
\./
Te/lus (1983), 35A, 296-323

Ocean response to mesoscale atmospheric forcing

By IsmORO ORLANSKI and L. J. POLINSKY, Geophysical Fluid Dynamics Laboratory/NOAA,
Princeton University, Princeton, New Jersey 08540, USA

(Manuscript received March 30, 1982; in final form January 4, 1983)

ABSTRACT
Many processes have been proposed as possible forcing mechanisms for mesoscale oceanic
variability. The present study shows that atmospheric forcing can be an important source of
mesoscale variability in the ocean. We show that the response is linearly proportional to the
product of the time scale of the storm and its intensity. We clarify the point that for storms with
scales considerably smaller than the barotropic Rossby radius of deformation, the oceanic
stratification and the horizontal extent of the storm are the only 'factors determining the
penetration depth of the response, implying that it is not the Rossby radius of deformation but
rather the scale of penetration depth (h = (// N)L) that characterizes the response.

In exploring the effect of differing eddy-viscosity parametization on oceanic response, we find
no significant qualitative differences, although as one might expect we find quantitative
differences in the results.

The role of the mixed layer is considered very important in the transfer of surface stresses
down into the system. The mixed layer does not seem to be important in determining the
characteristic lengths of the problem, however, at least for storms that give a penetration depth
considerably larger than the mixed layer (for a mixed layer on the order of 20 m, the storm
should be larger than a few kilometers).

The non-linear advection terms seem to affect the adjustment process more by reducing the
associated wave energy than by modifying the characteristics of the geostrophic response.

Finally, making the stratification more realistic has no significant impact on the resulting
oceanic response.

I. Introduction mesoscale atmospheric forcing in the production of
long-lasting features in the ocean was primarily due

The routine coverage of the world ocean surface to the time-scale disparity between mesoscale
by satellites has shown a considerable number of atmospheric phenomena and their oceanic counter-
highly variable small-scale surface disturbances, parts. In fact, just how long it takes for the
including eddies, fronts, and long internal gravity atmosphere to establish a geostrophically balanced
waves. Although the variability of the ocean has flow in the ocean is the key question.
come as no surprise to oceanographers, its short Atmospheric phenomena, by their highly turbu-
time evolution was not previously inferred. The lent nature, may decay very quickly because of the
large variance found in the currents and tempera- short time scale of turbulence, whereas an ocean
ture was formerly thought to be a consequence of current after being established can survive for a
processes generated internally by means of long time because of the lack of diffusive processes.
instabilities. More recently, however, the role of We may ask then, what is the importance of
atmospheric forcing has become more apparent, mesoscale disturbances generated in the upper
not only on planetary scales but also on the layers of the ocean? The effective mixing of the
mesoscale. The accepted definition of mesoscale turbulent boundary layer in the ocean extends only
comprises flow from less than 2000 km to almost a few tens of meters. Underneath this mixed layer
the cloud scales or a few kilometers (Orlan ski, the most recently revised turbulent diffusivity
1975). The failure to recognize the importance of values have been shown to be very, very small, of
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the order of less than 10-4 m2 S-I, or a decay time the boundary-value problem, has the advantage of
scale of 1000 days for thermocline-scale depths. introducing a time scale into the problem. Also, it
Therefore, surface mesoscale disturbances with can be treated under more realistically balanced
penetrations deeper than the mixed layer may be conditions than the initial-value problems. A
the most efficient mechanism to produce effective complete review of this subject, where both systems
transfers to the interior of the ocean. It has been are discussed, can be found in Blumen (1972).
suggested by many scientists (Nihoul, 1980) that Since the major results of previous works are well
surface oceanic fronts, a common feature in the known, we will not review them here. As we have
ocean, may provide a means by which vertical stated, however, we will present a discussion of the
transport can be achieved in the upper layers of the permanent features of the oceanic response to one
ocean. It then becomes relevant to ask, what are of the most common atmospheric mesoscale
the processes by which mesoscale features in the phenomena, a cold front.
ocean can be generated? As stated above, the idea The governing equations with generalized at-
of instabilities in ocean currents is appealing, but mospheric forcing in a stratified ocean with a mixed
only perhaps in selected regions, such as over layer are derived in Section 2. The inverse Laplace
strong boundary currents. The process of fronto- Fourier transform of the solution in a constantly
genesis by deformation fields, which is similar to stratified ocean is discussed in Section 3.1, and the
the process which governs atmospheric fronts, has steady contribution from a transient stress is
been suggested to explain those which occur in the discussed in Section 3.2. The particular response
ocean. However, the time scale required is of the for a homogeneous ocean and for the stratified case
order of a few weeks for the ocean, while can be found in Sections 3.3 and 3.4, respectively.
atmospheric forcing takes only a few days to The discussion of the penetration depth as a
generate the same phenomena. It is therefore our function of the horizontal scale can be found in
intention to show in this paper that atmospheric Section 3.5. In Section 4 the complete discussion
forcing in scales of the order of 100 km can be very of a two-dimensional numerical solution for the
effective in explaining mesoscale oceanic linear regime is presented. Note that the transient
variability. We shall also discuss, by using behaviour is discussed in Section 4.1; differences in
numerical and analytical solutions, the horizontal the response to changes in the stratification are
and vertical penetration scales of the oceanic described in Section 4.2; the dependence of the
response as a function of the external forcing and response on the atmospheric forcing is covered
internal parameters, such as stratification, eddy in Section 4.3; and the dependence of the response
viscosity, etc. on different eddy viscosities is presented in

We will devote part of our effort to clarifying Section 4.4. Finally, the fully non-linear solutions
some aspects of the classical geostrophic adjust- for this particular case for constant and realistic
ment problem. In particular, we shall address the stratifications are presented in Section 5.
question of what, if any, role the internal Rossby
radius of deformation plays in selecting the scale of
the response in a stratified ocean, and also the 2. The linear problem
question of the depth of penetration of such a
response. Since the geostrophic adjustment prob- The ocean response to idealized atmospheric
lem was first discussed by Rossby (1937, 1938), a forcing will be discussed with an analytic model
great number of works have been devoted to that which has the following constraints:
problem, basically to try to answer under which
conditions a geostrophic flow will experience an 2.1. Perturbation equations
increase in energy due to an impulsive imbalance. Consider a two-layer ocean in which the upper
The crucial question has been to determine how layer is homogeneous, with constant density Po- and
much of the total energy remains in the geostrophic the lower one is continuously stratified, with p =
mode and how much is dissipated in wave energy. p(z). This structure corresponds roughly to an
A different approach from the initial-value problem ocean with a mixed layer at the top in which
would be to consider the oceanic response to a momentum transfer occurs through wind stresses
surface forcing applied over a finite time. The latter, applied at the surface. The ocean is assumed to be
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infinite in the horizontal (x,y) plane and rotating should be also noted that in the interior the
about a vertical axis. It is supposed that the water is hydrostatic assumption is not made, as it was in the
initially at rest and that the subsequent motions are mixed layer. The reason for doing this is that the
small. Then the response of the ocean to at- hydrostatic approximation is well justified when the
mospheric pressure fluctuation and wind stresses at ratio of the vertical to the horizontal scale is very
the surface will be described by: small (hlL ~ 1). Our study will cover horizontal
a P 1:" scales of the order of 10 km. The depth of the
~ -fvm = -~ + -, (2.1) mixed layer is of the order of 50 m, and of the
at Po PoD interior layer, 4000 m. These numbers justify our

a P y approach concerning hydrostatic balance in the
Vm my r .

d I-+fu =--+-, (2.2) mlxe ayer.at m Po PoD In order to couple the systems of equations, we

Pm = gpo'1 + P., (2.3) make use of these boundary conditions:

and Ws = ~ at z = '1; (2.10)
dtWs -WB = -DVH.Vm, (2.4)

..,W=WB and P=P atz=-D; (2.11)m the mixed layer (-D < z < 0), where um and vm m

are the horizontal velocities in x and y; '1 is the and
height of the perturbed surface (z = 0); P. and -0 --H 2 12
(r, rY) are the atmospheric pressure fluctuation and W -at z -.(. )

the component of the wind stresses in x and y;fis Tak ' th h . t I d. f (2 1) d..mg e onzon a Ivergence 0 .an
the Conolis parameter (here assumed constant); D (2 2) It' I . b D d k. f (2 4).

h d h f h . d I d H . d fi d ., mu IP ymg y ,an ma mg use 0 .,
IS t e ept 0 t e mIKe ayer an IS e ne as fi dthe total depth of the ocean; g is the acceleration of we n

gravity; and Pm is the perturbed pressure at the DV2 P.
mixed layer. The system is assumed to be in -(Ws-WB)t=JDr.=-DgV2rr-
hydrostatic balance. Ws and WB are the surface Po

vertical velocity and the vertical velocity of the V. r
bottom of the mixed layer. (2.1) through (2.4) are + -, (2.13)
derived assuming that the stresses vanish at the Po

bottom of the mixed layer. For the interior layer, where' is the vertical component of the vorticity in

au the mixed layer.
at -Iv = -P xl Po. (2.5) The curl of (2.1) and (2.2), using (2.4), is:

