the best model

during each individual year, the MME’s overall skill is

superior to any individual model in terms of the time-

averaged PCC score for all years. There is no best model

that is always better than the other models in every year

studied.

(a) (b)Fig. 8 Temporal correlation

coefficients for 850 hPa (upper
panels) and 200 hPa (lower
panels) streamfunction and

500 hPa geopotential height

(middle panels) between

observation and 1-month lead

seasonal prediction obtained

from APCC/CliPAS MME

system in a JJA and b DJF

seasons, respectively. The thin
(thick) solid contours represent

statistical significance of the

correlation coefficients at 0.05

(0.01) confidence level
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5.2 Asymmetries with respect to El Nino and La Nina

and development and decay phases

The observed anomalies associated with ENSO’s mature

phases are not a mirror image when comparing El Niño and

La Niña (e.g., Hoerling et al. 1997). In the Asian–Austra-

lian monsoon region, the atmospheric responses to a

developing and a decaying ENSO event are also nearly out

of phase (Wang et al. 2001). So, do MMEs capture those

features faithfully?

Figure 11 shows composite maps of precipitation and

500 hPa geopotential height anomalies normalized by their

standard deviation. The composites were made by using

three El Niño, three La Niña, and three normal DJF in

observation and in 1-month lead seasonal MME prediction.

The mean SST amplitude for El Niño (La Niña) composite is

1.9 (1.7) degree and the anomaly PCC of precipitation pre-

diction are 0.73 (0.74) over the global Tropics, respectively.

For normal years, the predicted anomalies are weaker than

observed and the anomaly PCC is only 0.18, suggesting that

without ENSO forcing the MME does not have useful skill.

For both El Niño and La Niña events, the predicted nor-

malized anomalies of precipitation and geopotential height

agree well with observed anomalies, especially over the

tropics and the western Hemisphere. Significant errors are

found over Eurasian continent in both precipitation and cir-

culation. However, the prediction tends to overestimate

anomalies over most of the regions. Observation shows

(a)

(b)

Fig. 9 Time series of anomaly

pattern correlation coefficients

in 2 m air temperature between

observation and 1-month lead

MME prediction over the global

tropics in a JJA and b DJF,

respectively. The values for

individual model ensemble

predictions are also plotted with

grey square marks. The dashed
line indicates the amplitude of

Nino 3.4 SST anomaly

(a)

(b)

Fig. 10 Same as in Fig. 9

except for precipitation
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rather asymmetric anomalies with strong anomaly in El Nino

and weak anomaly in La Nina during DJF. But the prediction

shows more symmetric pattern of anomaly between El Nino

and La Nina except in the tropical eastern Pacific.

It was found that anomalous precipitation and circula-

tion are predicted better in the El Niño-decaying JJA than

in the El Niño-developing JJA (Fig. 12). The averaged

PCC is 0.52 for the three selected decaying JJAs and 0.47

for the three developing JJAs. In the El Niño decaying JJA,

the precipitation seems to be quite predictable over sub-

tropical and extratropical Asia and North America. The

MME prediction realistically captures the dryness over the

Philippine Sea and the South Asian monsoon trough and

the wetness over the Maritime continent, the equatorial

Indian Ocean, East Asia, and western North America but

fails to capture the subtle location of the wet–dry boundary

over the Indian subcontinent. Further, the MME prediction

overestimates the precipitation anomaly over Europe and

Africa. During the developing JJA, weak anomalies in both

the observation and prediction are seen over subtropical

and extratropical Asia. The MME prediction realistically

captures the dryness over the Maritime continent, Mexico,

and northern East Asia and the wetness over the tropical

eastern Pacific and North America but misses the strong

wetness over Europe and the equatorial African continent.

These findings are in dynamical agreement with the results

of Kumar and Hoerling (2003). They showed that a strong

asymmetry in the strength of the zonal mean tropical

200 mb height response is stronger in an ENSO-decaying

JJA than in the preceding JJA.

