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ABSTRACT

We present a correlation study of time-varying multivariate volu-
metric data sets. In most scientific disciplines, to test hypothe-
ses and discover insights, scientists are interested in looking for
connections among different variables, or among different spatial
locations within a data field. In response, we propose a suite of
techniques to analyze the correlations in time-varying multivariate
data. Various temporal curves are utilized to organize the data and
capture the temporal behaviors. To reveal patterns and find con-
nections, we perform data clustering and segmentation using the k-
means clustering and graph partitioning algorithms. We study the
correlation structure of a single or a pair of variables using point-
wise correlation coefficients and canonical correlation analysis. We
demonstrate our approach using results on time-varying multivari-
ate climate data sets.

Index Terms: G.3 [Probability and Statistics]: Multivariate Statis-
tics; G.3 [Probability and Statistics]: Time Series Statistics; J.2
[Physical Sciences and Engineering]: Earth and Atmospheric Sci-
ences

1 INTRODUCTION

Finding connections or correlations among data is one of the central
themes of many scientific studies. A good example is climate re-
search and forecasting, which has far-ranging applications to agri-
culture, fisheries, ecosystems, water resources, energy infrastruc-
ture, and disaster planning. Given the many complex interactions
among the Earth’s oceans, atmosphere, land, ice and biogeochem-
istry, and the sheer size of observational and climate model data
sets, it is often difficult to identify which processes matter most for
a particular climate phenomenon. A useful approach has been to
examine correlations among different variables to identify relation-
ships. But until recently, it has been difficult for climate scientists
to perform such investigations rapidly and interactively with their
large multidimensional data sets.

This paper focuses on the correlation study of time-varying mul-
tivariate data sets. Time-varying data are considered as a set of sam-
ples (e.g., voxels or blocks), each associated with a vector of repre-
sentative or collective values (e.g., data value or derived quantity)
over time. We refer to such a vector as a temporal curve. Correla-
tion analysis thus operates on temporal curves of data samples. A
temporal curve can be treated as a two-dimensional function where
the two dimensions are time and data value (or derived quantity). It
can also be treated as a point in the high-dimensional space (when
the number of time steps taken in the study is large). In this case,
to facilitate effective analysis, it is often necessary to transform
temporal curve data from the original space to some other space
of lower dimensionality. Clustering and segmentation of temporal
curve data in the original or transformed space provides us a way
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to categorize and visualize data of different patterns, which reveals
connection or correlation of data among different variables or at
different spatial locations. In this paper, we study the variability
and correlations of a single or a pair of variables using point-wise
correlation coefficients and canonical correlation analysis.

We demonstrate the effectiveness of our approach using tropical
oceanic data simulated by the National Oceanic and Atmospheric
Administration (NOAA) Geophysical Fluid Dynamics Laboratory
(GFDL) CM2.1 global coupled general circulation model [3, 19].
The model was run with its atmospheric composition, solar forc-
ing, and land cover fixed at pre-industrial (1860) conditions, and
spontaneously produces El Niño events and many other kinds of
variability that scientists seek to characterize and understand. We
point out that the solution we propose in this paper is not limited
to climate research and it can benefit many other scientific fields
where correlation study is needed.

2 RELATED WORK

Wong and Bergeron [20] gave an overview of the work in mul-
tidimensional multivariate visualization. One of the most popular
statistics techniques to study correlation between multiple variables
is the scatterplot matrix which presents multiple adjacent scatter-
plots. Each scatterplot in the matrix is identified by its row and
column numbers. The limitation of scatterplot matrix is that it does
not offer an observation of correlations in the native coordinates of
the data.

Another popular visualization technique for finding relationships
among multivariate data is the parallel coordinate [9]. It has proven
to be very useful in revealing correlations among multiple vari-
ables or quantities through brushing and linking and has been ex-
tensively used in many areas of information and scientific visual-
ization [11, 12] due to its simplicity and effectiveness. Qu et al.
[13] introduced a S-shape axis representation to effectively encode
directional information. Parallel coordinate, however, is not very
natural for revealing spatial relationships, which are important to
the analysis of climate data sets because proximity to the coastlines,
the equator, cloudy regions, and oceanic jets can strongly influence
the dynamical regime of the points being examined.

