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Abstract Five simple indices of surface temperature are
used to investigate the influence of anthropogenic and
natural (solar irradiance and volcanic aerosol) forcing
on observed climate change during the twentieth cen-
tury. These indices are based on spatial fingerprints of
climate change and include the global-mean surface
temperature, the land-ocean temperature contrast, the
magnitude of the annual cycle in surface temperature
over land, the Northern Hemisphere meridional tem-
perature gradient and the hemispheric temperature
contrast. The indices contain information independent
of variations in global-mean temperature for unforced
climate variations and hence, considered collectively,
they are more useful in an attribution study than global
mean surface temperature alone. Observed linear trends
over 1950–1999 in all the indices except the hemispheric
temperature contrast are significantly larger than sim-
ulated changes due to internal variability or natural
(solar and volcanic aerosol) forcings and are consistent
with simulated changes due to anthropogenic (green-
house gas and sulfate aerosol) forcing. The combined,
relative influence of these different forcings on observed
trends during the twentieth century is investigated
using linear regression of the observed and simulated
responses of the indices. It is found that anthropogenic

forcing accounts for almost all of the observed changes
in surface temperature during 1946–1995. We found
that early twentieth century changes (1896–1945) in
global mean temperature can be explained by a com-
bination of anthropogenic and natural forcing, as well
as internal climate variability. Estimates of ‘scaling
factors’ that weight the amplitude of model simulated
signals to corresponding observed changes using a
combined normalized index are similar to those calcu-
lated using more complex, optimal fingerprint tech-
niques.

1 Introduction

In Part 1 of this study (Braganza et al. 2003), five simple
indices of area-average surface temperature were used to
describe global-scale climate variability in observations
and several global climate model (GCM) control simu-
lations. These indices were the global-mean temperature,
mean land-ocean temperature contrast, mean magnitude
of the annual cycle in temperature over land, the
meridional temperature gradient in the Northern
Hemisphere mid-latitudes and the Northern Hemi-
sphere-Southern Hemisphere temperature contrast. On
interannual and decadal time scales, it was shown that
the covariance structure of the indices was generally
similar in long control climate simulations, detrended
observations during the twentieth century and proxy
based climate reconstructions for the period 1700–1900.
In addition, the observed correlation structure between
the indices during the twentieth century on decadal time
scales showed significant differences to the control sim-
ulations and detrended observations. These differences
were found to be similar to anthropogenic forced climate
change simulations.

While it was suggested that changes to the index-
correlation structure can be used as an indicator of
radiative forced climate change, an evaluation of any
such signal is better served by investigating the time-
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dependent evolution of the indices over the past century.
In a similar manner to Karoly and Braganza (2001), the
purpose of this work is to compare observed temporal
changes in the indices during the twentieth century with
model simulations of forced and unforced climate.
Whereas Karoly and Braganza (2001) examined only the
mean magnitude of linear trends from only two GCMs,
we greatly expand upon this work by including three
more climate models and model experiments including
anthropogenic (greenhouse gas and sulfate aerosol) as
well as natural (solar irradiance and volcanic aerosol)
forcing changes. In addition, we also analyse the recent
time-dependent response in the indices to discriminate
between these two forcings. We follow the approach of
several recent optimal fingerprint detection studies
(Hegerl et al. 1997; Stott et al. 2000a, b, 2001; Tett et al.
1999, 2002) and use linear regression techniques to
compare the amplitude of the forced response in the
indices with observed changes. This technique is applied
to each of the five surface temperature indices separately
as well as to a single combined index of climate change.

2 Data sets

The data used here are the same as those analysed
in Braganza et al. (2003). In addition to control and
anthropogenic climate change simulations from five
coupled ocean-atmosphere climate models, we also
make use of experiments using variations of natural
forcing.

2.1 Observations

A 5� global grid of blended surface air temperature
anomalies over land and sea surface temperature
anomalies (Jones et al. 1999) is used. These data are
obtained from quality controlled instrumental observa-
tions and have been used in a majority of recent studies
in climate change. As in Braganza et al. (2003), these
data are used for the period 1880–1999, with the period
prior to 1880 excluded due to sparse coverage.