6 Probabilistic forecast

6.1 Reliability diagram and BSS

The probabilistic forecast skill was examined for three

categorical forecasts using climatological terciles in terms

(a)

(b)

(c)

Fig. 11 Precipitation (shaded)

and 500 hPa geopotential height

(contoured) anomalies

composited for three El Nino

(upper panels), three La Nina

(middle panels) and three

normal (lower panels) boreal

winters. The left and right
panels are made from

observation and 1-month lead

CliPAS MME prediction,

respectively. All anomalies

were normalized by their own

standard deviations. The

contour interval is 0.5
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of the BSS and the area under the ROC curve (AROC)

using 109 individual realizations from the five-one-tier and

five-two tier systems.

Figure 13 shows the reliability diagram, with the fore-

cast probability as abscissa and the observed frequency for

the corresponding forecast as ordinate, at each probability

bin for the above-normal categorical forecast of 2 m air

temperature and precipitation in both JJA and DJF over the

global tropics. In general, the reliability curve of MME

prediction (dashed line with round dot) is much closer to

the diagonal line (dashed-dotted line) than the curves of the

individual models. This result suggests that the forecast

reliability of the MME prediction is considerably higher

than any individual model especially for the cases of very

low and very high forecast probability, although the MME

probabilistic forecast still tends to overestimate the

observed frequency in the case of high forecast probability.

Note that in terms of reliability the precipitation forecast is

slightly better than the 2 m temperature forecast, and the

precipitation prediction is most reliable in the DJF season,

as indicated by the reliability term of BSS (0.76).

Although the probabilistic prediction of precipitation

using the multi-model system is more reliable than that of

temperature, it has poor resolution. The bars in Fig. 13

represent the relative frequency with which the upper ter-

cile was predicted with different levels of probability, the

so called sharpness (Palmer et al. 2000). For the precipi-

tation, the probability distribution function is strongly

weighted towards the climatological frequency of the upper

tercile event. The results indicate that the prediction is not

better than a forecast based on the climatology. The reso-

lution terms of BSS for precipitation have low skills that

degrade its total BSS. As a result, the BSS of precipitation

is 0.01 for JJA and 0.06 for DJF. In terms of BSS, the

temperature prediction in DJF has the highest value (0.22),

while precipitation prediction in JJA has the lowest score

(0.01) (Fig. 13).

The results for the below-normal categorical forecast are

very similar to those for the above-normal cases. However,

the BSSs for normal cases are below zero for both pre-

cipitation and temperature and for both the JJA and DJF

seasons.

6.2 Relationship between probabilistic

and deterministic forecasts

Is the skill of the multi-model probabilistic forecast related

to the MME deterministic forecast? By definition, a value

of 0.5 for the area under the ROC curve (AROC) indicates

that the hit rate equals the false-alarm rate, and the zero

value of BSS indicates that the probabilistic forecast skill is

equal to the skill of the forecast based on climatology.

Figure 14 shows that (1) the spatial distributions of the

BSS and AROC scores agree with each other very well, (2)

the spatial patterns of the two probabilistic skill measure-

ments are very similar to the MME TCC scores for

(a)

(b)

Fig. 12 Precipitation (shading)

and 850 hPa stream function

(contoured) anomalies

composited for a three El Nino

onset and b three El Nino decay

JJA seasons. The left and right
panels are made from

observation and 1-month lead

CliPAS MME prediction,

respectively. All anomalies

were normalized by their

corresponding standard

deviation. The contour interval

is 0.5
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temperature (Fig. 5b) and precipitation (Fig. 6b), and (3)

an AROC score of 0.7 roughly corresponds to a value of

0.1 in BSS and 0.6 in TCC for the deterministic forecast.

The results also show that normal events are difficult to

predict in both temperature and precipitation, but above-

normal and below-normal events can be predicted using the

current multi-model prediction system (not shown).

Figure 15 shows the general relationship between the

deterministic TCC and the probabilistic BSS and AROC

scores. The data examined are DJF forecasts of precipita-

tion at each grid point over the global tropics. Obviously,

the relationships are nonlinear, but the relationships tend to

be linear when the skill is reasonably high—for instance,

when TCC exceeds 0.6, AROC exceeds 0.7, and BSS

exceeds 0.1.