Vxr~ .Ii -- P I (26) D't-f(ws-WB)=-' (2.14)+ u- Y Po' . P .
at 0

a -P , Combining the time derivative of (2.13) and (2.14)
~ = -= -~, (2.7) multiplied by f and using (2.10) we derive an .
at Po Po equation involving the vertical velocities and the

ap' -forcing:-+ Wpz = 0, (2.8) ( ) f 2( ) 2at Ws -WB II + Ws -WB -DgV Ws

and = [DV2P.,-jV x r-(V.r)Jlpo. (2.15)

VH.V=-w. (2.9) z A sImIlar derIvation can be done for the Interior

The same definition holds for the variables in the layer. The curl of (2.5) and (2.6) gives the vertical
interior. p'(x,y,z,t) is the density variation from the component of the vorticity. Combining this with
mean density jJ(z), and similarly for P'(x,y,z,t) the divergence of (2.5) and (2.6), and differentiating
where p(z) is in hydrostatic balance with jJ(z). It in time, we obtain an equation relating the vertical
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velocity with the horizontal Laplacian of the time 2.2. Constant stratification
derivative of pressure: A Fourier analysis in the horizontal plane allows
(Wtt + pw)z = V2 PI/Po' (2.16) us to rewrite eqs. (2.15), (2.17), and (2.18):

(Ws -WB)tt + P(Ws -WB) + (k2 + [2)Dgws
Then, by using (2.7), (2.8), and (2.9), we derive an
equation involving only the vertical velocity w: = -[D(k2 + [2)1'.. -IV x ,- V7 ,J/ Po, (2.20)

( f 2 ) V2( N2 ) - 0 (2 17) (Wtt + pw)zz = (k2 + [2)[N2W + Wtt], (2.21)
Wtt+ wzz+ Wtt+ W -, .

and
where N2 = -gjJz/po is the square of the Brunt- l'

]ViiisaIii frequency. (w + pw) = _(k2 + [2) gw + ~ at z = -D,
Eq. (2.15) describes the dynamics of the mixed tt z [ 5 Po

layer, and (2.17), the dynamics of the interior. The ( )
systems are coupled through boundary conditions 2.22
(2.11), which, together with (2.16), give: where the Fourier transform is defined

A 1 fi oo (Wtt+PW)z=gV2WS+V2P.. atz=-D. (2.18) f=- fe/(kx+/YJdxdy. (2.23)

-2n -00

(2.15)through(2.18)formaclosedsystemthatcan W d fi h L I ti f b - ..e now e ne t e ap ace trans orm 0 g y g

be solved, given the expressions of P .(x,y,t) and

,(x,y, t). Since previous papers deal only with wind 1 00 stresses (Pollard, 1968, 1970) in the generation of g = ge-st dt, (2.24)

low-frequency internal gravity waves, we will 0

discuss, with a dimensional analysis, the role of assuming that wind stresses and atmospheric
both atmospheric pressure and wind stresses. The pressure are, = P. '7' 0 at t = 0 and the perturbed
order of each forcing term in (2.15) can be velocities and acceleration are zero at t = O. The
expressed by Laplace transforms of (2.20), (2.21), and_(2.22)
D fl,1 1,1 are: A

-P -- (219 ) 2(.4.d 2.d - ( 2 2) .4

TL2.' L' LT' .s ws-wB)+f(ws-WB)+ k +1 Dgws
.4 --=-- -""-

.P IV x, sV.,
respectively, where IP.I and 1,1 are the charac- =~sD(k2 + [2)2 , (2.25)
teristic amplitudes of the pressure fluctuations (IP .1 Po Po Po
= 1 mb = 102 N m-2) and wi?d stresses. (1,1 = 0.1 (S2 + P)w = (k2 + [2)(N2 + S2)W, (2.26)
N m-2). D, the depth of the mixed layer IS about 50 zz

m; L is a characteristic horizontal length; and T is and
a characteristic time in which the forcing is applied. (2 P).4 -_(k2 [2)
The difference between the second and third terms s + W z -+

is due to the time scales. A comparison betweenf [ .d P. )and T-I for a time scale of 24 h shows that the x gws + s -at z = -D, (2.27)
second term is ten times larger than the third term, Po

whereas a comparison for a 6-h time scale shows and the boundary condition at z = -H is
that these ~erms only differ by a factor 0: two. The w( -H) = O. (2.28)
atmospherIc pressure effect, however, Involves a
time scale as well as a horizontal length scale. This The solution of (2.26) which satisfies the bottom
term becomes significant only for length scales on boundary condition (2.28) is
the order of 20 km and time scales less than 12 h. .4
In particular, for L = 20 km and T = 6 h, the first W = Wo sinh y(z + H), (2.29)

term is approximately equal to the second term. where
The next step will be to derive the governing (N 2 2)1/2. ti h .+ s

equations or a system avmg constant y = (k2 + [2)m ..fi . (S2 +f 2)m strati cation.
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(2.27) gives the amplitude of Wo as a function of Ws expression for the surface vertical velocity given in

and P a; this relation is: (2.33) can be replaced by the surface height lIs:

[ AS A ] ~s=-(F1+F2+F3)/sQ. (2.36)
(k2 + [2) gws + -Pa

Po 2 30 Since we assume that Ws = 811s/ 8t, the steady-state
Wo = -(S2 + P)y cosh y(H -D)' (. ) response to these complicated forcings can be

evaluated by simply using the property of the
and using the boundary condition (2.11) at z = -D Laplace transform which is that a function at a

WB = Wo sinh y(H -D). (2.31) very long time is equal to the contribution of the .

residue at S = O. All of the contributions for the

Using (2.30) and (2.31) and (2.25), we derive a zeroes of Q are the response of internal inertia-

single equation for the surface vertical velocity Ws: gravity waves. Inspecting the three atmospheric

[ ( k2 [2
) forcing terms from (2.34), it can be concluded that (S2 + P) + -.:+:.- g tanh y(H -D) only the curl of the stress will produce a steady-

y state response in the ocean, as long as none of the

] three forcing terms has a pole at s = O. Then, the

+ (k2 + [2)gD Ws = _(k2 + [2)!-.- Fourier component of the inverse Laplace trans-

Po form for the surface height is given by

( tanh y(H -D) ) A fV~ ~ f ~
x+D P -- 1 ('=0) a Po

y Po ~ ---'Is - [ ] ' -A- 2n tanh yo(H -D)

sV. r p + (k2 + [2)g + D

--, (2.32) Yo

Po
A (2.37)

and Ws will be:

F F where Yo = N(k2 + [2)1/2/f. Similarly, the interface
Ws = -F 1 + 2 + 3, (2.33) height at the bottom of the mixed layer can be

Q calculated by using (2.30), (2.31) and (2.37),

where F I' F 2 and F 3 are the forcing terms defined as (k2 + [2)1/2

follows: I1B = -~- g tanh yo(H -D)l1s' (2.38)

[ ] .4 tanh H-D P

F1 = (k2 + [2)s y( ) + D ~, As before, we assume that WB = 811B/8t. The

y Po Fourier transform used to find lIs and lIB will be

(2.34) given by the sum of all the residues, i.e., from the

~ forcing term, the curl of 1"(s = 0), and from the

F2 =~, internal impedance

Po

( [ ])tanh y(H -D)
and Q =p + (k2 + [2)g Y + D .

