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Abstract. The global distribution of carbon sources and sinks is estimated from
atmospheric CO2 measurements using an inverse method based on the Geophysical Fluid
Dynamics Laboratory SKYHI atmospheric general circulation model. Applying the inverse
model without any regularization yields unrealistically large CO2 fluxes in the tropical
regions. We examine the use of three regularization techniques that are commonly used to
stabilize inversions: truncated singular value decomposition, imposition of a priori flux
estimates, and use of a quadratic inequality constraint. The regularization techniques can
all be made to minimize the unrealistic fluxes in the tropical regions. This brings inversion
estimated CO2 fluxes for oceanic regions in the tropics and in the Southern Hemisphere
into better agreement with independent estimates of the air-sea exchange. However, one
cannot assume that stabilized inversions give accurate estimates, as regularization merely
holds the fluxes to a priori estimates or simply reduces them in magnitude in regions that
are not resolvable by observations. By contrast, estimates of flux and uncertainty for the
temperate North Atlantic, temperate North Pacific, and boreal and temperate North
American regions are far less sensitive to the regularization parameters, consistent with
the fact that these regions are better constrained by the present observations.

1. Introduction

Fossil fuel combustion, cement manufacture, and deforesta-
tion have released a large amount of CO2 into the atmosphere
and have caused atmospheric concentrations of CO2 to rise
from 280 parts per million (ppm) by volume before the Indus-
trial Revolution to over 360 ppm today. On average the atmo-
spheric increase of CO2 accounts for 56% of the global CO2

emissions from fossil fuel consumption and cement manufac-
ture from 1959 to the present, implying that the combined
oceanic and terrestrial uptake must account for 44% of the
fossil CO2 emissions [Keeling et al., 1995]. Uptake of anthro-
pogenic CO2 by the oceans and the terrestrial biosphere has
been important in moderating the rate of CO2 increase and,
consequently, the pace of anthropogenic climate change due to
the greenhouse effect of CO2. The purpose of this study is to
examine inverse modeling and regularization techniques that
are used to estimate the spatial distribution of the net terres-
trial and oceanic CO2 sources and sinks.

Previously, measurements of atmospheric CO2 have been
combined with three-dimensional atmospheric transport mod-
els to infer surface CO2 sources and sinks over the globe. The
common strategy is to estimate an optimal combination of
sources and sinks that allows atmospheric models to give the
best prediction of the observed CO2 patterns, either by trial
and error [Keeling et al., 1989; Tans et al., 1990] or by linear
least squares regression based on the singular value decompo-
sition (SVD) method [Enting et al., 1995]. These studies agree
on the magnitude of a large Northern Hemispheric carbon sink

but disagree on its distribution between land biota and oceans and
even more so on its distribution among the continents. Most
recently, Fan et al. [1998] combined the method of linear least
squares regression with the use of model and observational data
of the air-sea CO2 exchange and estimated terrestrial net eco-
system exchange of CO2 for a small number of source regions.

Given the present data constraint, it is tempting to estimate
CO2 fluxes for boreal and temperate biomes separately in both
Eurasia and North America and to estimate air-sea CO2 ex-
change fluxes that are independent of oceanic observations
and ocean model predictions. However, estimation of a large
number of CO2 source parameters may be obscured owing to
a lack of observational data compounded by model errors. A
Bayesian approach using prior flux estimates as additional con-
straints was followed by Enting et al. [1995] to prevent spurious
estimates. In this study we attempt to estimate oceanic as well
as land biotic CO2 fluxes from 17 regions using singular value
decomposition and to explore at the same time the use of three
regularization techniques for damping spurious fluxes for re-
gions poorly constrained by data: (1) inversion with a quadratic
inequality constraint, (2) Bayesian inversion using a priori flux
estimates, and (3) the truncation of singular values. The in-
verse model and the regularization techniques are described in
section 2. The atmospheric CO2 observations are described in
section 3, followed by a description of the atmospheric models
in section 4. Inverse modeling results are presented in section
5 and discussed in section 6. A summary of results and con-
clusions follows in section 7.

2. SVD-Based Inversion Method
Regional CO2 fluxes over a period of several years may be

estimated from the spatial patterns of atmospheric CO2 that
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result from net surface exchange and atmospheric transport.
Spatial variations of atmospheric CO2 result from fossil emis-
sions, terrestrial net ecosystem productivity (NEP), air-sea ex-
changes of CO2, and the oxidation of atmospheric CH4 and
CO. Terrestrial NEP may be separated into two components;
one that is seasonally variable but averages to zero over an
annual cycle and another that represents a net biome produc-
tion over years. The contributions to atmospheric CO2 of fossil
CO2 emissions and the seasonal NEP are calculated based on
previous flux estimates. Annual terrestrial NEP and net air-sea
CO2 fluxes are estimated here by inverse modeling of atmo-
spheric CO2 observed over a 5 year period between 1988–1992
(see section 3). Independently obtained estimates of the air-
sea CO2 fluxes are used for testing the inverse modeling
method. The oxidation of atmospheric CH4 and CO are ne-
glected.

The number of observations in the present sampling net-
work are inadequate to constrain a large number of sources
[Gloor et al., 1999]. We aggregate the terrestrial ecosystems
into seven source regions approximately according to biome
distributions (Figure 1); subregional variations are smoothed
out by the time air travels to the remote marine locations
where most observations are made. We divide the global ocean
into 10 oceanic source regions according to the ocean circula-

tion features that are responsible for the spatial pattern of
air-sea fluxes (Figure 1). Annual average fluxes will be esti-
mated here for the seventeen carbon sources.