Sauber et al. [14] proposed to visualize correlations in 3D mul-
tifield scalar data using gradient similarity measure (GSIM) and
local correlation coefficient (LCC). They developed a new inter-
face, called Multifield-Graph, which visualizes a number of scalar
fields and their correlations. Multifield-Graph allows users to gain
an overview of the amount of correlations in all possible correlation
fields and to focus on nodes with highly correlating fields. Gosink
et al. [8] performed a localized correlation study where the correla-
tion field is defined as the normalized dot product between two gra-
dient fields from two variables. The derived correlation field was
used to study variable interactions with a third variable in query-
driven visualization. Qu et al. [13] adopted the standard correlation
coefficient for calculating the correlation strengths between differ-
ent data attributes in weather data analysis and visualization. They
created a weighted complete graph where the node represents the
data attribute and the weight of the edge between two nodes en-
codes the strength of correlation. The weighted complete graph
is employed to reveal the overall correlation of all data attributes.
Glatter et al. [7] used two-bit correlation to study temporal pat-
terns in large multivariate data. Specifically, two-bit correlation



shows four possible scenarios: two variables both changing posi-
tively, negatively, or in different directions.

In this paper, our goal is to analyze and visualize correlations
among different fields or variables within slices or volumes to
help scientists discover relationships and compare feedback loops
among different models.

3 TEMPORAL CURVE

3.1 Time-Activity Curve

An appropriate form of data representation is needed to study the
temporal aspect of time-varying data. One form of representation
is the time-activity curve (TAC) presented by Fang et al. [5]. The
basic idea of TACs is to treat each voxel in the volume as a tem-
poral function f (v) = (v1,v2, ...,vt), and the source of this tempo-
ral behavior varies with a particular modality. In their work, Fang
et al. matched all TACs of voxels in the volume based on certain
similarity measures to identify and visualize regions with the corre-
sponding temporal pattern. Woodring and Shen [21] utilized TACs
to perform temporal clustering. By employing the wavelet trans-
form along the time axis, they transformed data points into multi-
scale time series curve sets. Clustering the time curves groups data
of similar activity at different temporal resolutions, which are dis-
played in a global time view spreadsheet.

3.2 Subsampling in Space and Time

The simplest definition of TAC uses the scalar data values at each
time step as the function values. The concept of TAC can be ex-
tended from a voxel to a data block (i.e., spatial neighboring vox-
els) where the mean or variance value or some other quantity of the
data block is used as a representative value. This treatment is use-
ful when data sets get larger in the spatial dimensions and the users
demand a quick overview. When the users examine local regions of
interest, however, spatial subsampling should not be adopted. Oth-
erwise, what are often the most interesting features (which tend to
occur in thin strips near coasts and along the equator of the climate
data set) would be washed out.

If the data consists of a large number of time steps, another way
to get a faster response is to randomly subsample the time steps.
The user can specify the subsampling factor for correlation study.
For example, she could choose a large time interval for rapid inter-
active exploration of the overall structure, and then refine the inter-
val when potentially interesting features are identified. This treat-
ment also enables the users to assess the robustness of the correla-
tion statistics, i.e., to determine whether correlations are revealing
real physical relationships, or are just appearing spuriously due to
coincidental covariability of fields in a short time series, by repeat-
edly estimating the correlations using different random subsamples
of the full time series. The less the display changes between sub-
samples, the more robust the result.

3.3 Importance Curve

A further extension of TAC is the importance curve (IC) proposed
by Wang et al. [18]. The IC considers the local statistics (i.e., the
multidimensional histogram in the feature space) of a data block
and evaluates the relative amount of information (i.e., conditional
entropy) of the data block with respect to other blocks in the time
sequence. In this case, the temporal function f returns the impor-
tance value of the given block, characterizing its local temporal be-
havior. One attractive aspect of the IC is that it can take multiple
variables in the feature representation for importance value calcu-
lation, which makes it also amenable for multivariate data analysis.
In this paper, we utilize both TAC and IC in correlation study, which
we describe next.

4 CORRELATION VIA CLUSTERING OR SEGMENTATION

In this paper, we present two different ways to cluster or segment
data organized in the forms of temporal curves. One way is to group
temporal curves of data into clusters of similar trends using the k-
means clustering algorithm (Sections 4.1). This method operates
directly on the data in the original high-dimensional space. On the
contrary, another way to perform data clustering or segmentation is
based on the data transformed into the principal component space
(Sections 4.2). We utilize the normalized cut algorithm (Sections
4.3) to segment the transformed data.