F3=~' The point we would like to stress here is the role

Po that the stratification plays in the response; it only

Q is defined as: affects the zeroes of Q which will be the poles that

contribute to the Fourier transform of (2.37) and

-(2 P) (k2 [2) [ tanh y(H -D) D ] (2.38). We can easily see that for small wavenum-
Q -s + + + g y +. bers (Yo(H -D) < I), Q simply reduces top + (k2

(2 35) + [2)gH; which is independent of the stratification

.and gives the well-known barotropic mode as a

Our main interest is to discuss the permanent response. The role of the stratification can be seen

features of the oceanic response; therefore, the more clearly if we assume that D is negligible
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compared with H and then the solutions for Q = 0 Actually, the first equation is nothing more than the
will be close to YoH ~ inn. Using the definition of conservation of potential vorticity in the mixed
Yo, [(k2 + [2)1/2 = :t in(7r{/NH)] we find that NH/fn layer; the second equation is for stratified flow and
is the nth internal Rossby radius of deformation. is zero because no forcing is present. The two
Certainly the scale depends on the stratification, systems are connected by the boundary conditions
but since the numerator of (2.38) (the response at expressed in the last two equations.
the bottom of the mixed layer) also has a sinh YoH
which will go to zero for the same values of YoH,
we find that all of the internal modes are very 3. The response
inefficient in making a significant contribution to
the surface forcing. This is in agreement with In this section we shall first evaluate the stresses
previous results (Bolin, 1953; Pollard, 1972), which that affect the steady response and look at the
found that higher internal modes playa secondary horizontal and vertical structures.
role in the adjustment problem; nevertheless, the
previous results did not clarify the exact role of the 3.1. Steady contributionfrom transient stress
stratification. 17B is equal to the forcing for any Without losing generality we might choose the
horizontal scale, even for scales smaller than the wind stress to be a separate function of space and
barotropic Rossby radius of deformation. It does time [,(x,y,t) = 'oT(t)G(x,y)], where '0 is a
not have a preferential scale related to any of the dimensional constant. Now the direct evaluation of
baroclinic Rossby radius of deformation scales. in the Laplace transform of T at s -+ 0 can be done.
fact, (2.38) shows that the response cannot be Let us say then that the storm in question, assumed
expressed by only the contribution of all the for the moment to be a front, is generated and
internal modes, and this is perhaps the most decays in the same place in a matter of a few days.
important conclusion of this result. Physically as For simplicity, T can be written as
well as mathematically it becomes evident that all T(t) = [tanh at -tanh P(t -Ilt)H(t -Ilt)], (3.1)
the internal modes produce zero contribution at the
surface, whereas the response to atmospheric where a and p are the generation and decay rates,
forcing is certainly not zero. To proceed with the respectively, Llt is the duration time of the storm,
discussion of what the final steady state response is, and H is the Heaviside function. Fig. I shows the
and what the differences are between the stratified shape of T(t) vs time. By choosing the parameters
and non-stratified cases, we must keep in mind that properly, this function can be like a step function
the only forcing that will contribute to the between 0 and t, or can represent a constant wind
steady-state response is the curl of ,evaluated at s stress if t is infinite. This function allows us to
= 0, regardless of the time evolution of ,. There- determine the response for specific time intervals
fore, the basic equations previously derived in during the storm. Also, note that our assumption
(2.15) and (2.17), and the boundary condition for the separation of time and space does not allow
(2.18) can be simplified if the independent variable for a more realistic case, namely, a storm moving
is the isopycnic height 171 where 17s and 17B are for a period of time and then decaying over the
defined to be the values of 171 at z = 0 and X = -D,
respectively; this being in agreement with the 10 T (t)
solution of (2.37), the basic equations (2.15), (2.17)
and (2.18) become:

1 f
(17B -17s)P + gDV2 17s = --

.Po 2n
~ Of 2 N2V2 X V x '(8=0) for -D < z ~, 171z, + 171

= 0 for -H~z ~ -D, (2.39)

and 2.(
171 = 17B } t (dl

atz:,,-D. 17 = ~ V217 FIg. 1. The non-dlmenslonal WInd stress functIon T as a
Iz J2 s function of time.
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ocean, which is more characteristic of frontal homogeneous solution obtained by setting N = 0

behavior. The latter case, however, will be dis- and by letting D go to H, the total depth of the

cussed when numerical simulations are presented. ocean. If '1' is the non-dimensional height, '1IH, and

The present forcing, although simplified, captures the horizontal variables X and Yare non-

the important elements of the most realistic case. dimensionalized by L, the length of the storm, then

Let us then examine the Laplace transform of T(t), the system described by (2.39) reduces to the well-
which by using known properties of the transform known equation, .

can be written as: V2'1' -'1'(L2IRB2) = Go VXG(X, Y), (3.4)

T(t)=~
[ ~If/ ( ~~+~ ) -~If/ ( ~~ ) _!! ] where RB is the barotropic Rossby radius of

a 2 4 a 2 2 4 a S deformation, RB = (gHY/2/j, and Go ("oKoLI

(2nPoHjRB2) is the non-dimensional amplitude of

aeMs[ 1 ( 1 S 1 ) 1 ( 1 S ) P ] the stresses. Out next step then is to evaluate the

-p :21f/ 4p+:2 -:21f/ 4P --;' (3.2) right-hand side of (3.4) from a given transient

forcing. This problem has been discussed to a great

where If/(z) is the logarithmic derivative of the extent in the period of time from Rossby (1937) to

gamma function and has the following properties: the present, but perhaps the emphasis was on the

-1 -+ -1 initial-value problem rather than the boundary-
1f/(1 + z) -If/(z) + l' If/(z 0) -1f/(1) -l' .value problem stated here. Nevertheless, even in the

1f/(1) = -y, If/(f) = -y- 21n 2, former case, the work by Veronis and Stommel

(1956), Pollard (1970), Geisler (1970), and Blumen
Then its limit for s = 0 can be easily calculated: (1972) has more or less clarified different aspects of

- ( 1 1 ) the geostrophic adjustment due to external forcing.

Ko=T(t)ls=o=- ~-P 1n2+L\t. Yet, we believe that in order to clarify the

(3 3) discussion in the following sections, we should first

.review some of the characteristics of the response

The simple forcing amplitude from this rather to a localized forcing in this pa!!:icular case. Let us

complicated transient stress can be physically then assume for simplicity that G is given by

explained in t~e following manner. The first term G(X) = (0, 1 I cosh (X». (3.5)

reflects the dIfference between the growth and

decay time of the storm. If the storm evolves in a Since only the y-component of G will be relevant

symmetric manner, the contribution to the response for the calculation of the stresses in (3.4), let us call

will be zero, because there is an exact balance this G(X). The curl of this stress G, which is the

between the growth and decay terms. The second forcing of (3.4), is equal to

term is directly ~roportional to the duration of t~e G (X) = -sinh (X)/cosh2(X). (3.6)
storm, L\t. It IS well-known that the oceanIc x

response grows linearly in time for a steady stress, We can directly integrate (3.4) with this forcing,

and since ~t is the time in which the stress is and the solution can be seen in Fig. 2, where the

constant, the response will take that long to grow. non-dimensionalized forcing function G X' the sur-

It is interesting to note that the permanent oceanic face height '1' = '1IH, and the geostrophic velocity,

response is given only by the amplitude, T(t)s=o' V N = (VljRB) are shown for four different ratios

The rest of the transience of the wind stresses goes between the storm scale, L, and the barotropic

into the wave energy, and none of this energy is Rossby radius of deformation, RB. We can see that

converted to the geostrophic mode, at least by '1' and Gx have similar scales when LIRB > 1. For

linear processes. ratios less than 1, the surface height decays much

Next let us look at the actual spatial shape of the slower than the forcing, and the decay rate outside

response to the given forcings. the region of forcing is RB. The scale of the largest

slope or the scale of the jet is equal to that of the

3.2. Responsefor the homogeneous ocean, N2= 0 localized forcing regardless of the ratio. In fact, it

To properly understand the effect of this can be shown that V is approximately equal to "xx-

stratification, let us first discuss the response in a This result is not in contradiction with previous
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/, L/RS ---G.-IO energy K ~ P resulting in a big adjustment from the
100 --'1/H-IO o'° al do. d 10 1 llf07 -""'Y.-Io-' Imtl con Itlons an a resu tmg ow eve 0

0 geostrophic energy. Conversely, the initial input of
0 momentum or equivalent kinetic energy will give

, the opposite result. In our example, however, the

I L/RS amount of energy going to the geostrophic system
0.7 -has already been shown to be proportional to ~t2,

regardless of the ratio L/RB. The partition of
potential and kinetic energy in this geostrophic flow

C I J

is still proportional to (L/RB). We should point out
looL f\ L/RB that the response is highly sensitive to the time

~7S \ -history of the forcing, and that the response to

~ \, ,-.. ' ' I ' l l J ~:~;~~~~~~ ~~b~~sr::u~~at:: :~i:h;J::t :::nb:

L ., , ~ , I I , ,i\ more so~histicate~ system than the present simple IJII I \ LIRB barotropic flow will be treated. OJI! \ -

05) \, 3.3. The stratified c~se N2 * 0

025
0 "To discuss the effect of stratification let us return

~ 4 I 6 7 1110I 2 X/RB to the system described by (2.39), and let us

0 o. .0 non-dimensionalize it as follows:
Figo 2. The non-dlmenslonahzed forcmg function Gx,
surface height II/H, and geostrophic velocity V N as a z = Hz', 11 = Hl1', D = oH, x = RNx',
function of a non-dimensional length, X/RB. These
curves are shown for decreasing values of the non- where
dimensional aspect ratio L/RBo