The mass conservation equation for atmospheric CO2, which
describes the balance between transport flux divergence and
sources minus sinks, is linear in CO2 concentration. The con-
servation equation for total CO2 can thus be split into a set of
equations for each of the CO2 components, which allows us to
model the source-specific components separately in a tracer
model. On the basis of this premise, the steady state CO2

concentration at any location x¢ 5 ( x , y , z), given here as the
difference between that site and the South Pole (for both
model results and observations), can be represented as the sum

C~x¢ ! 5 CFF~x¢ ! 1 CBB~x¢ ! 1 O
j51

N

Cj~x¢ ! (1)

In this equation, CFF(x¢) is the CO2 concentration that results
from fossil CO2, CBB(x¢) results from the seasonal NEP of the
annually balanced biosphere (see below), and Cj(x¢) is caused
by a net flux from the jth source region. The relationship of
each of these concentrations to the corresponding source is
predicted by specifying the surface flux and by integrating the
mass conservation equation in an atmospheric general circu-

Figure 1. A map of the source regions. The locations of the atmospheric air sampling sites are indicated by
solid circles.

FAN ET AL.: REGULARIZATION TECHNIQUES IN INVERSE MODELING21,504



lation model (GCM). A quasi-steady state response is obtained
after five years of model integration. Annual mean model
results are obtained by averaging across the fifth year of model
simulations. For proper comparison, CO2 observations must
be averaged over a period of multiple years to obtain a quasi
steady state spatial distribution, as the influence by transient
and interannual variations are minimized.

The fossil CO2 flux is based on the 1990 emission map of
Andres et al. [1996]. The land biotic CO2 flux is specified using
monthly NEP as calculated by the Carnegie, Ames, and Stan-
ford Approach (CASA) ecosystem model [Potter et al., 1993].
The CASA model specifies a zero net exchange over an annual
cycle for each grid cell on the surface of the Earth. However,
the land biotic CO2 in the atmospheric boundary layer may not
average to zero because of the coherent seasonal variations in
terrestrial NEP and atmospheric transport [Denning et al.,
1995; Law et al., 1996].

Emission from each of the N (N 5 17) sources is first
assumed to be spatially uniform and constant in time when
three regularization techniques are compared. The spatiotem-
poral patterns of emission are then assumed to be proportional
to net primary productivity (NPP) for land regions and to the
air-sea CO2 flux estimates of Takahashi et al. [1997] for oceanic
regions. If the quasi steady state distribution of atmospheric
CO2 caused by a constant flux of 1 Pg C yr21 from the jth
region is aj(x¢), then atmospheric CO2 caused by a flux of f j Pg
C yr21 from the jth source is Cj(x¢) 5 f jaj(x¢). We can write
total CO2 as follows:

C~x¢ ! 5 CFF~x¢ ! 1 CBB~x¢ ! 1 O
j51

N

fjaj~x¢ ! (2)

The regional sources { f j} may be estimated from the ob-
servations of atmospheric CO2 using the least squares method
by finding the f j values that minimize

x2 5 O
i51

M 1
s i

2 FCobs~x¢ i! 2 CFF~x¢ i! 2 CBB~x¢ i! 2 O
j51

N

fjaj~x¢ i!G 2

(3)

where M is the number of measurements, Cobs(x¢i) is the ob-
served mean CO2 concentration deviation at the ith sampling
site, and s i is the measurement uncertainty. Following Enting
et al. [1995], we use a uniform measurement uncertainty of s 5
0.3 ppm and test the sensitivity to s. A realistic estimate of s
should consider instrument noise, calibration offset, and tem-
poral variability of atmospheric CO2. In addition, residual er-
ror (root-mean-squares) of the linear regression is larger than
s due to biases in model transport and basis function. A set of
normal equations for the least squares problem can be solved
for the flux vector f 5 { f j} by use of the SVD method [Press
et al., 1992].

The flux-to-concentration matrix A, with elements aj(x¢i) and
dimensions M 3 N , may be written as a product of three
matrices by the SVD:

A 5 U z W z V (4)

where U (with dimensions M 3 M) and V (with dimensions
N 3 N) are orthogonal matrices, and W 5 [diag(wj) ( j 5 1,
N)] is a diagonal matrix whose elements are the singular values
of A. The pseudo-inverse of A is defined as

A21 5 V z @diag~1/wj!# z UT (5)

and the solution of the linear regression problem is given by

f 5 A21 z ~Cobs 2 CFF 2 CBB!
(6)

5 V z @diag~1/wj!# z UT z ~Cobs 2 CFF 2 CBB!

where Cobs, CFF, and CBB are vectors of CO2 concentrations.
The variance in the estimate of { f j} is given by

s2~ f j! 5 O
k51

N SVjk

wk
D 2

(7)

where Vjk values are elements of the V matrix [Press et al.,
1992]. Note that the matrix A may be expanded in the number
of rows to include additional constraints such as a priori fluxes
(see below); the U, V, and W matrices and the variances of
{ f j} are then calculated using the expanded A matrix.

Given the current data of atmospheric CO2, plain linear
regression for N (N 5 17) sources yields spurious estimates of
{ f j} (see below) because a lack of observations in Africa,
South America, and the South Atlantic Ocean causes large
error amplifications in these regions; that is, a small measure-
ment error results in large errors in the estimated fluxes (Gloor
et al., submitted manuscript, 1999).