7 Effectiveness of MME prediction

7.1 Efficiency of MME prediction

The MME prediction skill was compared to each of the

individual model’s skill and to the averaged skill of all

individual models by using the PCC-RMSE diagram for

2 m air temperature (Fig. 16) and precipitation (Fig. 17) in

JJA over the global tropics and five tropical sub-domains

including Africa (0–50�E), the Indian Ocean (50�E–

110�E), the western Pacific and the Maritime continent

(110�E–180�E), the eastern Pacific (180�W–80�W), and

the Atlantic Ocean (80�W–0). All skills were obtained by

first computing the PCC score for each year and then

making a 24-year time-mean in an unbiased way (Refer to

Sect. 4). To quantify the MME’s effectiveness, a MME

efficiency index (d) was defined by the non-dimensional

distance between the point representing MME skill and the

point representing the averaged skill of all individual

models in the PCC-RMSE diagram. The larger the effi-

ciency index, the more effective the MME forecast is,

compared to the individual models.

It is noted that the mean PCC and the normalized RMSE

have a good linear relationship in terms of temperature

(Fig. 16) and a significantly weaker linear relationship in

terms of precipitation (Fig. 17). This implies that the pat-

tern-related errors are dominant in the temperature

prediction, but more random errors are contained in the

precipitation prediction in addition to the pattern-related

(a) (b)

(c) (d)

Fig. 13 Reliability diagrams

for above-normal categorical

forecast of 2 m air temperature

(upper panels) and precipitation

(lower panels) over the global

tropics in JJA (left panels) and

DJF (right panels). The

probabilistic forecast was made

by CliPAS MME prediction

system. The thick dashed lines
with circles indicate the

reliability of multi-model

prediction and thin dashed lines
indicate that of each model

prediction. The bars represent

the forecast sharpness, which is

the relative frequency with

which the upper tercile was

predicted with different levels

of probability. The Brier Skill

Score (BSS), reliability term of

BSS (Brel), and resolution term

of BSS (Bres) are also shown in

each panel
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error. In general, the linear relationship between the mean

PCC and the normalized RMSE strengthens as the mean

PCC score increases.

Figures 16 and 17 show that the MME skill is better

than any individual model’s skill, and it is also better than

the all models’ average skill over all regions in terms of

normalized RMSE. The same is true in terms of mean PCC

except over the African and Indian Ocean sectors, where

the averaged skills of the individual models are negligibly

small (less than 0.1). Over the global tropics, the mean

PCC for the MME prediction is 0.53, which is considerably

higher than the averaged value of the individual model

skills (0.41) for 2 m air temperature. Similarly, for pre-

cipitation prediction, the MME skill (0.46) is also

significantly better than the averaged skill of the entire

member models (0.31).

The value of the MME efficiency index in the global

tropics is 0.88 for 2 m air temperature and 1.32 for pre-

cipitation. Although the averaged skill for temperature is

higher than for precipitation, the MME prediction for

precipitation is more effective than that for temperature.

The increased effectiveness is mainly due to the fact that

the precipitation predictions among member models have a

higher degree of mutual independence. We note that for

temperature prediction, there are six-two-tier systems that

were driven by the same SNU SST prediction, making the

2 m temperature predictions dependent on each other. For

precipitation prediction, on the other hand, different

(a) (c)

(d)(b)

Fig. 14 Spatial distribution of

the Area under ROC (AROC)

curve (upper panels) and Brier

Skill Score (lower panels) for

three categorical probabilistic

forecast of 2 m air temperature

(left panels) and precipitation

(right panels) in DJF season

APCC/CliPAS MME Skills for DJF Precipitation

(a) (b) (c)

Fig. 15 Scatter diagram of

forecast skils of DJF

precipitation between a TCC

and AROC, b TCC and BSS,

and c AROC and BSS at each

grid points over the global

tropics
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cumulus parameterization schemes were used in different

models, making the precipitation predictions more inde-

pendent of each other than the corresponding temperature

predictions. This result agrees well with that of Yoo and

Kang (2005), who pointed out that MME skill depends on

the averaged skill of individual model predictions and their

mutual independency.