2.2 Climate model data

2.2.1 Global climate models

Near-surface air temperature data from five coupled
ocean-atmosphere climate models are included in this
analysis. Each of the models was also used in the IPCC
TAR (McAvaney et al. 2001). Very brief descriptions of
the models are given.

The Geophysical Fluid Dynamics Laboratory GCM
(GFDL R30) A spectral atmospheric model with
rhomboidal truncation at wave number 30 equivalent to
3.75� longitude · 2.2� latitude (96 · 80) with 14 levels in

the vertical. The atmospheric model is coupled to an 18
level gridpoint (192 · 80) ocean model where two ocean
grid boxes under-lie each atmospheric grid box exactly.
Both models are described by Delworth et al. (2002) and
Dixon et al. (2002).

The CSIRO Mark 2 GCM (CSIRO Mk2) An atmo-
spheric R21 spectral model with an equivalent hori-
zontal resolution 5.6� longitude · 3.2� latitude (64 · 56)
and 9 levels in the vertical. This is coupled to a gridpoint
ocean model of the same horizontal resolution with 21
vertical levels (Gordon and O’Farrell 1997; Hirst et al.
2000).

The Hadley Centre GCMs (HadCM2 and Had-
CM3) Both GCMs use the same atmospheric hori-
zontal resolution, 3.75� · 2.5� (96 · 72) finite difference
model (T42/R30 equivalent) with 19 levels in the atmo-
sphere and 20 levels in the ocean (Johns 1996; Johns
et al. 1997). For HadCM2, the ocean horizontal grid lies
exactly under that of the atmospheric model. The ocean
component of HadCM3 uses much higher resolution
(1.25� · 1.25�) with six ocean grid boxes for every
atmospheric grid box. In the context of results shown
here, the main difference between the two models is that
HadCM3 includes improved representations of physical
processes in the atmosphere and the ocean (described by
Gordon et al. 2000). For example, HadCM3 employs a
radiation scheme that explicitly represents the radiative
effects of minor greenhouse gases as well as CO2, water
vapour and ozone (Edwards and Slingo 1996), as well as
a simple parametrization of background aerosol (Cu-
sack et al. 1998).

The Max Planck Institute fur Meteorologie GCM (EC-
HAM4/OPYC3) An atmospheric T42 spectral model
equivalent to 2.8� longitude · 2.8� latitude (128 · 64)
with 19 vertical layers (Roeckner et al. 1996a). The ocean
model OPYC3 uses isopycnals as the vertical coordinate
system (Oberhuber 1993). As with HadCM3, ECHAM4
also explicitly represents the effects of a range of green-
house gases and includes an explicit treatment for the
radiative effects of aerosols. A full description of the
coupled model can be found in Roeckner et al. (1996b).

All the GCMs include sea-ice models and represen-
tation of land-surface processes. CSIRO Mk2, GFDL
R30 and HadCM2 all include seasonal adjustments of
heat and fresh water fluxes at the surface to reduce cli-
mate drift in the coupled model simulations. ECHAM4
has annual mean heat and water flux adjustments while
HadCM3 has no flux adjustments and maintains a stable
control climate simulation.

2.2.2 Model simulations

2.2.2.1 Control From each of the models, we use data
from long control simulations that have been performed
without any change to the external forcing parameters.
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They therefore represent the intrinsic variability of the
modelled coupled ocean-atmosphere system. The
experiments from which we have data available are a
1000 year control simulation from CSIRO Mk2 (Hirst
1999; Hirst et al. 2000), 990 years of data from HadCM2
(Johns et al. 1997; Tett et al. 1997), 1830 years from
HadCM3 (Collins et al. 2001; Johns et al. 2003), 500
years from GFDL-R30 (Delworth et al. 2002) and 240
years from ECHAM4 (Roeckner et al. 1996).