4.1 K-Means Clustering

The k-means clustering is an algorithm to cluster n objects based on
attributes into k partitions, k < n. Intuitively speaking, it attempts
to find the centers of natural clusters in the data. The algorithm as-
sumes that the object attributes form a vector space. The objective is
to minimize total intra-cluster variance. The most common form of
the popular k-means algorithm uses an iterative refinement heuris-
tic called Lloyd’s algorithm. Although it converges very quickly,
Lloyd’s algorithm could get stuck in local minima that are far from
the optimal. For this reason we also consider heuristics based on
local search, in which centroids are swapped in and out of an exist-
ing solution randomly (i.e., removing some centroids and replacing
them with other candidates). Such a swap is accepted if it decreases
the average distortion (the distortion between a centroid and a point
is defined as their squared Euclidean distance); otherwise it is ig-
nored. This hybrid k-means clustering algorithm [10] combines
Lloyd’s algorithm and local search by performing some number
of swaps followed by some number of iterations of Lloyd’s algo-
rithm. Furthermore, an approach similar to simulated annealing is
included to avoid getting trapped in local minima (refer to [10] for
detail).

4.2 Principal Component Analysis

Invented by Karl Pearson in 1901, principal component analysis
(PCA) is a powerful and popular tool for deriving the dominant pat-
terns in a statistical field (e.g., a random vector x, usually indexed
by location in space). It is a vector space transform often used to
reduce multidimensional data sets to lower dimensions for further
analysis. Theoretically, PCA is the optimal transform for a given
data in least square terms. In order to faithfully represent the data
in the low-dimensional space, it is preferable that 90% of the data
variances are mapped on the first two principal components. For
example, our test results on the climate data set show that PCA is
ideal for dimension reduction as the first principal component al-
ready describes 80-90% of data variances.

4.3 Normalized Cut

After dimension reduction using PCA, a suitable clustering method
is needed so that distances between data points in the reduced di-
mensions can be used to generate clusters accordingly. In this pa-
per, we utilize the normalized cut algorithm from image segmen-
tation literature by treating data after dimension reduction (using
either PCA or derived statistics) as images. We have decided to use
the normalized cut due to its ability to find perceptually significant
groups first before detecting smaller, less significant groups. The
normalized cut takes three parameters as input: the image itself, the
desired number of clusters, and the distances between image data
points. We calculate these distances using two metrics: Euclidian
and Manhattan.

The normalized cut, introduced by Shi and Malik [15], is a graph
partitioning method that breaks a graph into segments. The algo-
rithm represents the input image as a fully connected graph where
every pixel has a link to every other pixel. It was designed to over-
come outliers. Instead of looking at the value of total edge weight



connecting the two partitions A and B (A
⋃

B = Q), the method com-
putes the cut cost as a fraction of the total edge connections to all
nodes:

Ncut(A,B) =
cut(A,B)

assoc(A,Q)
+

cut(A,B)

assoc(B,Q)
(1)

where

assoc(A,Q) = ∑
a,q

w(a,q), assoc(B,Q) = ∑
b,q

w(b,q) (2)

a ∈ A, b ∈ B, q ∈ Q

Assuming the size of the input image is n × m, the product
of temporal curves can be represented as 1D vector Q of size
N = n × m. We compute the weight matrix W ∈ R

N×N , where
W(i, j) represents relationship between points i and j in Q. Given
the weight matrix W and the number of clusters c, we compute the
degree matrix D = Diag(W1N), where W1N ∈R

N and each element
is the sum of the corresponding rows in W.

We then find the optimal eigensolution Z∗ by solving the leading
c eigenvectors using the standard eigensolver:

D− 1
2 (D−W)D− 1

2 v = λv (3)

Z∗ = D− 1
2 V[c] (4)

where v is the eigenvector and λ is the eigenvalue. The cluster-
ing results are then displayed in the principal component space, or
directly on the region selected.