The most effective region for MME prediction among

the five sub-domains is the Indian Ocean for 2 m air

temperature and the western Pacific for precipitation, as

(a) (b) (c)

(d) (e) (f)

Fig. 16 The anomalous PCC-

RMSE diagram for 2 m

temperature prediction in JJA

over a the global tropics, b
Africa, c Indian Ocean, d
western Pacific, e eastern

Pacific, and f Atlantic Ocean

sectors, respectively. Filled and
open red squares represent,

respectively, the MME skill and

the averaged skill of 14 APCC/

CliPAS models. d indicates the

effectiveness index of MME

prediction with reference to the

averaged skill of all models

(a) (b) (c)

(d) (e) (f)

Fig. 17 Same as in Fig. 16

except for JJA precipitation
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shown by the d values in Figs. 16 and 17. For precipitation

prediction, although the individual models have a higher

averaged skill over the eastern Pacific than over the wes-

tern Pacific, the MME prediction shows comparable skills

over the two regions. Temperature and precipitation over

Africa turn out to be the most difficult to predict. It is also

shown that a good performance in temperature prediction

doesn’t guarantee a good skill in precipitation prediction

over the same region. Although temperature forecast skill

over the Indian Ocean is comparable to that over the

Atlantic Ocean, the precipitation forecast skill is consi-

derably worse. On the contrary, the precipitation skill over

the western Pacific is comparable to that over the eastern

Pacific, but the temperature skill in the western Pacific is

much worse than that in the eastern Pacific. These results

suggest that the remote forcing via teleconnection may

control the accuracy of precipitation prediction over the

Indian Ocean and western Pacific regions rather than local

SST forcing in the current MME system.

7.2 Effect of the number of models on MME prediction

One of the open questions concerning the MME prediction

is the number of models that should be used to achieve the

MME’s optimal performance. To address this question, the

dependence of the MME correlation skill on the number of

member models was examined in terms of the 24-year

average of the mean PCC in JJA and DJF over the global

tropics. As in Sect. 13, only ten models that have nine or

more ensemble runs were selected.

Figure 18 shows how MME skill depends on the number

of member models used. At first, the PCC skill increases

when the number of models increases, but then saturates

after five to six models are used, depending on variable and

season. In Fig. 18, the upper (lower) cross mark indicates

the skill that would be obtained by using the models having

the best (worst) performance. Interestingly, the combina-

tion of the best models doesn’t always guarantee the

highest MME skill. Similarly, the combination of the worst

models may not always yield the lowest skill. Many studies

have been carried out to find the optimal combination of

MME to improve forecast skill (Krishnamurti et al. 1999,

2000; Kang et al. 2002; Yun et al. 2005; Yoo and Kang

2005; Doblas-Reyes et al. 2005; Kug et al. 2008). The

highest MME skill may be achievable by an optimal choice

of a subgroup of models, drawing upon an individual

model’s skill and the mutual independence among the

chosen models (Yoo and Kang 2005). However, it is

important to mention that the skill of MME prediction

possibly depends on the length of the training period.

Further discussion for optimal combination of MME can be

found in Kug et al. (2008).

Palmer et al. (2004) showed that the largest contribution

to the multi-model skill improvement for probabilistic

forecast is due to increased reliability. Here, the impact of

the number of models used for multi-model probabilistic

forecast was also investigated by using the reliability and

resolution terms of BSS. In general, the reliability skill

increases as the number of models being used increases for

the above-normal categorical prediction in JJA (Fig. 19).

The probability forecast of precipitation shows a large

degree of improvement for the forecast reliability at a

modest expense of degraded resolution skill. In contrast,

the resolution skill of temperature forecast remains almost

the same when the number of models increases. The tem-

perature prediction has better skill than the precipitation

prediction, and the DJF season is more predictable than JJA

for the multi-model probabilistic forecast. The result of a

below-normal case is very similar to that of an above-

normal case presented here, and there is practically no skill

for a normal event using the current APCC/CliPAS multi-

model probabilistic forecast system (not shown).

8 Conclusion and prospectus

In the past two decades, climate scientists have made tre-

mendous advance in understanding the variability and

predictability of the earth’s climate system. Prediction of

seasonal variations and associated uncertainties using

multiple dynamical models has become operational. While

this is a major breakthrough in the history of numerical

weather prediction, state-of-the-art climate prediction is

still in its infancy.