2.2.2.2 Anthropogenic We also make use of a series of
simulations of the climate response to anthropogenic
forcing. The radiative forcing experiments used here
include anthropogenic changes in greenhouse gases and
sulfate aerosols. For the CSIRO Mk2, GFDL and
HadCM2 models, these changes are expressed as an
increase in equivalent CO2 according to IPCC scenario
IS92a along with changes in anthropogenic sulfate
aerosols represented through regional changes to surface
albedo. For the HadCM3 and ECHAM4 models, in-
creases in individual major anthropogenic greenhouse
gases are included, together with explicit treatment of
the direct radiative effect of sulfate aerosols. HadCM3
also includes a parametrization for indirect sulfate
forcing effects via cloud albedo changes as well as a
representation of anthropogenic changes to tropospheric
and stratospheric ozone (Johns et al. 2003). From
HadCM2 and HadCM3, we have four independent
members of an ensemble of simulations with increasing
greenhouse gases and sulfate aerosols (GS), three GS
ensemble members from GFDL R30, two from EC-
HAM4 and one from CSIRO Mk2.

2.2.2.3 Natural In addition to the control and anthro-
pogenic forcing simulations, data from transient exper-
iments with changing solar irradiance and volcanic
aerosol forcing are also used in the analysis. Variations
in the amount of solar radiation reaching the top-of-the-
atmosphere form an important external forcing mecha-
nism for climate variability. In the past, changes in the
magnitude of solar irradiance have had a significant
forcing effect on global climate (Mitchell et al. 2001;
Stott et al. 2000a, b, 2001; Tett et al. 1999, 2002). Several
reconstructions of past solar variability presently exist,
most notably by Lean et al. (1995) and Hoyt and Sch-
atten (1993). Attempts have been made to incorporate
both these solar irradiance reconstructions into transient
climate change experiments. Here we have available an
ensemble of transient simulations from HadCM2 using
the solar forcing scenario of Lean et al. (1995), also
known as Lean, Beer and Bradley (1995) or LBB (which
we shall adopt herein). These simulations have been
previously employed in attribution studies by Tett et al.
(1999) and Stott et al. (2001). The LBB solar forcing
scenario is reconstructed annually from 1610 to 1995
and includes the effect of the 11-year irradiance cycle as
well as longer-term variability components. Only the

total solar irradiance was altered, not its spectral dis-
tribution, nor was any allowance made for possible
associated changes in ozone (Stott et al. 2001). Initiali-
sation of the LBB simulations was performed as for the
HadCM2 GS runs. Two different periods of estimated
solar variations were used in a four-member ensemble
for the LBB simulations, one started in the 1751 and
finishing in 1860 and three from 1890 to 1997. Since here
we are only considering simulated changes correspond-
ing to instrumental observations over the twentieth
century, the earlier simulation is discarded so that we
effectively use a three-member ensemble of LBB. It is
important to note that considerable uncertainty exists in
the reconstructed solar irradiance time series, particu-
larly before 1979 (Tett et al. 1999), and that this limi-
tation is implicit in results shown here.

As well as solar irradiance, radiative forcing changes
due to volcanic aerosols have also been found to have a
significant impact on climate variability, particularly on
interannual and decadal time scales (Free and Robock
1999; Shine and Forster 1999; Crowley 2000; Robock
2000). As with solar variability, several reconstructions
of volcanic forcing now exist (Sato et al. 1993; Robock
and Free 1995; Crowley and Kim 1999; Free and Ro-
bock 1999). The reconstructions of Sato et al. (1993) are
based on ground-based observations and have been
incorporated into a four-member ensemble of transient
volcanic forcing simulations using HadCM2. These
simulations have been previously employed in the same
studies already named (Tett et al. 1999; Stott et al. 2001).
The reconstructed volcanic aerosol optical depths of
Sato et al. (1993) were applied to the model as monthly
values in four 45� zonal bands. Aerosol was spread over
model layers between the diagnosed tropopause and
10hPa (Stott et al. 2001). All four of the ensemble
members were initialised in the same manner as the
HadCM2 GS ensemble. The starting date for volcanic
forcing changes is 1850 although only three simulations
run till 1995, hence only three are used here. From
herein the volcanic forcing experiments shall be referred
to as VOL. As with solar irradiance changes, some
uncertainty exists in the reconstruction of volcanic aer-
osol forcing over the twentieth century.