5 POINT-WISE CORRELATION ANALYSIS

5.1 Pearson Product-Moment Correlation Coefficient

The Pearson product-moment correlation coefficient is a common
measure of the degree of linear correlation between two variables
X and Y :

ρXY =
1

n

n

∑
i=1

(

Xi −µX

σX

)(

Yi −µY

σY

)

(5)

where µX (µY ) and σX (σY ) are the mean and standard deviation of
X (Y ) respectively. The result obtained is equivalent to dividing the
covariance between X and Y by the product of their standard devia-
tions σX and σY . The correlation value of ρXY ranges from -1 to 1.
A correlation of 1 (-1) means that there is a perfect positive (nega-
tive) linear relationship between X and Y . A value of 0 shows that
a linear model is inappropriate, i.e., there is no linear relationship
between X and Y .

5.2 Self-Correlation and Cross-Correlation

In our study, the input of X and Y in Equation 5 could be two tem-
poral curves of the same variable V at two different sampling lo-
cations. This case corresponds to the study of the self-correlation
matrix Cs(i, j) = ρi, j, where 1 ≤ i ≤ N, 1 ≤ j ≤ N, and N is the
number of sampled locations considered. The self-correlation ma-
trix tells us the relationships of the individual fields to themselves at
different spatial locations. Note that Cs is symmetric, with all ones
on the diagonal. The kth row in the self-correlation matrix gives the
same correlation map as the kth column. In our implementation, we
provide a user interface that allows the users to specify a reference
location and observe the correlations of all other samples with re-
spect to the reference location. This corresponds to the calculation
and observation of one row or column of Cs at a time. In general,
correlation coefficients approach 1 at locations near the reference
location, since data values in the vicinity of the reference location
tend to exhibit the same variations.

We could also use two temporal curves of two different variables
Va and Vb at the same or different locations as the input of X and

Y in Equation 5. This case corresponds to the study of the cross-
correlation matrix Cc(i, j) = ρi, j, where 1 ≤ i ≤ N, 1 ≤ j ≤ N,
and N is the number of sampled locations considered. In the cross-
correlation matrix, each row is a 3D map for Va and each column
is a 3D map for Vb where the two samples are taken from different
spatial locations. In contrast, the diagonal of Cc corresponds to the
correlations where the two samples are taken from the same spatial
locations. We allow the users to specify a reference location in Va

and observe the correlations of all other samples in Vb with respect
to the reference location, and vice versa.

Note that the above two cases of self-correlation and cross-
correlation studies are all implemented in the GPU. This allows the
user to interactively change the reference location in real time and
observe the correlation in the data fields accordingly.

6 CANONICAL CORRELATION ANALYSIS

The Pearson correlation coefficient is a point-wise local analysis
since the input only takes two local samples. In contrast, canonical
correlation analysis is a global analysis which considers the corre-
lation structure among all samples.

6.1 CCA and Its Relation with PCA

Canonical correlation analysis (CCA) is similar to PCA, or empir-
ical orthogonal functions (EOFs), as it is best known in climate
research community. Just as PCA is used to study the variability
of a random vector x (i.e., what patterns account for most of the
variance of the field), CCA is used to study the correlation structure
of a pair of random vectors x and y (i.e., what patterns of the two
fields have expansion time series that are most highly correlated).

CCA was first described by Harold Hotelling in 1936. CCA de-
fines coordinate systems that optimally describe the cross correla-
tion between two different data sets. Just like PCA, the optimiza-
tion can be expressed as an eigenvalue problem. In this case, the
eigenstructure is obtained from the product of the cross-correlation
matrix between two data sets and its transpose. The strengths of
CCA are its ability to operate on the full fields of information and
to objectively define the most highly related patterns of both data
sets [1].

CCA and PCA share similar objectives and mathematics [17].
One interpretation of the first principal component v1 of x is that
xTv1 is the linear combination of elements of x with the greatest
variance. The second principal component v2 is spatially orthogo-
nal to v1, and provides the linear combination xTv2 with greatest
variance that is temporally uncorrelated with xTv1, and so on. The
objective of CCA is to find a pair of patterns wx1 and wy1 so that

the correlation between linear combinations xTwx1 and yTwy1 is
maximized. A second pair of patterns wx2 and wy2 is found so that

xTwx2 and yTwy2 are the most strongly correlated linear combina-

tions of x and y that are not correlated with xTwx1 and yTwy1, and
so on.

In practice, we can think of CCA as a static way to explore the
correlations between two different data fields. Instead of solving
the eigenvalue problem of the covariance matrix as in PCA, CCA
solves the cross-correlation matrix. The resulting CCA patterns
maximize the correlation between the domain vectors. Whether or
not CCA or PCA patterns should be used as the preferred presenta-
tion depends on the data and question posed [4].