One of the purposes of the present study was to assess

the state-of-the-art seasonal prediction skills of the multi-

model ensemble (MME) mean and probabilistic forecast

based on 25-year (1980–2004) retrospective predictions

made by 14 climate models that participated in the APCC/

Fig. 18 Dependence of MME correlation skills on the number of

models used for 1-month lead JJA precipitation forecasts over the

global tropics. The vertical line segments indicate the range of the

anomaly pattern correlation coefficients for various combinations of

the models. The upper (lower) cross marks denote the skills obtained

by selecting the best (worst) models
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CliPAS project. We also evaluated seven DEMETER

(Palmer et al. 2004) models’ MME for the period of 1981–

2001 for comparison. To save space, we have primarily

focused on the results derived from the CliPAS models. We

should mention that the DEMETER and CliPAS MMEs

have comparable skills for both precipitation and 2 m air

temperature, although the average skill of the individual

CliPAS models is lower than that of the DEMETER

models. We also found that the two MME skills show great

similarity in spatial structure over the oceans (not shown),

suggesting that the two MMEs capture the same predict-

able part of temperature and precipitation in association

with ENSO. The differences in forecast skill over land

areas between the two MMEs indicate potentials for further

improvement of predictability over these regions.

9 Conclusions

We found that two measures of probabilistic forecast, the

BSS and the AROC yield similar spatial distribution of

skills, and they are also similar to the spatial pattern of the

temporal correlation coefficient (TCC) skill, which is a

measure of deterministic MME skill (Fig. 14). While these

skills have a nonlinear relationship, an AROC score of 0.7

approximately corresponds to BSS of 0.1 and TCC score of

0.6, and beyond these critical values, they are linearly

correlated (Fig. 15). Thus, the spatial distribution of the

TCC score also provides valuable information about the

spatial distributions of the skill scores for the probabilistic

forecast (BSS and AROC).

MME method is demonstrated to be a useful and

practical approach for reducing errors and quantifying

forecast uncertainty due to model formulation. The MME

prediction skill is substantially better than the averaged

skill of all individual models. For instance, the TCC skill

for Niño 3.4 index forecast at a 6-month lead initiated

from May 1 is 0.77 for CliPAS 7-coupled model

ensemble, which is siginificantly higher than the corre-

sponding averaged skill of all individual coupled models

(0.63). The MME made by using 14 coupled models from

both DEMETER and CliPAS shows an even higher TCC

skill of 0.87 (Fig. 3). Over the global tropics (30�S–30�N)

and during JJA, the time-mean Pattern Correlation Coef-

ficient (PCC) for MME prediction of 2 m air temperature

(0.53) is considerably higher than the averaged skill of the

individual models (0.41) (Fig. 16a). Similarly, for pre-

cipitation prediction, the MME skill (0.46) is also

significantly better than the averaged skill of all member

models (0.31) (Fig. 17a). Although the MME does not

necessarily outperform the best model during each indi-

vidual year, the MME’s overall skill is superior to any

individual model in terms of the time-mean PCC score for

all years (Figs. 9, 10). The MME approach shows greater

advantages in probabilistic forecast than deterministic

forecast. Results of Fig. 19 show that the resolution of

BSS score increases from 0.48 (single model’s averaged

score) to 0.73 when ten models are used. For probabilistic

prediction, the largest contribution to MME improvement

is due to increased reliability; the resolution score also

increases for 2 m temperature but slightly decreases for

precipitation forecast (Fig. 19).

The reliability and resolution term of BSS

(a) (b)

Fig. 19 Range of a reliability

and b resolution terms of Brier

skill score for the above-normal

categorical forecast of

temperature (upper panels) and

precipitation (lower panels),

respectively, over global

Tropics in JJA using different

number of the model being used

in APCC/CliPAS predictions.