Three regularization techniques are used here to stabilize
the linear regression. The first technique is to minimize x2 in
(3) subject to the quadratic inequality constraint

O
j51

N

fj
2 # a2 (8)

where a2 is a tunable parameter [Golub and Van Loan, 1990].
This constraint restricts admissible solutions to within the vol-
ume of a multidimensional sphere. Large unstable fluxes that
are not supported by observations are thus excluded.

In the second approach to regularization, “Bayesian inver-
sion,” a cost function

I 5 x2 1 O
j51

N 1
l j

2 ~ f j 2 sj!
2 (9)

is constructed and minimized, where x2 is the same as shown in
(3), l j is the a priori flux uncertainty and sj is the a priori flux
estimate for the jth source. Minimization of the cost function
I seeks to estimate the { f j} that both minimizes residuals and
does not stray far from {sj}. The a priori flux uncertainty is not
known and must be assumed. We use a uniform flux uncer-
tainty for the terrestrial sources, and a uniform flux uncertainty
for oceanic sources, and the oceanic flux uncertainty is half that
of the terrestrial sources. We test sensitivity of the inversion to
a terrestrial flux uncertainty ranging between 0.5 and 4 Pg C yr21.

The third regularization technique is the truncated singular
value decomposition [Hansen, 1987, 1990; Press et al., 1992;
Brown, 1995]. Equation (7) indicates that the smallest wj ele-
ments cause largest amplification of measurement error. The
truncated SVD sets 1/wj 5 0 for the smallest wj elements,
thus eliminating contributions by those components (columns
of V) of the solution that are sensitive to measurement error.
The number of columns of V that are not truncated will be
called the “truncation parameter.” The utility of the truncated
SVD depends on the ability to trade a relatively small increase
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in x2 for a large decrease in the sensitivity of the solution to
measurement error [Brown, 1995].

In addition, a mass conservation constraint is used in all
three of the regularization approaches above to represent the
global CO2 balance:

O
j51

N

fj 5 E 2
DC
Dt (10)

where DC/Dt is the annual atmospheric storage rate and E is
the global annual fossil CO2 emission rate. For the period of
1988–1992 the global fossil CO2 emission rate is 6.1 Pg C yr21

[Marland et al., 1994], the mean atmospheric CO2 increase rate
is 2.8 Pg C yr21 [Conway et al., 1994], and so a mean global
carbon uptake rate of 3.3 Pg C yr21 is required to balance the
budget.

3. Atmospheric Observations
High precision measurements of atmospheric CO2 have

been made for air samples from ground stations and on ocean
ships (Figure 1) by laboratories in several countries. A globally
consistent measurement record for the period from 1979–
1992, the GLOBALVIEW-CO2 [1996], was produced based on
atmospheric CO2 data accumulated at the Climate Monitoring
and Diagnostic Laboratory (CMDL) for 42 ground stations
and 24 ocean ship sampling locations (Figure 1). Data gaps at
some locations were filled using the sum of a latitudinal marine
boundary layer CO2 reference and monthly observations of the
difference between a station and the reference at the same
latitude [Masarie and Tans, 1995]. Data were edited to remove
periods of contamination by local sources so that the measure-
ments are representative of hundreds of kilometers. All labo-
ratories contributing to the GLOBALVIEW-CO2 participated
in an interlaboratory comparison of standard gases and agreed
to within 1 ppm, with the majority of calibration differences
being ,0.5 ppm. Here we use mean CO2 concentrations over
a 5 year period from 1988–1992 from this data base; no mea-
surements were made at a number of sampling sites for the
earlier period from 1979–1987 in the database. We thus make
use of as many data points as available while minimizing the
use of extrapolated/interpolated data. (Note, however, the Sa-
ble Island data were not used in this study because the size of
a calibration offset remains to be resolved. Including Sable
Island causes an increase in the magnitude of the boreal North
American source and the temperate North American sink each
by 0.2–0.3 Pg C yr21 (cf. Table 4 and section 6).)

4. Transport Models
Atmospheric transport is simulated in this study using the

GFDL SKYHI model. SKYHI calculates tracer transport “on-
line” as the winds and other weather parameters are calcu-
lated, and the winds vary from 1 year to the next. The clima-
tology of SKYHI is described by Hamilton et al. [1995]. The
radiative variables are updated every 4 hours, whereas the
weather is predicted every 225 s in the model. SKYHI has 40
vertical levels extending from the surface to 80 km altitude,
with the lower layers following surface topography. Ten to
fifteen of the layers are in the troposphere. The version of
SKYHI used in this study has a horizontal grid size of 38 3 3.68
latitude by longitude. Subgrid-scale transport processes are
parameterized in the form of horizontal and vertical diffusion

coefficients. The vertical diffusion coefficient is proportional to
the local wind shear and the second power of the mixing length
and is a function of the moist bulk Richardson number [Levy et
al., 1982]. If the vertical thermal gradient is diagnosed as being
unstable, a rapid mixing is activated (Jerry Mahlman, private
communication, 1996). This rapid mixing is consistent with
atmospheric observations and leads to realistic simulation of
radon-222 in the free troposphere as well as in the continental
boundary layer.

Transport in SKYHI has also been evaluated using obser-
vations of krypton-85, SF6, and CFCl3 [Denning et al., 1999; S.
Fan, unpublished results, 1997]. SKYHI simulates well the
meridional gradient of the tracers. Compared to other tracer
models, SKYHI tends to predict higher surface SF6 concen-
trations near the sources. However, SKYHI agrees with obser-
vations of SF6 in the marine boundary layer from the Northern
Hemisphere to the Southern Hemisphere [Denning et al.,
1999].