As well as the separate solar (LBB) and volcanic
(VOL) forced simulations of HadCM2, we also make
use of a four-member ensemble of simulations from
HadCM3 forced with the combined solar and volcanic
reconstructions as described. These simulations have
been analysed by Tett et al. (2002) and Mitchell et al.
(2001). The individual ensemble members were initia-
lised in the same manner as the HadCM3 GS runs, with
initial conditions taken from different states of the
control run, separated by 100 years. This means that
both the GS and the combined natural forcing (NAT
from herein) ensemble members share the same initial
conditions. All four ensemble members are used here for
the period 1896–1995. Details of these and other Had-
CM3 ensembles can be found in Tett et al. (2002).
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3 Data coverage

As discussed by Braganza et al. (2003), spatial coverage
of the gridded instrumental data is not uniform over
time. Large areas of missing data are present in the early
part of the record and over Antarctica and the interior
of the Southern Hemisphere continents during the entire
period. On the global scale however, the suitability of
the observational data to estimate climate variability has
been established (Jones 1995; Parker et al. 1995). In
order to overcome the differences in spatial coverage
between the observations and models, Braganza et al.
(2003) define a temporally fixed data mask to exclude
regions where the observations were sparse or non-
existent. This same mask (Fig. 1) is applied here to
calculate the indices from instrumental observations and
model data.

4 Simple global indices

Five simple global indices of climate change and vari-
ability, described by Braganza et al. (2003), are analysed
here. They are the global-mean temperature (GM),
mean land-ocean temperature contrast (LO), mean
magnitude of the annual cycle in temperature over land
(AC), the meridional temperature gradient in the
Northern Hemisphere mid-latitudes (MTG) and the
Northern Hemisphere-Southern Hemisphere tempera-
ture contrast (NS). These indices have been based on
some of the spatial patterns of climate change that have

been used most commonly. While they are not defined to
have the same level of uniqueness as spatial fingerprints,
the indices do represent the main features of the mod-
elled surface temperature response to increasing green-
house gases. In addition, defining indices based on large
area-averages significantly enhances the signal-to-noise
ratio, increasing the probability of climate change
detection (Wigley and Barnett 1990; Stott and Tett
1998). Braganza et al. (2003) also show that interannual
and decadal variations in four of the indices (GM, LO,
AC, MTG) are reasonably independent for unforced
climate whilst showing a coherent response for green-
house climate change. Considered collectively, these
indices therefore provide information in addition to the
global mean alone and provide a useful signal of
greenhouse climate change.

The surface temperature data used to calculate the
indices are anomalies relative to a 30-year reference
period from the control simulations for model data and
relative to the period 1961–1990 in the observations
(Jones et al. 1999). Annual means were constructed as in
Braganza et al. (2003) using seasonal averages from
December of the previous year to November. Time
series of the indices from all data sources have been
rescaled relative to 1881–1910. In order to estimate
variability on decadal time scales, the interannual time
series are filtered with a low-pass, 21-point binomial
filter (half power at periods near 10 years) as used in
Braganza et al. (2003) and IPCC TAR (Folland et al.
2001). A full definition of the indices, including their
association with aspects of the large-scale atmospheric
circulation, is given by Braganza et al. (2003).

Fig. 1 Data mask used in the
calculation of the indices from
both observed and modelled
data. White areas indicate
regions included in the analysis.
Shaded areas indicate regions of
sparse coverage (less than 40
years of data since 1900) that
were excluded from the analysis
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Global-mean surface temperature (GM): studies of
climate change detection commonly use some measure
of global-mean surface temperature. Here we simply
take the area-weighted global average of surface tem-
perature.