Marks indicate the average

value of the each terms of Brier

skill score for various

combinations of the models

composed
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The seven CliPAS CGCMs’ MME SST forecast skills

outperform the SNU statistical–dynamical model’s per-

formance and are far better than persistence forecast. The

1-month lead MME prediction for the SST anomalies along

the equator can capture, with high fidelity, the spatial–

temporal structures of the first two leading empirical

orthogonal modes for both the JJA and DJF seasons, which

account for 80–90% of the total variance (Figs. 1, 2). The

major common deficiencies include a westward phase-shift

in SSTA in the central-western Pacific, which leads to

significant errors in the western Pacific and may potentially

degrade global teleconnection associated with ENSO. The

TCC for SST predictions over the equatorial eastern Indian

Ocean (EIO) reaches about 0.68 at a 6-month lead forecast,

although there is a major dip in skill across August for the

forecast initiated in early May, and there is a skill dip in

January for the forecast initiated in early November

(Fig. 4b). The TCC of SST prediction for the western

equatorial Indian Ocean (WIO) is about 0.8 for November

initiation due to large persistence but drops below 0.5 at the

4-month lead (Fig. 4a).

While the SST predictions in the WIO and EIO have

useful skills, prediction of Indian Ocean Dipole (IOD)

index (SST at EIO minus SST at WIO) shows a reduced

skill (Fig. 4c). The TCC skills of IOD forecast drop below

0.4 at the 3-month lead forecast for both May and

November initial conditions. The results indicate existence

of a July prediction barrier and a severe, unrecoverable

January prediction barrier for IOD index prediction.

However, there is a robust bounce-back for the forecasts

initiated from early May, suggesting that mature IOD in

October–November is more predictable (if it starts in early

May), probably due to the predictability of the EIO pole

where SST dominates the mature phase of IOD.

What is the current level of precipitation and tempera-

ture prediction skills with the 14 CliPAS models’ MME?

Here we measured the global-scale MME forecast skill

during each season by the Pattern Correlation Coefficient

(PCC) between the observed and 1-month lead MME

predicted anomaly fields and then make a time-mean PCC

over the entire hindcast period in order to quantify the

overall MME hindcast skill.

Prediction skills vary by season. For 1-month lead MME

seasonal prediction of 2 m air temperature, the mean PCC

score over the global tropics (30�S–30�N) is 0.53 for JJA,

which is slightly better than that for DJF (0.50). The higher

skill in boreal summer is due to increased persistence. In

contrast, the tropical mean PCC score for precipitation in

DJF (0.57) is significantly higher than that in JJA (0.46)

over the global tropics (Fig. 10). The higher DJF prediction

skill is mainly found between the equator and 40�N, and

especially in the northern subtropics between 20�N and

40�N (Fig. 7a) from 40�E to 140�E in the Asian–Australian

monsoon sector and from 60�W and 90�W in the tropical

American sector (Fig. 7b). The large SST anomalies during

the mature phase of ENSO make the DJF precipitation

forecast better than during JJA.

Prediction skills highly depend on the strength and

phases of ENSO. The MME PCC skills for both temperature

and precipitation are well correlated with the amplitude of

NIÑO 3.4 SST variation especially in boreal winter with a

correlation coefficient 0.75–0.76 (Figs. 9, 10). The perfor-

mance in El Niño years is better than in La Niña years

(Fig. 11). There is virtually no useful skill in the ENSO-

neutral years. It is of interest that the anomalous precipi-

tation and circulation were predicted better in ENSO-

decaying JJA than in the ENSO-developing JJA (Fig. 12).

In general, prediction of circulation fields shows higher

skill than temperature and precipitation predictions. The

200 hPa streamfunction shows very good correlation skill

almost everywhere between 40�S and 60�N except in the

equatorial region (Fig. 8). The high-skill region in predic-

tion of 850 hPa streamfunction shifts eastward from JJA to

DJF. The 500 hPa geopotential height shows high predic-

tion skill confined to the global tropics with a north–south

seasonal migration. The DJF skill is considerably higher

than JJA for the circulation prediction at all three levels.

The season-dependence and the spatial patterns of circu-

lation forecast skills can be well explained in terms of

ENSO impacts. The variations in spatial patterns and the

seasonality of correlation skills strongly suggest that ENSO

variability is the primarily source of the global seasonal

prediction skill.

9.1 Prospectus

How do we move forward with seasonal prediction? Two

aspects need to be considered. First, given the current

levels of the climate models, how do we get the best

forecast through MME? Second, from a long-run, what are

the priorities we should take in improving our climate

models’ physics?