Inverse modeling is very sensitive to model transport. As a
limited analysis of the sensitivity, we also estimate CO2 sources
and sinks using the GFDL global chemical transport model
(GCTM) model. GCTM is an off-line tracer model and was
previously described by Mahlman and Moxim [1978] and Levy
et al. [1982]. A comparison of GCTM with SKYHI and other
atmospheric models is given by Denning et al. [1999]. GCTM
predicts a larger north-to-south decrease of fossil CO2 than
SKYHI (Figure 2) because GCTM has a slower vertical mixing.

5. Inverse Modeling Results
Figure 2 shows the 5 year mean CO2 observations at the

sampling sites (shown as differences from the South Pole ref-
erence). The observations are lower than the sum of model
predicted fossil fuel CO2 and the rectification of seasonal bio-
spheric CO2 by ;2 ppm in the midlatitude Northern Hemi-
sphere. A Northern Hemispheric carbon sink is thus needed to
account for the difference. The predicted fossil CO2 agrees
with the model calculations of Denning et al. [1995], but our
rectification CO2 is lower than theirs in the midlatitude to
high-latitude Northern Hemisphere. In the following we use
the inverse model shown in (6) to estimate the magnitude of
the carbon sources and sinks from the prescribed source re-
gions (Figure 1).

Table 1 shows estimates of CO2 flux obtained by the inverse
model using the technique of least squares with a quadratic
inequality constraint, with a2 ranging from 22 to 3 (Pg C yr21)2

(this unit will be neglected hereafter). An a2 of 22 is obtained
from fluxes estimated without the regularization. The large
terrestrial uptake in Africa, 1.9 Pg C yr21, is not supported by
any data in the literature. Documented changes in land cover
and land use are estimated to cause a net emission of CO2 in
tropical Africa (see Houghton [1996] and Gaston et al. [1998]
for the most recent estimates). The tropical oceanic sources,
totaling 3.2 Pg C yr21, are 4 times as much as estimated by
Takahashi et al. [1997] (referred to as T97 hereafter) and 6
times that predicted by the Princeton ocean biogeochemistry
model (OBM) [Murnane et al., 1999]. These spurious fluxes
result because the data constraint is insufficient in the tropical
regions and because CO2 emitted by tropical sources is diluted
to very low concentrations by rapid vertical mixing in the trop-
ical troposphere [Gloor et al., 1999].

As a2 is set to smaller values, the tropical land biosphere
changes from a large carbon sink to a small carbon source, and
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the tropical oceans from an unrealistically large carbon source
to a source more consistent with the independent estimates.
The “goodness of fit” as measured by the root mean square
(rms) of the residuals remains unchanged as a2 ranges from 22
to 9, indicating that fluxes estimated with an a2 of 9 fit the data
as well as the unrestricted inverse modeling results. Therefore
what the a2 constraint does is force the flux estimates for
regions with few data constraints to be small while maintaining
a minimum x2. Any net ecosystem CO2 exchanges in Africa
and South America, which may exist but are not resolvable by
the observations and are estimated incorrectly to be small with
the regularization, may be forced to spread out to other re-
gions to conserve mass.

For Northern Hemispheric regions with comparatively large
data coverage, the inverse modeling results are not very sen-
sitive to the value of a2 (Table 1). These regions are boreal
North America, temperate North America, temperate North
Atlantic Ocean, and temperate North Pacific Ocean. The sum
of boreal and temperate Eurasian fluxes remains constant with
a2 as well, although they are sensitive to a2 separately. The
sum of tropical and Southern Hemispheric regions is also well
constrained by the data and the global mass balance. For small
a2 (#6) the inverse modeling results are smeared to small
values even for North American regions and for the Northern
Hemisphere oceanic regions, and the rms error becomes
larger.

Figure 2. Atmospheric CO2 at the sampling stations (given as differences from the South Pole reference).
Station observations are given for the 5 year mean from 1988–1992. Fossil CO2 and terrestrial biotic CO2 are
predicted by the models for fossil CO2 emissions [Andres et al., 1996] and seasonal net ecosystem productivity
(with zero annual mean) calculated by the Carnegie, Ames, and Stanford Approach (CASA) model [Potter et
al., 1993], respectively.
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Table 2 shows inverse modeling results when a priori fluxes
were used as additional constraints for a range of a priori flux
uncertainties (denoted hereafter by l for terrestrial sources).
The a priori oceanic fluxes are adopted from the T97 esti-
mates, and the a priori terrestrial fluxes represent our initial
guess. The a posteriori flux uncertainties are calculated as in
(7). The a posteriori flux uncertainties increase proportionately
with s when no regularization is applied and approaches the
a priori uncertainties as their magnitudes are decreased. For
instance, when s is increased from 0.3 to 0.6 ppm to account
for additional error caused by the transport model and the
basis functions, the a posteriori uncertainties for terrestrial
fluxes were increased by approximately a factor of 2 and 1.5 for
l 5 4.0 and 0.5 Pg C yr21, respectively. The Northern Hemi-
sphere land and oceanic sources estimated by inverse modeling
appear to be insensitive to l between 0.5 and 4 Pg C yr21. The
a posteriori uncertainties for these regions are much smaller
than, and show minimal variations with, the a priori flux un-
certainties. The fluxes estimated for the Northern Hemisphere
sources do not appear to be shaped by the initial guesses and
are hence really determined by the observations.