RN=NoH/f,

works. In this simplified problem the ratio L/RB and RN is the baroclinic Rossby radius of
does not have any selective properties. However, deformation. Then, dropping the primes of the
one should note that a slight maximum occurs in variables, the system (2.39) becomes:
the v velocity, Fig. 2, for the ratio L/RB = 1. L/RB RB 2
only determines the ratio of potential to kinetic ( )+ 0(- ) ..-G G0 0 0 ."D .,s .,s~- OX'energy m geostrophlc flow, as IS well known. SInce RN
the geostrophic velocity is V = (g/f)(~l1/L), the 11 + 11 = 0 for -1 ~ z ~ -0 (3.7)
kinetic energy is given by K = ! pHg2 (~112/r L2); izz!xx ~ ~ ,

and in that the potential energy is equal to P =! and
pg~112, the ratio, K/P is equal to (RB/LY. This fact )gives a simple explanation of geostrophic adjust- 111 = l1D

ment. Given an initial perturbation of the surface RB 2 z = -0.
height, which is equivalent to an input of potential l1iz = (m) l1sxx

energy, storms with scales larger than RB will
quickly adjust to geostrophic flow, because as we Note that l1s and l1D are now the non-dimensional
have seen in that limit the ratio between kinetic and heights at the surface and interface, respectively; 111
potential energy is very small (P ~ K). Only a is the height of the isopycnics and is a function of
small adjustment in the initial potential energy is height. The forcing was assumed to be only a
required to produce the small amount of geostro- function of x. Gx, as before, is the non-dimensional
phic kinetic energy for its final balance where the form of the curl of T, with Go, the non-dimensional
final geostrophic potential energy is nearly equal to amplitude, defined as (ToKo)/(2npoRNHf).
the initial input energy. On the other hand, since the The role of stratification in the oceanic response
ratio K/P ~ 1 for storms with scales smaller than can be analyzed by using the simple example of the
RB, the final geostrophic potential energy would be solution of the system (3.7) and some assumptions
much smaller than the initial input of potential that we will relax later. First, since RB ~ RN (2000

Tellus 35A (1983), 4



304 I. ORLANSKI AND L. J. POLINSKY

km for RB in the real ocean whereas RN is no more =~: ::,
than 100 km), and since our main interest is to
discuss storms with length scales on the order of
RN or smaller (100 km), we can see that 17s
becomes much smaller than 178 (using the boundary
condition for (3.7». Under this assumption the first
equation of (3.7) reduces to

178+ [)171,(-0) = GoGx. (3.8)

Furthermore, for the sake of simplicity, the
non-dimensional function 17 and its derivative are of
the same order (17z ~ 178) and since [) ~ 1, the
system (3.7) and condition (3.8) could further be
approximated to

171" + 171" = 0 for -1 ~ z .$ 0, (3.9) T

with the boundary condition, ~
~17I(-[)~0)=178=GOGX" (3.10) .

Let us assume that the forcing, Gx(x), is given by:

Gx(x) = e-(X'/L') sin (2ax/L2), (3.11)

where a and L are two parameters which control
the horizontal scales of wind stress. The transform
is then

, ,(; x(k) = Pe-1/4(L/RN) k sinh (ak/ RN) (3.12)

where
,P = e-(aIL) /(Ln/RN). (3.13)

It follows then from (3.11) that the scale of the
forcing function can be changed only by changing
L. That being so and without losing generality a X/RN
can be set equal to RN. Substituting (3.12) in the F. 3 Th d' .

I (Ii 0 nd" ,g.. e non- ImenSlona response, '1" or z = , a
expressIon for 17I(k) that IS assumed to be of the z = -0.05) in relation to four different aspect ratios of

form 170 sinh k(l + z) to satisfy (3.9): the storm scale to the baroclinic Rossby radius of

"I(k) = GoPe-I/4(L/RN)'k"sinh k(l + z), (3.14) deformation, L/RN.

which for z = 0 is the same as the forcing (; x(k). different depths is shown (the height at the bottom
Seeing the analogy between this and (3.12), the of the mixed layer (z = 0) and z = -0.05 which, for
inverse transform becomes trivial, and 17I(X,Z) is the dimensional system, will correspond to a depth
given by: of 200 m). Again we see that the horizontal scale is

-(RN/L)[(I+z)-I-x1 in the order of the forcing for all ratios, and the
17I(X,z) -Goe depth of the penetration is a function of the aspect

x sin [2[RN/LY (1 + z)xl, (3.15) ratio, L/RN, which confirms what we had stated in
the previous discussion.

which satIsfies the bottom boundary condition
17I(x,-l) = O. The non-dimensional response for 3.4. Finitemixedlayer
different values of the aspect ratio of the storm We recognize the fact that in order to obtain
length to the Rossby radius of deformation is (3.15), we had assumed an infinitesimally small
shown in Fig. 3, where the amplitude of 17, at two mixed layer and a storm scale smaller than the
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barotropic Rossby radius of deformation (RB ~ mation. This conclusion does not imply that the

1000 km). One should also realize, however, that velocity in geostrophic balance with the free-

the solution of (3.15) is a complete solution of the surface height is smaller than the geostrophic

interior system from 0 ?: z ?: I and satisfies all the velocity in balance with the height of the interface.

boundary conditions. What is left to determine is Recall that the steady-state solution relates the

the forcing function G, and a surface height that for vertical shear, V z' to the internal height, '11' as:

a giv.en ~nite mixed !ayer ,;ill satisfy the first V = -(0)N2/f (3.21)
equation In (3.7). For illustrative purposes we can z '14

do the reverse problem of satisfying the relation of Then differentiating (3.15) at the maximum shear

'11 and '1s at z = 0 given in the system of (3.7); then, (x = 0), and non-dimensionalizing the velocity by

substituting '11(X,O) and '1s in the surface equation V/RNJ, the non-dimensional maximum shear is

we can calculate the wind stress forcing G x. Since given by

the full solution of the numerical model will be V (O,z) = -Go 2(RN/L)2 (1 + z) x e(RNIL)'[(I+Zr-I),
presented in the sections to follow, we shall not z (3.22)

elaborate on that topic here. Notice that, however,
from which we can obtain V(O,z) by directly

'14 = (RB/RN)2'1sxx at z = -t>. (3.16) integrating (3.22): ,

With the boundary condition of (3.7) and using the V(O,z) = -Goe(RNIL)'[(I+Z)'-I] + Vo. (3.23)

expression of '11 from (3.15), one can actually. ,. ,.
calculate to .but since the ex p ression is not sim p le This geostrophlc velocity evaluated at ItS maximum

"s' , al .
to integrate, it will be convenienf\ to first estimate v ue IS

the terms that appear in (3.7). Letus calculate '1sx' V(O,O) = -Go + Vo. (3.24)

which is rather simple to integrate and is equal to:. ..'
Recalling that the non-dimensional geostrophlc

'1sx = (RN/RB)2 f '14 dx = -(RN/RB)2GO relation for V s is:

x cos (2(RN/L)2x)e-(RNILI'X'. (3.17) V s(O) = (RB/RN)2'1sx' (3.25)

Notice that to simplify (3.17), and without any and substituting this expression in (3.18), we see
major consequence, '14 was evaluated at z = 0 that ~

( 0 ) = V ( 0 0 ) if the constant of in-
~ . d f s max'

rather ~an at -u. Since the depen ence 0 '1!, tegration is set to zero. As to the question of

(3.1,5) I~ th~ough the term 1 + z, the ~pproXl- recalculating the stresses that produce '11 in (3.15),

mati~n Implies to cha~ge, I -t> for umty. The we can approximate (3.7) by assuming '1s ~ '11' and
maximum value for '1sx IS given at x = 0 by then we can write

'1sxmax = -Go(RN/RB)2. (3.18) '11(0) + t>(RB/RN)2'1sxx(X) = Gogx(x). (3.26)

We can compare this with the maximum slope of '11 If we substitute the value (RN/RB)2 '1 for'1 in

from (3.15) which is: (3.26), the full forcing term compatible wi~h a

'1Ixmax = Go 2(RN/L)2. (3.19) mixed layer and '11 is:

Now, if the ratio of these two quantities is assumed gx = '11(X,O) + t>'14(X,0), (3.27)

to be proportional to the ratio of their amplitudes, where gx is the forcing term of the complete

we have solution; we should keep in mind that Gx was the

I~'1s I forcing term that approximately gave '11" As a
~ ~ O«L/RB)2). (3.20) matter of fact, the only difference between gx and

'11 Gx is the effect of the mixed layer which appears in

This ratio then indicates that the interface slope at the second term on the right-hand side of (3.27).

the bottom of the mixed layer is always much This last term is of the order of t>(RN/L)2 and will

larger than the free-surface height slope when the be negligible compared with the first term insofar as

storm scale, L, is smaller than the barotropic t>(RN/L)2 ~ 1. Calculating RN using an average