6.2 Calculation of CCA Patterns

In the following, we explain in detail how to calculate CCA pat-
terns. First of all, two space-time data fields are represented as two
2D matrices. Each matrix has n rows representing time steps and p
columns representing spatial locations (i.e., grid points or voxels).
For 3D volume data, it is often the case that the number of spatial
locations p is much larger than the number of time steps n, which
causes problems in CCA calculation. To get around this issue, we



reduce the number of spatial locations to a more manageable size.
This is achieved with the use of PCA [17], which reduces the num-
ber of spatial locations from p to r, where r is the desired principal
components.

In PCA interpretation, the columns of the input matrix X rep-
resent different variables or spatial grid points, and rows represent
observations. PCA is computed by the following function from the
MatLab Toolbox for Dimensionality Reduction [16]:

[

Cp×r,Sn×r,Lr×1

]

= pca
(

Xn×p,r
)

(6)

Here we use the subscripts of input and output matrices to denote
their respective dimensions. The PCA function takes one of the two
data fields as input. The output of the function are: the coefficient
matrix Cp×r where each column represents a p-element principal
component pattern or spatial map (note that only the leading r of
them are requested); the score matrix Sn×r which contains the n-
element projection of time series associated with the r principal
component patterns; and the 1D latent matrix Lr×1 which records
the variances associated with each of the r projected time series.

CCA is calculated by the following function from the MatLab
Statistical Toolbox:

[A1r×d ,A2r×d ] = canoncorr(S1n×r,S2n×r,d) (7)

where the input matrices S1n×r and S2n×r come from the output
of the PCA function for each of two data fields. d is the number of
desired CCA patterns. The output of the CCA function are matrices
A1r×d and A2r×d , which represent canonical patterns for the PCA-
transformed input data fields S1n×r and S2n×r, respectively.

Finally, CCA patterns are transformed back to the original data
space and displayed. The transformation is accomplished using the
following equation:

P1p×d = C1p×r ∗A1r×d (8)

P2p×d = C2p×r ∗A2r×d (9)

where each row in P1p×d and P2p×d represents a spatial map of the
CCA patterns, which is displayed in the original data space.

Figure 1: A slice of the temperature self-correlation field normal to
the z axis. The reference location is at (140◦W, 0◦, 0m). Blue and
yellow are for negative and positive linear correlations, respectively
(white for no linear correlation). Continents, oceans, longitudes, and
latitudes are labeled.

7 RESULTS

We performed the correlation study on the climate data set pro-
vided by the NOAA scientists. The equatorial upper-ocean climate
data set covers 20◦S to 20◦N over a period of 100 years, which
is sufficient for us to prototype a correlation browser. The data
are sampled at one time step per month and there are 1200 time

TAC clustering (23760 blocks) 1200 time steps 191s

IC clustering (3960 blocks) 1200 time steps 20s

normalized cut 105 time steps 37.56s

CCA 310 time steps 2.84s

Table 1: The timing performance of the correlation analysis. Note
that the clustering was performed on all data blocks of the entire
volume while normalized cut and CCA were performed on a selected
2D region or a slice of the data due to the memory constraint.

steps in total. The spatial dimension of the data is 360× 66× 27,
with the x axis for longitude, the y axis for latitude, and the z axis
for depth. In Figure 1, we show a labeled slice of the temperature
self-correlation field normal to the z axis. We studied the temper-
ature and salinity variables in our experiments. The timing perfor-
mance on a 2.33GHz Intel Xeon processor with 4GB main memory
is listed in Table 1.

Throughout this section, we give examples on how to detect
ENSO (El Niño-Southern Oscillation), a global coupled ocean-
atmosphere phenomenon including El Niño and La Niña using the
correlation study. Note that the climate scientists helped us inter-
pret the results reported in this section. Due to the complexity of
the data in the spatial, temporal, and variable domain, the scientists
are much more interested in visualization tools that allow them to
explore the correlation structure. Our goal is to enable scientists to
investigate the multifaceted nature of their data.