By contrast, the fluxes estimated for the tropical sources,
particularly Africa and South America, vary strongly with l;
their a posteriori uncertainties show similar sensitivity and are
relatively large in size (Table 2). The small reduction of un-
certainty for Africa and South America indicate that these
regions are only marginally constrained by the data. The sen-
sitivities to the a priori flux uncertainties, which determine the
relative weights given to the CO2 observations and to the initial
guesses, thus indicate the level of constraint. By this scale, the
tropical and Southern Hemisphere oceans seem to be better

constrained than the tropical lands, although they are not as
well constrained as the northern oceans and North American
regions. As more weight is given to the prior estimates (cor-
responding to smaller l values in Table 2), the tropical sources
are held closer and closer to the prior estimates.

The rms errors appear to be constant with l in the range
shown in Table 2. However, the rms error would increase as l
decreases if the a priori estimates were set to values far off
from the inversion estimates shown in Table 2. This is because
the inversion estimates would be held close to incorrect prior
estimates at small l values even for source regions where data
constraints are strong.

Inversions using the truncated SVD are shown in Table 3. As
before, the Northern Hemisphere land and oceanic regions are
less sensitive to the regularization and better constrained by
the observations than Southern Hemispheric regions and trop-
ical regions. The northern sources are not sensitive to the
truncation parameter from 16 to 12 and are similar to the
results shown in Tables 1 and 2. Figure 3 shows the singular
values ordered by magnitude from the largest to the smallest
that are normalized by the largest singular value. There appear
to be three groups of source components: The first 3–5 com-
ponents are relatively well constrained, the components in the
middle group are less constrained, and the last 3–5 compo-
nents are least constrained. Zeroing out the last 3–5 compo-
nents eliminates the spurious fluxes in the tropical regions
while maintaining the “goodness of fit.” However, some infor-
mation provided by the observational data may be lost when
too many components are truncated (see the last column of
Table 3), which may result in erroneous flux estimates. Fluxes
estimated for the tropical and Southern Hemisphere oceans

Table 1. Carbon Fluxes Estimated for 1988–1992 by the Inverse Model With the Use of
a Quadratic Inequality Constraint

Source Regions

a2

T97 OBM22 15 12 9 6 3

Boreal Eurasia 21.6 21.5 21.4 21.2 20.9 20.6
Temperate Eurasia 1.1 0.9 0.7 0.5 0.3 0.0
Subtotal 20.5 20.6 20.6 20.6 20.7 20.7
Boreal North America 0.2 0.2 0.2 0.1 0.0 20.2
Temperate North America 22.2 22.1 22.0 21.9 21.6 21.0
Subtotal 22.0 21.9 21.8 21.7 21.5 21.2
Africa 21.9 20.6 20.1 0.0 0.1 0.0
South America 21.2 20.7 20.3 20.1 0.0 0.0
Austral-Asia 1.1 1.1 0.9 0.6 0.4 0.1
Subtotal 21.9 20.2 0.4 0.5 0.4 0.1
Total terrestrial 24.4 22.7 22.1 21.9 21.8 21.8
Polar North Atlantic 0.2 0.2 0.1 0.1 0.1 0.0 20.3 20.3
Temperate North Pacific 20.1 20.2 20.2 20.2 20.3 20.3 20.3 20.7
Temperate North Atlantic 20.6 20.7 20.8 20.8 20.8 20.7 20.3 20.3
Subtotal 20.5 20.7 20.9 20.9 21.0 21.0 20.9 21.2
Tropical Indian 0.2 0.1 0.2 0.2 0.2 0.2 0.1 0.0
Tropical Pacific 1.7 1.3 1.1 1.0 0.8 0.5 0.6 0.4
Tropical Atlantic 1.2 0.8 0.6 0.5 0.3 0.2 0.1 0.1
Subtotal 3.2 2.2 1.8 1.6 1.4 0.9 0.8 0.5
Temperate South Atlantic 20.9 21.0 20.9 20.7 20.6 20.3 20.2 20.2
Temperate South Indian 0.1 20.1 20.2 20.3 20.4 20.3 20.4 20.5
Temperate South Pacific 21.0 21.1 21.1 20.9 20.6 20.4 20.3 20.5
Southern Ocean 0.2 0.2 0.1 20.1 20.2 20.4 20.1 20.4
Subtotal 21.6 22.1 22.2 22.1 21.8 21.4 21.0 21.6
Total ocean 1.1 20.6 21.2 21.4 21.5 21.5 21.1 22.3
rms error, ppm 0.46 0.47 0.47 0.47 0.48 0.52

T97 is Takahashi et al., [1997]; OBM is Princeton ocean biogeochemistry model [Murnane et al., 1999].
Carbon fluxes are given in Pg C yr21. The quadratic inequality constraint is the sum of the fluxes squared
is less than or equal to a2.
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show more variability with the truncation parameter. African
and South American fluxes are again held to near zero by the
regularization.

6. Discussion
The inverse modeling results for boreal and temperate

North America and for temperate North Atlantic and North
Pacific oceans appear to be least sensitive to regularization
parameters, indicating that flux estimates for these regions are
robustly constrained with the present observations. The air-sea
CO2 flux estimated for temperate North Pacific Ocean is
smaller than the OBM prediction and the T97 estimates (Table
1), while that for temperate North Atlantic Ocean is ;2 times
larger in magnitude than the OBM and T97 estimates. It is
possible that the large North Atlantic sink represents a fraction
of the North American sink misattributed by error in the in-
versions. The North American and North Atlantic regions are
tightly coupled in the inverse model because they are both
heavily constrained by atmospheric CO2 observations in the
North Atlantic region.

Variations of the inverse modeling results with the regular-
ization parameters are found to compensate for each other
between boreal and temperate regions of Eurasia and between
the tropical regions and the Southern Hemisphere (Tables
1–3). These compensating variations indicate that the com-
bined regions (boreal and temperate Eurasia, the tropics, and
Southern Hemisphere) as a whole are better constrained by
the observations than the separate components that make
them up.