The contrast between land and ocean surface temperature
(LO): LO is defined as the difference between mean
surface air temperature (SAT) over land and mean sea
surface temperature (SST). This index has been chosen
to capture the pattern of greater and more rapid
warming over land than ocean (SAT - SST) that has been
identified in previous studies (Jain et al. 1999;Meehl et al.
1993).

The inter-hemispheric difference in surface temperature
(NS): NS is defined as mean Northern Hemisphere
(NH) temperature minus the mean Southern Hemi-
sphere (SH) temperature. This index has been chosen to
represent the influence of anthropogenic sulfate aerosols
in the NH, which contribute to relative cooling in the
NH (Kaufmann and Stern 1997; Meehl et al. 1993;
Santer et al. 1996; Wigley et al. 1998).

The mean magnitude of the annual cycle in temperature
over land (AC): The magnitude of the annual cycle
was calculated for each hemisphere by subtracting
mean winter from mean summer surface tempera-
ture over land. These quantities were then area-weighted
by the fraction of global land surface area in
the respective hemisphere and combined into a single
index.

AC ¼WNH JJA�DJFh i þWSH DJF� JJAh i

Note that AC is effectively the seasonal range between
winter and summer temperatures and will be somewhat
less than the magnitude of the annual cycle estimated by
fitting a sinusoid to the monthly temperatures. The
variations of AC computed here are highly correlated
with those calculated from fitting a sinusoid to monthly
data. AC has been chosen to represent the range of the
annual cycle of temperature, which has been shown to be
decreasing overall in the observations mainly as a result
of increased warming over land during winter (Thomson
1995; Mann and Park 1996).

The mean meridional temperature gradient in the NH
mid-latitudes (MTG): MTG is defined by taking the
difference in area averaged surface temperature from
mid to high latitude and sub-tropical zonal bands in the
NH hemisphere.

MTG ¼ 52:5�N� 67:5�Nh i � 22:5�N� 37:5�Nh i

This index has been chosen to represent the expected
high latitude amplification of the warming due to
increasing greenhouse gases (Manabe and Stouffer
1980; Wigley and Barnett 1990) and the recent
observed pattern of greater warming in high latitudes

compared to the tropics (Gitelman et al. 1997, 1999;
Jain et al. 1999). A positive trend in MTG corresponds
to a reduction in the equator-to-pole temperature
gradient.

5 Observed and simulated trends in the indices during
the twentieth century

We first compare observed trends in the indices with
those in forced model simulations. Time series of dec-
adal scale variations in each of the observed indices are
plotted against the ensemble mean trends from GS
simulations from all of the models (Fig. 2). Error bars
indicate the uncertainty at the 5–95% confidence level
associated with ensemble sampling for an individual
realisation. For the latter part of the twentieth century,
large changes are found for GM, LO and AC in the
context of the previous 100 years. Large changes are also
found in MTG, although the signal is less clear due to
larger interdecadal variability. GS forced simulations
from all models produce similar trends to those observed
in surface warming (GM), increased warming over land
(LO) and increased warming at higher latitudes (MTG)
but underestimate both the decadal variability and the
negative trend in the magnitude of the annual cycle
(AC). This is attributable to less warming and decadal
variability in surface temperature over land during
winter in the forced simulations compared to observed
changes during the last 50 years.

Figure 3 shows the magnitude of 50 and 100-year
linear trends in observations and GS experiments over
three time periods from the low-pass filtered time ser-
ies. Fifty-year trends from the first half (1900–1949)
and last half (1950–1999) of the century are shown
along with the 100-year trend from 1900–1999. For the
GS experiments, uncertainties in the magnitude of the
mean trends are the 5%–95% confidence interval for
the distribution of 50 and 100-year linear trends
(sampled at 10 year intervals) from the long control
simulations. Linear regression analysis presented in the
following section shows that estimating the uncertainty
in the forced trends from the control is reasonable since
the magnitude of the ensemble sampling error can be
attributed to the intrinsic variability in each of the
models. No uncertainty estimates are shown for EC-
HAM4 since the length of the control integration used
here is relatively short. Inspection of the mean 50 and
100-year trends in the indices from control climate
simulations shows that the distribution of trends for
each index is similar in all the models. For all the
indices, unforced 50 and 100-year linear trends are
normally distributed about zero. By contrast, the
magnitude of observed changes over the last 50 years
are significantly different to the range of trends ex-
pected due to modelled internal variability for all
indices except NS (hemispheric temperature contrast).
Since the models simulate reasonably realistic internal
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variability in the indices (Braganza et al. 2003), here we
will use uncertainty estimated from HadCM3 to rep-
resent uncertainty in the observations. HadCM3 has
the largest variability across all of the indices and the
longest control simulation. Uncertainty in the observed