Rossby radius of deformation. This result is in full stratification in the ocean, 4 x 10-3 S-I, which is

agreement with the well known rigid-lid approxi- perhaps a little large, gives a value of 160 km. Since
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the mixed layer is no more than 50 m in depth, 15 , ~ Sond.
then has a value of about 10-2. Any storm scale, L, ..'.;"'I-(l-(~JJ ~
larger than 16 km will make this term negligible.
We shall return to this point, however, when we discuss the penetration depth... s;.;;I,,'c i

-,
3.5. Depth of penetration ., '-~}

It seems apparent from the previous discussion A
that the stratification has no role in selecting the' " '.6 'i,.
horizontal response scale when surface forcing is F ' 4 Th d ' ' al b t ' (329) d b..Ig.. e non- Imenslon aro roplc .an aro-
considered. The only scale selection should result clinic (3.30) penetration scales as a function of the aspect
through the internal Rossby radius of deformation ratio L/RN.
which has been shown to have nil effect in the
response of the interface height (2.38). Since the response), whereas for very small aspect ratios, the
governing equation for the response in the interior, penetration is !(LIRN)2 H. For example, given the
'7zz + '7xx = 0, implies that the vertical non- values previously used for a typical ocean, for RN
dimensional scale, h, should be equal to I, the = 160 km, and for storms of the order of 80 km,
horizontal non-dimensional scale, or hlH = Lfl .the depth of penetration is on the order of 500 m.
NH. If the horizontal scale is determined by the Notice that the baroclinic scale height is linearly
storm, its aspect ratio (hi/) will be given by fiN. dependentonLIRNfor values ofLIRNcloseto 1.
We shall use the simple example previously In conclusion, let us say that most of the realistic
discussed to determine the penetration depth for a examples give penetration depths of 100 m or
given scale, L. This is an important question that deeper, with mixing depths on the order of several
has not been properly addressed in previous papers tens of meters. The role of a variable stratification
on geostrophic adjustment. This was mainly and more realistic storm forcings are considerably
because the examples given considered either more difficult to treat in the present framework;
homogeneous oceans or large-scale storms. In this therefore, numerical solutions for different and
case, since our main interest is to address more realistic conditions will be presented in the
mesoscale forcing, the penetration depth, which is next section.
smaller than the depth of the ocean, becomes highly
important. The way in which we define the
penetration depth is arbitrary. Let us define it as the 4. The numerical solution
depth at which the surface velocity decays by a
factor e. From (3.23), Previous studies (Orlanski and Ross, 1977; Ross
V(O h ) = -G e(RNIL)'[(I-her-IJ and Orlanski, 1977) on the evolution of at-, e 0 mospheric fronts using two-dimensional numerical

= e-1 V(O,O). (3.28) models were successful in describing the role of the

Remembering that V(O,O) = -Go, then he becomes different cross-stream circulations of the front in
2 1/2 maintaining sharp surface temperature gradients

he = 1 -(1 -(LIRN» .(3.29) for considerably long periods of time. In addition,

Notice that this penetration scale involves a the model solution was also able to show the role of
barotropic component that is contained in (3.23). It frontal lifting in producing deep convection such as
would be convenient, however, to have a purely the frontal squall line. This same basic model can
baroclinic scale, and this can be defined as a ratio be converted to an ocean model forced by surface
of a higher derivative of z. If he (baroclinic) is conditions produced by a numerically simulateddefined as VzIVzz b atmospheric front. In this case, a front will exert

h -2 forcing through wind stresses and atmospheric
eb -1/(1 + 2(RNIL) ). (3.30) pressure as well as through temperature contrast.

These two scales of penetration are shown in Fig. 4. The ocean model, as in the atmospheric case, uses
For aspect ratios larger than or equal to one, he is a turbulent eddy viscosity parameterization which
equal to the total depth of the ocean (barotropic is a function of the local Richardson number, and it

Tellus 35A (1983),4



OCEAN RESPONSE TO MESOSCALE ATMOSPHERIC FORCING 307
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Fig. 5. A typical time sequence of the model showing x-z cross sections of the oceanic response as an atmospheric
front moves through the domain at 1 m S-I. The front is in the domain (200 km) for 50 h with the duration of the
decay lasting 10 h. Contours of potential temperature (heavy solid lines) and v velocity (heavy dashed lines) are
shown for the atmospheric front. Contours of the v current and constant-density surfaces are denoted by the light
solid and light dashed lines respectively. The air-sea boundary is represented by the undulating surface.

can produce its own boundary layer without turbulent eddy viscosity profiles to determine the

prescribing the depth of the mixed layer as was effect of the turbulence profile on the oceanic
previously done. For completeness, however, we response. The actual details of the numerical setup
will discuss the solutions for different prescribed and characteristics of the model are described in
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the Appendix. We shall therefore focus our 4.1. Transient behaviour
attention on discussing the results of these In Fig. 6 the time histories of v and u (upper and
numerical solutions in order to extend the range of lower respectively) are shown for various depths
our previous conclusions. With that in mind, our (surface to 1000 m) for a case similar to that shown
discussion will encompass the behaviour of the in Fig. 5. The profile is taken at 150 km from the
transient response, the penetration depth depen- left boundary of the domain, keeping in mind that
dence on different stratifications, the characteristics the total length of the domain is 250 km in this
of the responses to four different forcing scales, and case. Perhaps the most prominent feature here is
the dependence of the response on the eddy that the surface currents respond abruptly to the
viscosity profile. The results presented in this frontal movement. In examining this response,
section were obtained from a linearized version of there are three phases that should be recognized.
the full model (Appendix); experiments which Initially, the front moves with a constant speed of 1
include the non-linear effects in a stratified ocean m S-1 for the first 24 h, after which frontolysis
will be presented in Section 5. Different numerical occurs for the next 26 h. Finally, after 50 h the
experiments along with some of their most signifi- forcing is non-existent. As one would expect, the
cant features are shown in Table A 1 of the ocean current seems to respond by building an
Appendix. Ekman flow with large inertial waves having a

Fig. 5 is a graphic illustration of the model in a response time scale of 1 pendulum day. Notice the
time sequence (12-h intervals) showing the at- linear growth of the responses in the lower levels in
mospheric front and the oceanic response. the v component and the lack of it in the u
Specifically, this solution was done with the full component. After 60 h, a steady response of
non-linear equations, a non-linear turbulence para- 0.12-0.15 m S-1 can be seen superimposed on a
meterization (a function of the local Richardson field of inertial-gravity waves in the flow perpen-
number), and a realistic ocean stratification. The dicular to the plane and only inertial-gravity waves
atmospheric solution was obtained from Orlanski in the u component. At that time the permanent
and Ross (1977). The important point here is to response has attained a geostrophic balance.
illustrate what to expect and to note that we only It should be remembered that these results agree
calculate the oceanic flow in this study. Note that very well with the conclusions drawn in (3.3), that
after 36 h the maximum surface winds are in the the amplitude of the geostrophic response is
middle of the domain, and the ocean has reacted basically proportional to the time in which the
with a very intense surface current confined to the forcing is applied (M). It is easy to infer from the
upper layers (60 m) and a much weaker current results of Fig. 6 that if the forcing had been
located at about 100 m. In order to appreciate the dissipated in half the time, the geostrophic response
scales involved here, we have included vertical grid would be half as intense.
numbers on the right side of each cross-section and In summary then, it seems plausible to think that
a height scale between the cross-sections. The fronts which become stationary over the ocean
atmospheric front decays with a time scale of half a prior to decaying could transfer enough momentum
day, and we can see that it has weakened to generate geostrophic motion in the ocean. That
considerably after 48 h and has totally dissipated is to say that when a front becomes stationary or
after 60 h. On the other hand, in the ocean we see falls below a critical speed, the wind stresses acting
that the Ekman flow with its intensely packed on an ocean surface will generate an Ekman layer
contours decays slowly to a state in which only the along with internal gravity waves and surface
baroclinic response appears and remains in a waves. The Ekman layer generated has charac-
steady state balance with the horizontal density teristic (v,u) velocities of the order
gradients for the remainder of the integration. At t"y(x,t)
this point it would be appropriate to discuss the (uE, VE) ~ (;j)l/2'

transient behaviour of the numerical solution, since h . th .. t d . t d t.
al...were v IS e VISCOSI y an an assocla ever IC

It. IS generally applicable to all the. cases w~ ~hall velocit of
discuss; then, we shall present specific descriptions (Ya j (1)of the spatial characteristics of the atmospheric WE = -2 -.

forcing and ocean response. ax f
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EXP. IX -5.,1.,.
V (150km) --100m

300m
--bOOm

IOOOm

E

-r.,
E

0 "=-~,-::~,~~~,::::::~=:-co;::;~~-=;:: :'o.-.~:::~~:_~= -~'::::'

0
TIME (hr.)

Fig. 6. Time histories of the v and u velocities taken at depths ranging from the surface to 1000 m.