The inverse modeling results suggest an outgassing by trop-

ical oceans, where upwelling brings CO2-rich deep water to the
surface, in agreement with observations. The tropical Pacific
source is estimated to be of order 1 Pg C yr21, larger than the
OBM result and the T97 estimate. More recent measurements
suggest that the tropical Pacific source is as large as 1 Pg C yr21

in non-El Nino years but small (#0.5 Pg C yr21) in El Nino
years [Feely et al., 1997].

A large CO2 uptake is estimated for oceanic regions in the
Southern Hemisphere as a whole; it ranges between 1.5 and 2.6
Pg C yr21 (Tables 1–3). By comparison the total uptake by the
temperate oceans and the Southern Ocean is estimated to be
1.0 Pg C yr21 by T97 and 1.6 Pg C yr21 by OBM. There exist
considerable uncertainties in the T97 and OBM estimates.
Measurements of pCO2 are sparse in the Southern Hemi-
sphere. Predicted ocean circulation and air-sea CO2 exchange
diverge among ocean models in the high-latitude Southern
Hemisphere [Sarmiento et al., 1999; J. C. Orr et al., manuscript
in preparation, 1999]. The inverse modeling of atmospheric
CO2 provides an independent estimate for the air-sea CO2

exchange that is in better agreement with OBM in the South-
ern Hemisphere (where fossil and biospheric CO2 contribu-
tions are small). Further division of the sink among the regions
is not resolvable by the sparse measurements in the Southern
Hemisphere.

An alternative to the explicit use of regularization is to
estimate a small number of sources that are resolvable by the
data, although the spatial patterns must be assumed for even
larger regions as a trade-off. In Fan et al. [1998], fluxes were
estimated for three and four land regions while the sea-air
fluxes were specified according to the OBM prediction or the

Table 2. Carbon Fluxes Estimated for 1988–1992 by the Inverse Model With the Use of
a priori Flux and Uncertainty Constraints

Source Regions
a priori
Fluxes

a priori Flux Uncertainties

4.0 2.0 1.0 0.5

Boreal Eurasia 21.0 21.6 6 0.4 21.5 6 0.3 21.5 6 0.3 21.4 6 0.3
Temperate Eurasia 0 1.0 6 0.6 0.9 6 0.5 0.9 6 0.4 0.7 6 0.3
Subtotal 21.0 20.6 20.6 20.6 20.7
Boreal North America 0 0.2 6 0.2 0.2 6 0.2 0.2 6 0.2 0.2 6 0.2
Temperate North America 21.0 22.2 6 0.3 22.2 6 0.3 22.2 6 0.3 22.1 6 0.2
Subtotal 21.0 22.0 22.0 22.0 21.9
Africa 0 21.1 6 2.1 20.5 6 1.4 0.0 6 0.8 0.1 6 0.4
South America 0 21.1 6 2.1 20.8 6 1.4 20.3 6 0.8 20.1 6 0.4
Austral-Asia 0 1.1 6 0.7 1.0 6 0.6 0.7 6 0.5 0.4 6 0.3
Subtotal 0 21.1 20.3 0.4 0.4
Total terrestrial 22.0 23.6 22.7 22.2 22.1
Polar North Atlantic 20.3 0.2 6 0.2 0.2 6 0.2 0.2 6 0.2 0.1 6 0.1
Temperate North Pacific 20.3 20.1 6 0.2 20.1 6 0.2 20.1 6 0.2 20.1 6 0.2
Temperate North Atlantic 20.3 20.7 6 0.3 20.7 6 0.3 20.7 6 0.2 20.5 6 0.2
Subtotal 20.9 20.5 20.6 20.7 20.6
Tropical Indian 0.1 0.2 6 0.4 0.1 6 0.3 0.1 6 0.3 0.2 6 0.2
Tropical Pacific 0.6 1.6 6 0.6 1.3 6 0.5 1.0 6 0.3 0.8 6 0.2
Tropical Atlantic 0.1 1.0 6 0.6 0.7 6 0.4 0.4 6 0.3 0.2 6 0.2
Subtotal 0.8 2.7 2.1 1.6 1.2
Temperate South Atlantic 20.2 20.9 6 0.8 20.8 6 0.6 20.7 6 0.4 20.5 6 0.2
Temperate South Indian 20.4 20.1 6 0.5 20.2 6 0.4 20.4 6 0.3 20.4 6 0.2
Temperate South Pacific 20.3 21.0 6 0.7 21.0 6 0.5 20.8 6 0.4 20.5 6 0.2
Southern Ocean 20.1 0.2 6 0.2 0.1 6 0.2 20.1 6 0.2 20.3 6 0.1
Subtotal 21.0 21.8 22.0 22.0 21.8
Total ocean 21.1 0.3 20.5 21.1 21.1
rms error, ppm 0.46 0.47 0.47 0.48

The a priori flux uncertainties are shown for the terrestrial sources; the values assumed for the oceanic
sources are half as much as shown. The uncertainties for CO2 observations are taken to be 0.3 ppm
uniformly. Carbon fluxes are given in Pg C yr21.
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T97 estimates. Land biomes were aggregated into Eurasia,
North America as a whole or as separate boreal and temperate
regions, and the rest of land regions as a whole that include
South and Central Africa, Australia, South America, and trop-
ical Asia. The net terrestrial source/sink assumed the same
spatio-temporal patterns of NPP as predicted by the CASA
model. A large North American carbon sink was estimated by
Fan et al. [1998], which appears to be the most robust of all
estimates in the three- or four-region inversions.