linear trends is indicated in Fig. 3 as an error bar about
zero for each index. A linear trend is defined as sig-
nificant when uncertainty in the simulated trend does
not overlap with the 5–95% confidence interval for the
distribution of trends from internal variability.

Fig. 2a–e Decadal smoothed ensemble mean timeseries of indices from observations and model GS runs for the period 1900–1999. Error
bars represent the 5–95% confidence interval associated with ensemble sampling uncertainty, except for CSIROMk2, where uncertainty is
estimated from the decadal scale variability in the control
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While the mean observed 100-year trends for 1900–
1999 are significant in GM (0.62 �C) and AC (–0.43 �C)
and relatively large for MTG (0.27 �C), the temporal
response in the indices is markedly different between the
first and second half of the century. During the first 50
years, observed and modelled trends in each of the
indices were not significantly different to estimates of
natural variability, except for GM which warmed by
0.5 �C in the observations. For LO, AC and MTG, the
signal of climate change is largest over the last 50 years.
For this period, there is statistical consistency (consid-
ering estimated uncertainty due to intrinsic climate
variability and estimated ensemble sampling error) be-
tween GS simulations and observations in the majority
of models and for all of the indices except NS. Changes
in the annual cycle are too small in the models over the
last 50 years while GFDL-R30 shows no trend in MTG
over the same period. For NS, recent observed trends
are small and of opposite sign to those in the GS forced
experiments. In general however, the consistency be-
tween the observed trends and the magnitude of the GS

response in LO, AC and MTG indices, as well as GM,
provides additional evidence for anthropogenic influence
on climate over the last 50 years. It should also be noted
that none of the GS simulations, except perhaps GFDL
R30, can explain the observed GM increase during the
first half of the twentieth century.

Figure 4 shows 50, 45 and 100-year trends for three
different periods, 1900–1949, 1950–1994 and 1895–1994
for GS, LBB and VOL simulations from HadCM2 and
for GS and NAT simulations from HadCM3. These
periods do not correspond exactly to the GS analysis
described already, where trends were compared for the
period 1900–1999, since the naturally forced simulations
are available until 1994 only. As with GS forced simula-
tions, estimated 50-year trends in the indices due to nat-
ural forcing are not significantly different to zero during
the early century. For changes in the latter half of the
century, HadCM3NAT andHadCM2 LBB also produce
no significant trends in the indices. Volcanic aerosol
forced trends in global mean temperature inHadCM2 are
significant for the same period, although of the opposite

Fig. 3a–c Estimated linear
trends in the indices from
observation and GS simulations
over three periods, 1900–1949,
1950–1999, 1900–1999. Error
bars represent the 5–95%
confidence interval estimated
from the distribution of trends
in the control for each model
except ECHAM4 for which
there is only 240 years of
control data. Uncertainty due
to intrinsic climate variability is
estimated from the 5–95%
confidence interval from
HadCM3 control integration
and represented as an error bar
about zero for the observations
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sign to the observations, and similar to HadCM2 GS for
MTG. For century scale linear trends, only the GS runs
produce changes in GM similar in magnitude to the ob-
served. The steady increase in solar forced GM in Had-
CM2 over the whole of the twentieth century is reflected
in the magnitude of the 100-year trend, which is signifi-
cantly larger than zero (0.2 �C), but not consistent with
the magnitude of the observed warming. Volcanic forcing
in HadCM2 produces a significant trend in MTG that is
comparable with both observations and GS forcing. The
suggestion in these results is that, while changes due to
natural forcing are not generally larger in magnitude than
those expected due to intrinsic climate variability, they
may have in part contributed to observed changes in
global mean temperature and meridional temperature
gradient over the whole of the twentieth century.