This vertical velocity produces an Ekman pumping conditions, it was necessary to simplify the model
that generates considerable vertical motion below in two ways. One was to eliminate, as mentioned
the Ekman layer. The circulation, if intense, can before, the non-linear terms in all of the equations
generate frontogenesis in the ocean. It is therefore of motion (Appendix), and the other was to use a
easy to see that for an atmospheric front to be an constant stratification. The solution here differs
effective mechanism for generating an oceanic from that of Section 3 in that forcing due to the
front, the transitory velocity of the atmospheric moving cold front is more realistic as far as
front must be considerably smaller than the atmospheric forcing is concerned, and instead of
advective horizontal velocities produced by the using the very unrealistic mixed layer, we consider
Ekman pumping. To achieve this, for wind stresses an eddy viscosity that has a maximum value at the
of 0.4-0.5 N m-2 and horizontal scales of 50-100 surface layers. Results from Exp. I (see Table AI)
km, the horizontal velocities in the ocean will be of show (Figs. 7a and 7b) the details of the density
the order of 0.20 m S-I. This implies that the and velocity fields at two different times (100 and
atmospheric front must be practically stationary 167 h); the storm had already dissipated. The
(less than 0.20 m S-I) over the ocean for about 1 solution is characterized by a sharp density
pendulum day to generate an oceanic front; this gradient in the upper layers (seen in the top portion
perhaps is a severe limitation on the effectiveness of of Figs. 7a and 7b), a geostrophically balanced
mesoscale atmospheric forcing. surface jet perpendicular to the plane, and a

superimposed field of internal gravity waves that
4.2. Constant stratification propagate out from the region of forcing. In Exp. II

To proceed with our investigation of the effects the Briint-Viiisiilii frequency was twice as large as
of realistic forcings and other environmental that used in Exp. I. This implies that RNII = 2RN1
TeUus 35A (1983),4
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Fig. 7. (a) Contours of the density and velocity fields from Exp. I at t = 100 h. (b) Contours of the density and
velocity fields from Exp. I at t = 167 h. Contour intervals in (a) and (b) for p',v,u, and ware 5 x 10-',2.5 X 10-2,2.5
X 10-2, and 2.5 x 10-4, respectively. Maxima for p',v,u, and ware 7.5 x 10-4 kg m-3, 0.23 m S-I, 0.002 m S-I, and
0.0003 m S-1 at 100 hand 7.5 x 10-4 kg m-3, 0.13 m S-I, -0.04 m S-I, and 0.00067 m S-1 at 167 h.

= 210 km. A comparison of the surface jet profiles layers. This slight change in the stratification does

can be seen in the lower part of Fig. 8; the graphs not seem to have any significant effect on the
in the middle allow us to compare the envelope of response, as we shall see later. These experiments
the surface heights over a period of 4 h, whereas exemplify the oceanic response for the different
the upper portion of this figure shows the profile of horizontal scales of the forcing. The half-width of
the wind stresses at their maximum value (54 h). the wind stresses are 280 km, 210 km, 140 km, and
As we saw before, the horizontal response is the 70 km for Exp. III-VI, respectively. The surface
same as the forcing scale regardless of the internal response under these conditions can be seen in Fig.
Rossby radius of deformation. If we .look at the 10. We should point out that the horizontal scale
vertical profiles of the surface jet for these two for Exp. III is twice as large as that in Exp. V and
experiments (Fig. 9), we find that the rate of decay four times larger than that of Exp. VI. One
for V in Exp. II is much larger than that in Exp. I, prominent feature in these figures is that the surface
and we can estimate the penetration depth to be jets have similar horizontal profiles and also show
around 330 m for Exp. I and about 157 m for Exp. an increase in amplitude as the scale decreases. The
II, confirming the fact that the penetration depth in vertical profiles for the four experiments (Fig. 11)
these scales is inversely proportional to RN. Also, are characterized at the maximum response by
note that the maximum velocity at the surface in positive velocities in the first 500 m and smaller
Exp. II is twice as large as that of Exp. I, in negative velocities below that point. To summarize
agreement with (3.24), since the non-dimensional the results from these four cases, the v-velocity
velocity is equal to Go, and in order to dimension- amplitude for the permanent response and its
alize it, one must multiply it by RNf half-wideth scale (XR = the distance between the

maximum and minimum) are shown in Fig. 12 as a
4.3. Dependence on the forcing scale function of the storm scale. It is obvious from this

Experiments III, IV, V, and VI use the same graph that the half-width response scale is .linearly
internal parameters as those used in Exp. II. One related to the half-width storm scale, whereas the
small difference, however, is that these experiments maximum velocity is inversely proportional to the
have an exponential stratification in the surface storm scale. Notice that the expressions for V
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Fig. 8. Results from Exps. I and II showing the maximum wind stresses (upper), the envelope of surface heights over
a 4-h period (middle), and the surface jet profiles (lower).

(3.24) and, in fact, for V s (3.25) are equal to -Go- vertical profiles abruptly change at a depth of 100
In that example Go remains constant, but we must m, and this is because the upper layers may be
keep in mind that Go is the non-dimensional controlled by a mixed layer and different higher
amplitude of the curl of the stresses, and we can stratifications (see Table Al in the Appendix). That
easily show by integrating (3.11) that for the being the case, we should calculate the penetration
amplitude to be constant, the stress itself should depth for characteristic values above and below the
decrease with L. In those numerical experiments, 100 m level. The characteristic scale h in Fig. 13
however, in which the stress itself is constant, the refers to layers above 100 m, and he refers to those
amplitude of the velocity should increase inversely layers below 100 m. Since the analytic prediction is
proportional to L. It is clear from Fig. lId that the calculated from a particular solution (Fig. 4), one
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Fig. 9. Vertical profiles of the surface jet for Exps. I and II after 167 h of integration.
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Fig.lO. The surface jet profiles after 167 h of integration for Exps.lII, IV, V, and VI.
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Fig. 11. Vertical profiles of the surface jet for Exps. III-VI after 167 h of integration. The percentage of the forcing
used for each experiment is shown in the upper left corner of each profile.

EXP,YI .EXP,YFI~I EXP,IYf\%1 EXP.IIIFI1) should not expect a one to one correspondence.
However, the numerical calculations (he) seem to

30 agree reasonably well. The reason why the
estimated values of h seem to be much smaller is

D, B that the solutions discussed earlier were done with a
I 25', : higher stratification on those levels, thus giving an
-\\\ ,; effective RN larger than the average RN.
E 2 ' In-, E~ ,
~ ~\. -: 4.4. Dependence on eddy viscosity
<I 15 ' J In our previous discussion of the general solution

<I in the presence of a mixed layer (Section 3.4), we

had concluded that the effect would be significant
10 for penetration depths equal to the mixing depth.

Neither the turbulence effects in the stratified layer
50 nor an inhomogeneous mixed layer were con-

0 sidered in that discussion, however. Consequently,

STORM SCALE (km) numerical experiments with constant and variable

Fig. 12. The v velocity amplitude for the permanent eddy viscosities were done to show the influence of
response and its half width scale (I1XR) as a function of different turbulent parameterizations on the
the storm scale. oceanic response. The experiments shown here
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producing by itself a shallow response superim-
EXP.VlFf~' EXP.VFI~I EXP.lVFf%1 EXP.lIIFtlt d th d ' t h ' I Thpose on e lrec mec arnca response. e

(m) ~ numerical solution, however, shows this effect to be
I

I only a few percent of the total response.
I

I
h. (~= e) I

2 V\Zo+h.1 II 5. Non-linear response

I
II A review of studies of non-linear effects in the

2 I geostrophic adjustment problem can be found in
~ Blumen (1972), in which the possibility that

II non-linear solutions may exhibit or develop hyd-
1 I raulic jumps was discussed. Those studies (Tepper,

II 1955) had an adjustment to particular initial
I conditions, whereas in our case this possibility is

1 xl not found because of the transient forcing. Let us
then review the non-linear terms which are present
in the study. Basically, all of the advection terms in

~ .the vorticity, momentum, and density equations are
0 140 210 non-linear (see equations A I-A4). Some cases

STORM SCALE (km) include non-linear terms in which the eddy viscosity
Fig. 13. Penetration depths for Exps. III-VI as a and diffusivity are dependent on the local Ric-
function of the storm scale. hardson number. This effect has been already

discussed in some of the linear experiments of the
previous section (Fig. 14); it is therefore not

(Exps. VIIa-VIId) had a large viscosity in the regarded as a new non-linear term in the present
boundary layer (boundary layer depths of 27 and solutions under consideration. Essentially then, the
45 m were used in Exps. VIIb and VIIc, respec- difference between the solutions presented here and
tively) and a very small interior viscosity, or a those of the previous section lies in the advection
constant viscosity (medium and high, Exps. VIla terms in the equations of motion:

and VIId respectively) for the entire depth, or a
non-linear eddy viscosity as a function of the 5.1. Constant stratification