The large North American sink is estimated in all the 17-

region inversions (Tables 1–3), even though the 17-region in-
versions use uniform and constant basis functions for all the
oceanic and terrestrial sources and estimate the oceanic and
terrestrial fluxes simultaneously. As a test of sensitivity to the
basis function and transport model, Table 4 shows the CO2

inversion for four combinations of tracer models (GCTM or
SKYHI) and basis functions (NPP for terrestrial sources, T97
for oceanic sources, or flat for both terrestrial and oceanic
sources). In all four inversions, boreal Eurasia, temperate
North America, and the temperate oceans were found to be
carbon sinks, while temperate Eurasia and boreal North Amer-
ica were found to be carbon sources. Although their magni-
tudes vary by as much as 1 Pg C yr21 among the four combi-
nations. Both the boreal sink in Eurasia and the temperate sink
in North America appear to be significant given the range of
variability (Table 4), although fewer measurements of CO2

were made in the vicinity of boreal Eurasia than North Amer-
ica (Figure 1). In the tropics, no consistent source or sink fluxes
were estimated for the land and oceanic regions except for the
Pacific Ocean.

A combination of factors are responsible for the differences
between the inversions. Vertical mixing is primarily responsi-
ble for the difference between GCTM and SKYHI (see section
4). GCTM predicts a larger south-to-north gradient for fossil
CO2, thus implying a larger total uptake in the tropics and
Northern Hemisphere and a smaller total uptake in the tem-
perate Southern Hemisphere. The differences between inver-
sions using NPP and inversions using flat basis functions are
more complicated. Different CO2 responses result from the
coherent seasonal variations of NPP and transport (horizontal
advection and vertical mixing) and a lack of seasonal variation

Table 3. Carbon Fluxes Estimated for 1988–1992 by the Inverse Model With the Use of
Truncated Singular Value Decomposition

Source Regions

Truncation Parameter

16 15 14 13 12 9

Boreal Eurasia 21.6 21.5 21.5 21.6 21.6 20.9
Temperate Eurasia 1.1 0.7 0.8 1.2 1.1 20.3
Subtotal 20.5 20.7 20.7 20.4 20.5 21.1
Boreal North America 0.2 0.3 0.3 0.2 0.2 0.0
Temperate North America 22.2 22.2 22.2 22.2 22.2 21.1
Subtotal 22.0 21.9 21.9 22.0 22.0 21.2
Africa 21.6 0.2 0.2 0.3 0.3 0.1
South America 21.6 20.2 20.2 0.0 0.0 0.1
Austral-Asia 1.1 1.3 1.1 0.5 0.7 20.2
Subtotal 22.0 1.3 1.1 0.8 1.0 0.1
Total terrestrial 24.5 21.4 21.4 21.6 21.5 22.2
Polar North Atlantic 0.2 0.1 0.1 0.2 0.2 0.1
Temperate North Pacific 20.1 20.2 20.2 20.2 20.2 20.2
Temperate North Atlantic 20.6 20.8 20.9 20.8 20.8 21.3
Subtotal 20.5 20.9 21.0 20.8 20.8 21.4
Tropical Indian 0.2 20.1 20.1 0.0 0.1 0.9
Tropical Pacific 1.8 1.1 1.0 1.0 0.9 0.9
Tropical Atlantic 1.1 0.6 0.6 0.3 0.3 0.5
Subtotal 3.2 1.5 1.6 1.4 1.3 2.3
Temperate South Atlantic 20.8 21.1 21.3 20.6 20.7 20.4
Temperate South Indian 0.0 20.1 20.1 20.3 21.0 20.8
Temperate South Pacific 20.9 21.5 21.4 21.2 20.6 20.7
Southern Ocean 0.2 0.2 0.2 0.0 0.0 20.2
Subtotal 21.5 22.6 22.5 22.2 22.3 22.0
Total ocean 1.2 21.9 21.9 21.7 21.8 21.1
rms error, ppm 0.46 0.47 0.47 0.47 0.48 0.51

Truncation parameter is defined as the number of singular values that are not set to zero in the diagonal
matrix in a singular value decomposition (SVD). Carbon fluxes are given in Pg C yr21.

Figure 3. Singular values of the flux-to-concentration trans-
formation matrix A based on SKYHI simulations for tracers
with specified surface fluxes and normalized by the largest
singular value.
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in the uniform fluxes. The seasonal wind patterns differ be-
tween GCTM and SKYHI. Hence the change of CO2 response
from NPP to uniform fluxes is incoherent between the trans-
port models at many sampling stations. As a consequence, the
changes of inversion results from NPP to flat basis functions
are not the same between GCTM and SKYHI.

Bayesian inversions constrained with a priori estimates have
been reported for atmospheric CH4 and CO2 [Enting et al.,
1995; Hein et al., 1997]. The truncated SVD method was used
by Brown [1995] in her inverse modeling of atmospheric CH4.
The results presented in these studies must be evaluated
against the observational constraints. The regularization tech-
niques do not help to improve inversion estimates for param-
eters that are not constrained by data. A total of 26 sources was
estimated from CO2 observations at 21 sampling locations as
given by Enting et al. [1995]. Such a system is severely under-
constrained. The a posteriori uncertainties are reduced by less
than 30% from the a priori estimates for most of the 26
sources. Ten types of methane sources and sinks were esti-
mated by Hein et al. [1997]. About 50% reduction of uncer-
tainty was obtained for some important methane sources (rice
paddies, wetlands, and biomass burning). There is minimal
reduction of uncertainty for half of the methane source/sink
parameters, reflecting either an over-confident specification of
the a priori uncertainties or a poorly constrained inversion.