6 Time dependent changes in the indices

While comparison of the magnitude of trends provides
some information about the mean response or sensitivity

to GS and natural forcing, it is perhaps not the best
method of investigating time dependent changes in the
forced response. Since the assessment of human influence
on climate would be greatly aided by the attribution of
recent observed changes to one or more forcing mecha-
nisms, as well as an assessment of the influence of intrinsic
variability or noise, we need somemethod of assessing the
relative contributions that multiple forcing factors make
to observed climate change. In this section, we compare
the mean temporal evolution of the indices between
observations and forced simulations and determine
whether the residual decadal time scale variability is
consistent with estimates of internal variability or attrib-
utable to some other, additional forcing mechanism.

As outlined earlier, a common approach to attribu-
tion (following from Hasselmann 1993) is to test for
consistency in the signal amplitude of observations and
GCM transient forced simulations. This approach is
based on the assumption that observed changes S may
be represented as a linear sum of the response to l dif-
ferent forcing signals and internal climate variability or
noise N.

Fig. 4a–c Estimated linear
trends in the indices from
observation and GS and
naturally forced simulations
from HadCM2 and HadCM3
over three periods, 1900–1949,
1950–1999, 1900–1999. Error
bars represent the 5–95%
confidence interval estimated
from the distribution of trends
in the control. Uncertainty due
to intrinsic climate variability is
estimated from the 5–95%
confidence interval from
HadCM3 control integration
and represented as an error bar
about zero for the observations
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S ¼
Xl

i¼1
biFi þN ð1Þ

with bi representing the amplitude or amount by which
we have to scale the ith response signal F in order to
match observations. Equation 1 can be rewritten to
explicitly include the anthropogenic and natural simu-
lations used here;

S ¼ b1GSþ b2LBBþ b3VOLþN ð2Þ

or

S ¼ b1GSþ b2NATþN ð3Þ

While many different variations of this approach have
been taken it has been shown (Allen and Tett 1999) that
such methods are basically variations of linear or mul-
tiple-linear regression techniques. It has also been shown
(Allen et al. 2000; Tett et al. 2002) that regression
analysis reduces the impact of uncertainties in the cli-
mate response to forcing, such as the climate sensitivity,
by providing estimates of the relative linear contribu-
tions of external forcing mechanisms and internal vari-
ability to the climate change signal. Several recent
studies (Stott et al. 2000a,b, 2001; Tett et al. 1999, 2002;
Hegerl et al. 1997) have used multiple linear regression
techniques to assess the relative influence of multiple
radiative forcings in observed changes. Chapter 12 of the
IPCC TAR (Mitchell et al. 2001) contains estimates of
scaling factors for the amplitude of anthropogenic and
naturally forced model simulated signals for a range of
GCMs. Whereas the majority of previous studies have
applied these techniques to estimate the amplitudes of
space-time varying signals in an optimal fingerprint
framework, our test statistic is simply the climate change
indices, considered individually and collectively as a
normalised single index. This approach simplifies the
analysis of results while still providing additional
information for attribution through the spatial infor-
mation contained in the indices themselves. Previous
fingerprint pattern correlation studies (Santer et al.
1993) have noted that failure to detect greenhouse signal
patterns in observations may be due to the signal being
obscured by noise associated with internal climate var-
iability. In this regard, determination of the signal-to-
noise ratio of the global indices is somewhat simpler and
easier to interpret than spatially normalised optimal
fingerprints.