7.1 Clustering and Segmentation Result

Figure 2 (a)-(f) show the clustering results with the TACs and ICs.
The data were partitioned into 3 × 3 × 3 for TAC clustering and
9× 6× 3 for IC clustering. For TAC clustering, the variances of
the data blocks were used. For IC clustering, the feature vector
included both temperature and salinity values in the multidimen-
sional histogram calculation. Instead of clustering all time steps
together, we clustered time segments (each with 12 time steps) and
then matched clusters by sorting the end points of the centroids in
neighboring time segments and making correspondence according
to their orders. Such a treatment generally reduces the computation
time and improves the average distortion.

Figure 2 (a)-(c) show the clustering results of the TACs. We note
that voxels corresponding to the continents were not included in the
variance calculation of data blocks. It is interesting to observe that
the cluster with the highest variance in temperature is mostly dis-
tributed along the coastlines (Figure 2 (c)). Figure 2 (d)-(e) show
the clustering results of the ICs. The data are categorized according
to the degree of temporal changes in both temperature and salin-
ity values. Essentially, the ICs measure the “unusualness” of the
data blocks with respect to other neighboring blocks in the time se-
ries. From Figure 2 (a), (b), (d), and (e), we can infer that most of
the regions in the Atlantic Ocean do not exhibit dramatic temporal
changes. Figure 2 (g)-(j) show the segmentation results of the 2D
region on the sea surface data slice over 105 time steps. The nor-
malized cut algorithm was applied to the selected data transformed
into the principal component space.

7.2 Point-Wise Correlation Result

The point-wise correlation computation was implemented in the
GPU, which allows the user to explore the correlation interactively
by dragging the reference location around at runtime. Time steps
are loaded into textures by stacking them along the z axis. The
fragment program retrieves values of sample locations over time
through texture lookups. The calculation of the Pearson correlation
coefficient follows after the values are filled for each fragment.

Figure 3 shows the self-correlation of the temperature and salin-
ity variables respectively. The reference location is at (140◦W, 0◦,



(a) low-activity temperature TACs (b) medium-activity temperature TACs (c) high-activity temperature TACs

(d) low-activity temperature ICs (e) medium-activity temperature ICs (f) high-activity temperature ICs

(g) temperature data slice (h) segmentation (i) salinity data slice (j) segmentation

Figure 2: First and second rows: k-means clustering the TACs (a)-(c) and the ICs (d)-(f) of the 1200 time steps climate temperature data set.
Left to right: three clusters of temporal curves with increasing temporal activity are shown. The corresponding rendering at the first time step
(indicated by the time lines in their temporal curves) are also displayed. Each cluster is highlighted with high saturated colors while the rest of
data are rendered with low saturated colors for the context. Centroids of clusters are displayed in black on top of the temporal curves. Third row:
the segmentation result corresponding to the 2D region selected over 105 time steps. The first time steps of temperature and salinity variables
are shown in (g) and (i), respectively. Six clusters denoted by different colors are shown in (h) and (j), respectively.

0m), which corresponds to the surface in the eastern equatorial Pa-
cific (marked with a cross sign). Three slices with z = 0m, z =
200m, and y = 0◦ are also shown. Colors vary from purple to blue
to cyan for negative correlations, white for zero correlations, and
yellow to orange to red for positive correlations. Using the same
color map, Figure 4 shows the cross-correlation of the temperature
and salinity variables.

The reference location (140◦W, 0◦, 0m) is a great indicator of El
Niño and La Niña. As we can see during El Niño, we get a warmer
ocean surface especially over the equatorial Pacific, and the surface
waters get fresher in the Indian Ocean and equatorial West Pacific
(Figure 3 (b) and Figure 4 (b)); at 200m the equatorial temperatures
and salinities change in concert (Figure 3 (c) and Figure 4 (c)); and
the temperatures and salinities have a secondary extrema at depth
(Figure 3 (d) and Figure 4 (d)). All of these results are scientifically
interesting.

Finally, the right column of Figure 4 show the cross-correlation
of temperature and salinity values at the same locations. This is po-

tentially useful for determining contributions to seawater density,
which along with sea level and winds helps to control the ocean cur-
rents. Positive correlations indicate regions where the density im-
pact of salinity variations (saltier = denser) counteracts that of tem-
perature variations (warmer = lighter). The negative correlations in
the western equatorial Pacific may result from El Niño, which shifts
thunderstorms eastward from Indonesia and pours fresh rainwater
on the surface as the equatorial ocean warms.