7. Summary
We combined atmospheric observations of CO2 from 1988

to 1992 with GFDL SKYHI atmospheric GCM to infer global
sources and sinks of CO2, using an SVD-based inverse mod-

eling method. The inversion estimates are found to be spurious
in the tropical regions and in the Southern Hemisphere where
observations are sparse. Three regularization techniques were
used to stabilize the inversions and are compared. These are
the least squares with a quadratic inequality constraint, the
Bayesian inversion that takes account of prior estimates, and
the truncated SVD that zeros out contributions by uncon-
strained source components.

The CO2 fluxes estimated by inverse modeling for the
Northern Hemisphere regions are least sensitive to measure-
ment errors and to regularization parameters. These regions
appear to be best constrained by the atmospheric CO2 obser-
vations. A comparison of air-sea fluxes estimated by inversion
with ocean model predictions and with observation based es-
timates suggests that use of regularization can help improve
inversion estimates for the tropical and Southern Hemisphere
oceanic regions where observations are sparser than in the
midlatitude Northern Hemisphere. However, inversions with
regularization tend to hold the fluxes to a priori estimates for
poorly constrained regions of Africa and South America. Re-
liable prior knowledge for, and observations in/near, these
regions are obviously desirable.

This study qualitatively confirms the main results of Fan et
al. [1998]. A large terrestrial uptake of CO2 is suggested by the
observations in temperate North America and also in boreal
Eurasia (Tables 1–4). A Northern Hemisphere oceanic sink
was estimated, most of which was attributed to the temperate
North Atlantic Ocean. A tropical oceanic CO2 source and a
Southern Hemisphere oceanic sink were also estimated by the
inversions. The latter was found to be mostly in the temperate

Table 4. A Comparison of Inversion Results for 1988–1992 and for Four Combinations
of Tracer Models and Basis Functions

Source Regions
GCTM

Flat
GCTM

NPP, T97
SKYHI

Flat
SKYHI

NPP, Flat

Boreal Eurasia 22.2 6 0.4 21.7 6 0.4 21.4 6 0.4 21.1 6 0.4
Temperate Eurasia 0.9 6 0.5 1.1 6 0.6 0.8 6 0.4 0.2 6 0.4
Subtotal 21.3 20.6 20.6 20.9
Boreal North America 0.7 6 0.3 0.9 6 0.4 0.2 6 0.2 0.1 6 0.3
Temperate North America 21.5 6 0.3 21.6 6 0.3 22.1 6 0.3 21.2 6 0.2
Subtotal 20.8 20.7 21.9 21.1
Africa 0.8 6 0.8 1.8 6 0.7 0.0 6 0.8 20.2 6 0.8
South America 20.8 6 0.7 0.3 6 0.8 20.4 6 0.7 20.2 6 0.7
Austral-Asia 20.3 6 0.4 21.9 6 0.7 0.8 6 0.5 1.5 6 0.4
Subtotal 20.3 0.2 0.4 1.1
Total terrestrial 22.4 21.1 22.1 20.9
Polar North Atlantic 0.0 6 0.2 20.2 6 0.2 0.1 6 0.2 20.0 6 0.1
Temperate North Pacific 20.3 6 0.2 20.5 6 0.2 20.2 6 0.2 20.4 6 0.2
Temperate North Atlantic 20.7 6 0.2 20.7 6 0.2 20.7 6 0.2 20.8 6 0.2
Subtotal 21.0 21.4 20.8 21.2
Tropical Indian 0.0 6 0.2 20.2 6 0.2 0.1 6 0.3 20.3 6 0.3
Tropical Pacific 1.2 6 0.2 0.6 6 0.2 1.1 6 0.3 1.0 6 0.3
Tropical Atlantic 0.3 6 0.2 20.3 6 0.2 0.4 6 0.3 0.4 6 0.3
Subtotal 1.5 0.1 1.6 1.1
Temperate South Atlantic 20.9 6 0.4 20.6 6 0.3 20.7 6 0.4 20.6 6 0.4
Temperate South Indian 0.0 6 0.3 0.0 6 0.3 20.5 6 0.3 20.4 6 0.3
Temperate South Pacific 20.3 6 0.3 20.1 6 0.2 20.9 6 0.4 21.0 6 0.3
Southern Ocean 0.0 6 0.2 20.1 6 0.2 0.0 6 0.2 20.1 6 0.2
Subtotal 21.2 20.8 22.1 22.1
Total ocean 20.7 22.1 21.3 22.2

These inversions used a priori fluxes as additional constraints: zero for the terrestrial regions and
Takahashi et al. [1997] (T97) estimates for oceanic regions. NPP is for land, Flat is for land, oceanic, or
both. The a priori flux uncertainties used in the least squares regression are assumed to be 1 Pg C yr21 for
the terrestrial fluxes and 0.5 Pg C yr21 for the oceanic fluxes. The uncertainties for CO2 observations are
taken to be 0.3 ppm uniformly. Flux is given in Pg C yr21.
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oceans, with only a small contribution by the Southern Ocean
(south of 548S).

Additional observations of atmospheric CO2, the isotopic
ratios of CO2, and O2, particularly from the tropics and the
Southern Hemisphere, are needed to improve the estimation
of CO2 sources and sinks by inverse modeling. Optimal loca-
tions and sampling strategies for additional observations are
the subject of a separate study [Gloor et al., 1999].
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