Richardson number (Exp. VIIc). These solutions, For simplicity, the effect of the non-linear terms
displayed in Fig. 14, show the v-velocity contours will be presented in the same setting as that used for
and eddy-viscosity profiles after 67 h of integration. Exp. I. Density and velocity fields at two different
The first and most important conclusion one can times (100 and 167 h) are shown in Fig. 15a and
draw is that the response of the basic features of the 15b, respectively, for the non-linear Experiment
geostrophic flow, both in the horizontal and vertical VIII, and should be compared with the linearized
scales, is the same regardless of the turbulent solution of Exp. I (Figs. 7a and 7b). At first glance
parameterization used. As we might expect, the the solutions look quite similar. The density pattern
maximum intensity of the surface jet is inversely in both cases shows a similar surface front; the v
proportional to the local value of the viscosity. It is velocity seems different, however. in that the linear
also apparent from the solutions that the intensity one seems to have sharper gradients. The v velocity
of the wavelike disturbances is inversely proportio- is actually stronger in Exp. VIII, and the presence
nal to the viscosity in the interior layers. Experi- of waves is more noticeable (Figs. 7a and 15a).
ment VIle, on the other hand, shows how the especially in the u-velocity field. At later times the
surface response can be affected by an similarities persist and the waviness is also present.
inhomogeneous eddy viscosity. Since the viscosity Profiles of the wind stresses. the surface heights.
is a function of the Richardson number (Fig. 14e and the surface v velocity are shown in Fig. 16.
shows only a typical profile), one might expect that Upon comparing this figure with the profiles shown
the mixed layer below the maximum wind stress on the left side of Fig. 8, we find that the main
would be deeper than in its surroundings. thus difference is in the intensity of the jet rather than its
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Fig. 14. Contours of the v velocity after 67 h of integration and the eddy viscosity vertical profile for Exps.
Vila-Vile. Maximum velocities are 0.42, 0.26, 0.24, 0.27 m S-I respectively.
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a b
EXP. VIR EXP. VIIIililliliiDBOSITY --. Ssrc m m '00 .

'000 -000 '000 0000 '2 0 ...,~ 2~
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'00 0 ~~... '

2j/000 ,

Fig. 15. (a) Contours of the density and velocity fields from Exp. VIII at t = 100 h. (b) Contours of the density and
velocity fields from Exp. VIII at t = 167 h. Contour intervals in (a) and (b) for p',v,u, and ware 5 x 10-',2.5 X 10-2,
2.5 X 10-2 and 2.5 x 10-4, respectively. Maxima for p',v,u, and ware 7.5 x 10-4 kg m-3, 0.23 m S-I, 0.008 m S-I,
and 0.00047 m S-L at 100 h and 7.5 x 10-4 kg m-3, 0.26 m S-I, -0.046 m s-\ and 0.00042 m S-1 at 167 h.

width, i.e., it ranges from 0.25 m S-1 to 0.04 m 8-1 thermocline characteristic of a summer thermocline
for Exp. VIII and 0.14 m S-1 to 0.1 m S-1 for Exp. (Exp. IX) and the other a smooth deep thermocline
I. The difference certainly becomes more noticeable (Exp. X). In both cases the viscosity was constant
when we compare the vertical profiles of the v (v = 0.013 m2 S-I). The solutions after 84 h of

velocity of Exps. VIII and I (Figs. 17 and 9 integration are shown in Fig. 18. Briefly summariz-
respectively). The major difference here is that the ing the differences between these e~periments, we
penetration depth for the non-linear solution seems can see that the shallow thermocline produces a
greater than in the linear case. Also related to this slightly more intense and shallow jet than that of
difference is that the mean velocity seems larger in Exp. X. These results are in agreement with our
the non-linear case, and that the advection terms discussion in Section 3.5 concerning penetration
somehow inhibit the generation of waves that depth as a function of stratification if one takes
prevail in the linear solution, thus making the account of the average stratification that prevails in
geostrophic adjustment in the non-linear case more the upper layers of the ocean.
effective. It is as though the finely tuned resonant
conditions by which waves grow in the linear 6. Summary

regime are altered by horizontal advection in the
boundary layer, reducing the wave energy available The present study shows that atmospheric .
to interfere with the adjustment. forcing can be an important source of mesoscale

variability in the ocean. The time scale required for
5.2. Variable stratification an atmospheric storm to be effective in generating a

The diversity of density-profile characteristics in permanent, geostrophically balanced response in
the world ocean, as well as the seasonal variability the ocean is in the order of 1 day. Moreover, we
in the upper layers of the oceans, makes it difficult have shown that the response is linearly propor-
to extrapolate the response of cases with constant tional to the product of the time scale of the storm
stratifications to those with realistic conditions. and its intensity.
Two drastically different extreme conditions were Atmospheric fronts are strong candidates for
used for Exps. IX and X: one with a steep shallow mesoscale forcing, but they are certainly not the
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-0 Fig. 17. Vertical profile of the v velocity for Exp. VIII at
t = 167 h. Note that the forcing for Exp. VII was F =

-0 F/4.

-0

that even an intense thunderstorm could produce a
-d significant signature in the ocean if it existed long

enough. This is somewhat unlikely, however,
t.167hrs. because although such small-scale phenomena may

be intense, their lifetimes are no more than a few
hours.

The role of the Rossby radius of deformation in
07:; determining the oceanic response has been clarified
.!. by this study. We emphasize that for storms with
> scales considerably smaller than the barotropic

Rossby radius of deformation, the oceanic
stratification and the horizontal extent of the storm
are the only factors that determine the penetration

-050 200 300 500 depth of the response, which means that it is not the
x (km) Rossby radius of deformation but rather the scale

Fig. 16. Profiles of the wind stresses, surface heights, of penetration depth (h = (f/N)L) that charac-
and the surface jet for Exp. VIII. terizes the response.

In exploring the effect of differing eddy-viscosity
only ones. Other phenomena that might also be parameterization, we did not find any significant
important sources of forcing include squall lines differences in the qualitative comparison of the
with large surface vorticities, cloud clusters, and results, although, as one might expect, we did find
meso-convective complexes. One might conceive quantitative differences.
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EXP. IX EXP. X
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Fig. 18. Results from Exp. IX and X at t = 84 h showing the thermocline profile and contours of the temperature, v
velocity and u velocity.
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The role of the mixed layer is considered very 8. Appendix. The numerical model
important in the transfer of surface stresses down
into the system. The mixed layer does not seem to The model used in this study is merely an
be important, however, in determining the charac- extension of the model described in Orlanski and
teristic length of the problem, that is, at least for Ross (1973), Orlanski et al. (1974), Orlanski
storms that give a penetration depth considerably (1976), and Orlan ski and Ross (1977). We refer
larger than the mixed layer (for a mixed layer on the reader to those papers for specific details and
the order of 20 m, the storm should be larger than a we shall discuss only the changes needed to
few kilometers). accomplish the present study.

The non-linear advection terms seem to affect The primary difference is that we have changed
the geostrophic adjustment process more by from an atmospheric model to an oceanic model
reducing the associated wave energy than by which as in the former case employs either the
modifying the characteristics of the geostrophic "deep anelastic" equations as formulated by Ogura
response. and Phillips (1962) or a hydrostatic approximation

Finally, we have also demonstrated that making of these equations. It should be noted that
the stratification more realistic does not significan- references to {} variables in the equations are
tly alter the results. density variables in this case. The equations are

It is easy to foresee that the suggestions in this written in Cartesian coordinates (x,y), but for
paper concerning the effectiveness of atmospheric simplicity we assume that the predicted quantities
forcing can be verified with present technology. For do not depend on the y coordinate. We retain the v
that matter, studies may already exist that support velocity for rotational effects. Then using the set of
this suggestion. One approach might be to monitor equations as defined in Orlan ski and Ross (1977)
ocean temperatures inferred by satellites in order to our non-linear set of equations are:
determine whether atmospheric fronts can generate
thermal gradients in the ocean. Unfortunately, the al; av -g a{} a{} ( al; )present temperature resolution is inadequate for at -J( 1fI, «0 (.) =1 a:; -8 a;;: + a;;: K Ve a;;:

detecting the response in most cases, but some 0

extreme events may be observed. a ( al;)+- v -
(AI )az eaz'
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If we then neglect the Jacobian terms, our and is limited to -10 ~ Ri .$ 10 for computational
linearized equations become purposes. J is a grid point in the z direction. In

some of the later cases we simplified the method by
~ = f ~ -! ~ + ~ (K v ~ ) defining constant values for K. for specific layers. A
at az fJ ax ax .ax typical example is

+ ~ (v.~), (A6) K. = 0.5 x 102Ko; J < 8,
az oz K = K .8 > J < 58

.0' --, (AI4)

av ( a'll ) a ( av ) and -=-f~--U +- Kv- I
at az I ax .ax K. = 0.4 x 10 Ko; J> 58.