7.3 CCA Result

Figure 5 shows the CCA result of using the sea surface slice of the
temperature and salinity data over 310 time steps. In this experi-
ment, we used the anomaly values (i.e., data values depart from the
normal seasonal cycle) rather than data values so that the impact of
the seasonal cycle is eliminated. To obtain robust CCA patterns, we
increased the number of principal components r in Equation 6 until
the CCA patterns become insensitive to further increase of r. In
the figure, the value of r we used is 15. The first two leading CCA



(a) temperature self-correlation (e) salinity self-correlation

(b) z = 0m (f) z = 0m

(c) z = 200m (g) z = 200m

(d) y = 0◦ (h) y = 0◦

Figure 3: Volume and slice rendering of the self-correlation map. The first 120 time steps of the climate data set are used. Left column:
temperature variable. Right column: salinity variable. The reference location (140◦W, 0◦, 0m) is indicated with a cross sign.

patterns are shown where the correlation value p is scaled using the
following equation:

pscaled =
p

max(|pmin|, |pmax|)
(10)

where pmin and pmax are the minimum and maximum correlation
values.

Given that ENSO is the main source of large-scale correlations in
this climate data, the CCA patterns indicate what happens during an
El Niño event, when the equatorial Pacific is warm. When such an
event happens, the atmospheric convection (thunderstorms) follow
the warm water eastward, moving from Indonesia into the western
Pacific, giving more fresh rainwater input (and a fresher surface
ocean) in the west Pacific. The Intertropical Convergence Zone
(ITCZ) in the central Pacific along 10-15◦N also shifts equatorward,
giving more rain (and a fresher surface) near the equator, and less
rain (saltier surface) farther north.

Note that since CCA is a linear technique, we can arbitrarily flip
the sign of the resulting patterns (as long as we flip the sign for both
variables at once). In this case, we will have the correlation that
corresponds to a La Niña event, with the cold temperature (blue) in
the central Pacific and the salty water (red) in the west Pacific.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented correlation analysis and visualization
of the climate data. Our approach provides a general and power-
ful way to explore correlations in time-varying multivariate data.
Immediate extensions of this work which we would like to ex-
plore include adding covariances, regressions, and partial regres-
sions to our point-to-point browser. We would also consider replac-
ing probing point with probing cube, synchronizing multiple views,
and studying lag correlations, cross-model correlations, as well as
observation-forecast correlations. Besides CCA, we could look at
maximal covariance analysis (which asks what patterns of one field
has the largest covariance with another field) and redundancy anal-
ysis (which asks what patterns of one field predict the maximum
variance of another field). With these additions, all kinds of applica-
tions and multivariate extensions can be studied: we could rapidly
investigate how atmospheric winds are related to ocean tempera-
tures; how atmospheric moisture links to subsurface soil water; and
how biological productivity links to ocean currents etc.

In the future, we would explore using perceptual color mapping
schemes [2] for a more optimal color scale instead of the rainbow
color map. Our current implementation of the normalized cut algo-
rithm and the calculation of CCA rely on MatLab, which has its



(a) salinity with temp(140◦W, 0◦, 0m) (e) temperature with salt(140◦W, 0◦, 0m) (i) diagonal of cross-correlation matrix

(b) z = 0m (f) z = 0m (j) z = 0m

(c) z = 200m (g) z = 200m (k) z = 200m

(d) y = 0◦ (h) y = 0◦ (l) y = 0◦

Figure 4: Volume and slice rendering of the cross-correlation map with temperature and salinity variables. The first 120 time steps of the climate
data set are used. Left column: cross-correlation of salinity values with temperature value at (140◦W, 0◦, 0m). Middle column: cross-correlation
of temperature values with salinity value at (140◦W, 0◦, 0m). Right column: cross-correlation of temperature and salinity values at the same
locations, which correspond to the diagonal of the cross-correlation matrix.

strict memory limitation. We would like to reimplement it in C++
so that larger data input can be handled. For the normalized cut al-
gorithm, we also plan to incorporate the Nyström method [6] so that
we can extrapolate the complete solution clusters using only a small
fraction of samples instead of every single data item. This will
significantly reduce the algorithm’s memory requirements. Perfor-
mance speed up can also be sought using the GPU implementation.
Integrating all these techniques with a user interface, we aim to de-
liver a highly interactive correlation analysis and visualization tool
to the climate scientists.
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