The MME deterministic forecast shown in the present

study is simple arithmetic average and MME probabilistic

forecast is simple democratic counting. Results in Fig. 18

indicate that a combination of the best models doesn’t

always guarantee highest MME skill; similarly, a combi-

nation of the worst models may not always yield the lowest

skill. But, this conclusion really depends on models’ per-

formance. When individual models have poor skills, such

as in the African sector (Fig. 16b), use of the top four

models makes a much better MME than all models are

taken into account. It is speculated that the highest MME

skill may be achievable by an optimal choice of a subgroup

of models, drawing upon an individual model’s skill and

the mutual independence among the chosen models.
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Our evaluation confirms that ENSO is the primary

source of MME skill for global seasonal prediction. Fur-

ther, the results of Figs. 9 through 12 suggest that forecast

skill for tropical precipitation depends on accurate forecast

of the amplitude, spatial patterns, and detailed temporal

evolution of ENSO cycle. This is particular true for a long-

lead seasonal forecast, because as forecast lead time

increases, the model forecast tend to be determined by the

model ENSO behavior (Jin et al. 2008).

Therefore, the foremost factor leading to successful

seasonal prediction is the model’s capability to accurately

forecast the amplitude, spatial pattern and detailed tem-

poral evolution of ENSO. Continuing improvement of the

one-tier climate model’s slow coupled dynamics in repro-

ducing a realistic ENSO mode is a key for long-lead

seasonal forecast.

Forecast of monsoon precipitation remains a major

challenge. We have showed that seasonal precipitation

predictions over land and during local summer have little

skill. The TCC for precipitation forecast averaged over the

tropics (30�S–30�N) decreases away from the central-

eastern Pacific, with the highest mean skill exceeding 0.5

found near the dateline (150�E–170�W) in JJA and from

150�E to 140�W in DJF; in contrast, the lowest skill is

found over the tropical Africa (Fig. 7b). We speculate that

outside of the tropical Pacific, seasonal prediction of

monsoon rainfall depends on tropical atmospheric tele-

connection associated with ENSO forcing, monsoon-ocean

interaction in the Indian and Atlantic Oceans, as well as

land-atmosphere interaction. In addition, it has been sug-

gested that correction of inherent bias in the predicted

mean states is critical for improving the long-lead seasonal

prediction of monsoon precipitation (Lee et al. 2008). The

differences in forecast skills over land areas between the

CliPAS and DEMETER MMEs indicate potentials for

further improvement of predictability over land. The fact

that MME has little skill in predicting precipitation over

the continental region and during local summer season

suggests potential importance of atmosphere-land interac-

tion. Unfortunately, in the current CliPAS models, lack of

land surface initialization and use of fixed sea ice makes it

impossible to evaluate the impact of atmosphere-land

interaction and the atmosphere-ice interaction. There is an

urgent need to assess the impact of land surface initiali-

zation on the skill of seasonal and monthly forecast using a

multi-model framework.

Over mid-latitudes, seasonal rainfall prediction skill

shows wavelike patterns in both the southern and northern

hemispheres (Fig. 6), suggesting important influences from

tropical-extratropical teleconnection and Rossby wave

energy propagation. Since the atmospheric teleconnection

both within the tropics and between the tropics and extra-

tropics is a major source of predictability for the region

outside of the eastern tropical Pacific, and since telecon-

nection is sensitive to mean climatology, continuing

improvement of the mean state and seasonal cycle as well

as statistical behavior of the transient atmospheric circu-

lation in coupled models is also of importance. However, to

what extent seasonal predictions depend on nonlinear rec-

tification of high-frequency atmospheric and oceanic

processes (so-called ‘‘noises’’) is not well known.

Since the primary memory affecting slow coupled

dynamics is stored in ocean subsurface layers and land

surfaces, continuing improvement of coupled model ini-

tialization is an urgent task. Another direction for future

improvement of the seasonal forecast is to increase climate

models’ resolution. This is absolutely necessary and critical

for improvement of prediction of precipitation and statisti-

cal behavior of extreme events. However, it remains to be

demonstrated whether increased resolution and improved

simulation of high-frequency perturbations would improve

slow coupled dynamics in coupled climate models. Inclu-

sion of anthropogenic (especially aerosols) and natural

forcing (solar, volcanic and aerosol) and a better represen-

tation of sea-ice may also benefit accurate seasonal forecast.
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