a ( av) Representative values of K and Ko are 1.0 and 5 m2
+ -v. -, (A 7) S-I.

az az

( -afJ 8.1. Domain size and model resolution
~ + ~ ~ ~ + V!!-'!!- = ~ KK. -The domain lIas a grid system with 51 uniformly
at ax az). ay ax ( ax ) .spaced points in the x direction and 61 points with

variable spacing in the z direction. Representative
+ ~ (K ~) (A8) values for ~x are 5, 10, and 20 km, depending onaz .az ' the particular case, respectively, implying domain

lengths of 250, 500 and 1000 km. The depthand remained fixed for all the cases at 3000 m and had

a2'11 a ( a'll ) a & of about 7 m near the surface and a L\z :;:: 133
, = ~ ~ + 8; ~& ' (A9) m at the bottQm. The atmospheric boundary is

1500 km in length, equally spaced, with a ~xF = 20
where ~ is the specific volume and is defined as ~ km over its 76 points in the .\' direction. The
= II Po' Studies have shown that the hydrostatic atmospheric disturbance has no grid points in the)'
assumption is a good approximation where the or z direction. The dxF also varied with respect to
horizontal velocities are much larger than vertical the ~x used for the ocean domain, i.e., when ~x =
velocities. This assumption is also computation ally 10 km, then ~XF = 10 km. The solution was
more economical than the Am (alternating direc- time-smoothed to suppress mode splitting
tion implicit) method of solving the Poisson associated with the leapfrog method used.
equation; therefore, if we utilize these facts, eq. (A4)
becomes 8.2. Boundary conditions

a ( a'll ) During the life of the frontal disturbance we
'=-a; ~ & .(AI0) utilize the atmosph~r~c values of p~essure,. u, and v ,

for boundary conditions at the air-sea Interface.
Rather than using the method outlined in The x velocity is -

Orlanski and Ross (1977) for computing the eddy) " ,
d .re .. h d h .atXIIIUSIVlty, K., we use a met 0 were K. IS a u =fv -ap +~, (A15)
function of the Richardson number I x az

K.=KoI0(0.9(I-t.nh(RI-I)) forJ> 13, (All) withpdefinedas

and L\z
2 P = P.gPB '1 + g(PB(1 -fJ)) -, (AI6)

K. = K.(1 + l00e«J-3) 12')) for J:$ 13, (AI2) 2

where the Richardson number is so that

g(afJI az) L\z
Ri= , (AI3) apx=ap. + agpB'1x-ag-PBfJx' (AI7)

(aulaz)2 + (avlaz)2 .2
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Table Al

L (km)
Experiment (forcing scale) (RN (km) Linear Eddy viscosity (m2 S-I) Stratification

I 70 105 Yes 0.02; Z = SFC-27 m Constant (y = 0.00000125)
0.0005; 28 m-2315 m
0.25; 2316 m-3000 m

II 70 210 Yes 0.02;Z=SFC-27m Constant (y=0.000005)
0.0005; 28 m-2315 m
0.25; 2316 m-3000 m

III 280 210 Yes 0.02;Z=SFC-27m Constant (y=0.000005)
0.0005; 28 m-2315 m exponential stratification in the
0.25; 2316 m-3000 m upper layers

IV 210 210 Yes 0.02;Z=SFC-27m Constant (y= 0.000005)
0.0005; 28 m-2315 m exponential stratification in the
0.25; 2316 m-3000 m upper layers

V 140 210 Yes 0.02; Z = SFC-27 m Constant (y= 0.000005)
0.0005; 28 m-2315 m exponential stratification in the
0.25; 2316 m-3000 m upper layers

VI 70 210 Yes 0.02;Z=SFC-45m Constant (y= 0.000005)
0.0005; 28 m-2315 m exponential stratification in the
0.25; 2316 m-3000 m upper layers

VIla 140 51.5 Yes Function ofa constant Constant (y= 0.0000003)
Ri '* = 1.0 exponential stratification in the

upper layers
VIIb 140 51.5 Yes 0.02; Z = SFC-27 m Constant (y = 0.0000003)

0.0005; 28 m- 2315 m exponential stratification in the
0.25; 2316 m-3000 m upper layers

VIIc 140 51.5 Yes 0.02; Z = SFC-27 m Constant (y = 0.0000003)
0.0005; 46 m-2315 m exponential stratification in the
0.25; 2316 m-3000 m upper layers

VIId 140 51.5 Yes Function ofa constant Constant (y= 0.0000003)
Ri '* = 0.0 exponential st~atification in the

upper layers
VIle 140 51.5 Yes Function ofa variable Constant (y= 0.0000003)

Ri '* exponential stratification in the

upper layers
VIII 70 105 No 0.02; Z = SFC-27 m Constant (y= 0.00000125)

0.0005; 28 m-2315 m
0.25; 2316 m-3000m

IX 140 51.5 No Function of a constant Constant (y = 0.0000003)
Ri '* exponential stratification in the

upper layers
X 140 51.5 No Function ofa constant Constant (y=0.0000003)

Ri '* exponential stratification in the

upper layers

which reduces to by the ocean. For the stress terms we have

( L\z ) a~x) rlx) 4X)
apX=ap8x+g tlx-T(Jx , (AI8) -= SFC- =-/lz, (AI9)

az L\z

where Px represents the hydrostatic pressure along a~X) 1 ( au! )the x direction incurred from the atmosphere, and -= -rlx) -v -
(A20), A -SFCI e athe second term is the hydrostatic pressure exerted OZ LU Z z=-/lz .
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Since {.I,J = OU/OZ -ow/ox, and since the man (1967) and are defined in the following

hydrostatic assumption reduces the vorticity term manner:
to C -ID = 0.0008 for V ~ 6.6 m s

oU
{.I J = -, and, OZ

CD = 0.0026 for V> 6.6 m S-I. (A28)
then

As the front passes through the domain, the

- ( Az (J ) atmospheric variables undergo a frontolytic
u/ -Iv -ap.. -g '1x -2 x process in which we control their intensity by using .I

a time fade function, T F'

+~ (~ -r ) (A21 ) TF= (tanh «T+ To)/104)
Az SFC V."I.JM-I'

SFC x (0.5(1 -tanh «T + 104)/8 x 104)), (A29)

We then use UI JM for the boundary condition on h or (50 h) 0 th 0 . t o I t ." th f t Ih fi : were, 0 IS e Inl la Ime lor e ron a
t e stream unctIon .0 . h h 0 .

d d hposItion wit respect to t e oceanic gn an t e
1 elapsed time, Tis

'lf1.JM -'lfI,JM-1 = ~ UI.JM' (A22) .T = mL\t -To, (A30)

where the JM represents the surface grid point and with m being the number of time steps and dt the
JM-l is the next grid point level below the surface. model time step (30 s). To calculate the frontal
For they velocity we define the shear stress iny as position, XF, we specify the front to be contained in

the domain between 20 and 30 h of integration at
rlY) =" ~. (A23) which time the variables are at their maximum
SFC .OZ intensity. TherefQre. we define a beginning and

stopping time and calculate the location relative to
Then at the top boundary we have those times. They are

1
V -~ _-rlYI /" (A24) TB=T1-To=-30h, (A31)I,JM I.JM-I -Az SFCI.'

SFC and

The stresses are calculated using the atmospheric u ~ = T -~ = -20 h,
and v velocities and are defined in the following S 2 0

manner. where Tl and T2 equal 20 and 30 h respectively.
Then when T < T B'

r
CD =

« 2 2)1/2 )2' (A25) XF = Xo -V F T, (A32)
P. U. + v.

where Xo is the initial position of the front with .-
so that respect to the domain at T = 0 and V F is the net

~x) = C V (A26) frontal velocity,
DP. U.'

VF=Vtr+VF. (A33) "

and
VF is the frontal speed in the .\" direction and V,r is

~YI = CDP. Vv., (A27) the translation speed in the .\" direction. Represen-
tative values for VF and V,r are 1.25 m S-I and

where P. is the density of the air, II. and I'. are the -0.25 m S-l respectively 0 For T B ?; T ~ T s'
atmospheric u and v velocity components and V =
(u~ + v~)ln. Values used for the reference densities, XF = Xo -V F

namely P. (atmospheric) and PB (ocean boundary) [ ( (T -T B))]are 1.17 kg m-3 and 1000 kg m-3 respectively. x T B + (T -T B) 1-0.5 -.(A34)
Drag coefficient values were obtained from Heller- T S T B
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For Ts < T< 0, for 20h. Finally, when T> 0,

XF =Xo -VF(TB + 0.5(Ts -T B»' (A35) XF =Xo -VF(T B + 0.5(Ts -T B»

which implies that the front will remain stationary + UF T. (A36)
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