We use a simple form of linear regression (ordinary
least squares) to investigate the amplitude consistency
between observed and simulated changes in the indices.
In an attribution context, linear regression analysis al-
lows us to describe a relationship between the means of
the observed signal (dependent data) and the simulated
forced response (independent data) so that we may
formulate a linear relationship as in Eq. 1 that provides
a realised value of S predicted by the sum of the forc-
ings. Here we apply single linear regression to describe
the relationship between observations and the GS forced

response as well as multiple linear regression to investi-
gate the relationship between observations and the
combined response due to anthropogenic and natural
forcing. For multiple regression, the independent data
are treated as a matrix of independent time series (sim-
ulated forced responses) whose linear combination is
fitted to the observed timeseries. The resultant timeseries
is referred to as the realised response (best fit) from the
linear combination of forced signals. The resultant sca-
lar linear regression coefficients (bi in Eq. 1) represent
the scaling required for the amplitude of the forced re-
sponse in order to be consistent with observed changes.

In an attribution context, estimating uncertainty in
the amplitude scaling of model simulated signals is
useful in determining the amplitude consistency between
observed changes and the simulated forced response. In
order to determine a confidence region for the amplitude
scaling for the indices, we must estimate the variance of
the linear regression coefficient. Since the regression
coefficient is a linear function of the observations, which
we assume to be normally distributed, we may then as-
sume that bi is also normal. The variance of bi may then
be estimated from the variance in the residuals (regres-
sion model error) divided by the sum of squared
departures from the mean of the independent data
(Myers 1986). Here this is represented as

r2
b ¼ r2

N=sseF ð4Þ

where r2N is the variance of the intrinsic noise term N in
the regression Eq. 1 and sseF is the sum of squared
departures from the mean of the simulated forced time
series. Previous studies, (Allen et al. 2000; Stott et al.
2001; Tett et al. 2002) have derived uncertainty estimates
in observed and model responses from numerical simu-
lations. Following from these studies the intrinsic cli-
mate noise is perhaps best estimated from the control
integration. While it has also been noted that deriving
uncertainty limits from simulations may be considered a
significant source of uncertainty in itself (Tett et al.
2002), Braganza et al. (2003) show that this is a rea-
sonable approach in the context of the climate change
indices used here. We define a measure of noise which we
call the noise variance (r2N), calculated as the sum of the
mean 100-year internal variance from the control (r2

i)
and the ensemble variance (r2

e) divided by the number
of ensemble members Ne,

r2
N ¼ r2

i þ r2
e=Ne ð5Þ

Themean internal variance r2
i is calculated from 100 year

samples taken at 50 year intervals from the low-pass fil-
tered control run as in Braganza et al. (2003). Since the
regression results were found to be sensitive to decadal
variability, the low-pass filtered data was further
smoothed by taking the decadal mean, spaced evenly at
10-year intervals, so that the variability and regression
analysis are both performed using 10 decadal-mean val-
ues over the 100 year time series or samples. The relative
shortness of this record forms a limitation in this work.
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The noise variance allows us to take into account
the internal noise estimate for the observations (from
the control) and the uncertainty in the forced response
(from the ensemble mean or sampling noise) when
calculating uncertainty in the amplitude scaling. For
each model, r2

i and r2
e are found to be very similar

indicating that variability between ensemble members is
associated with the intrinsic climate variability of the
model. Here we use the HadCM3 control run to cal-
culate r2

i since it gives the largest estimates of internal
variance across all the indices. Confidence intervals for
the noise variance are calculated using the resampled
variance (var) of r2

i from HadCM3 control as in
Braganza et al. (2003). The variance of r2

N is therefore
estimated as

varðr2
N Þ ¼ varðr2

i Þð1þ 1=NeÞ : ð6Þ

Amplitude consistency tests were performed using single
linear regression analysis over the period 1896–1995 for
the observed and GS response from each of the five

models and using multiple linear regression analysis over
the same period for the GS and naturally forced re-
sponses from HadCM2 and HadCM3. Figure 5a shows
the amplitude scaling factor (linear regression coefficient
b1) for the GS response in each of the models and for
each of the indices as well as the associated 5–95%
confidence interval. As well as the five indices, also
shown is the scaling for the single or combined nor-
malized index (CNI), composed of the indices GM, LO,
AC and MTG. In order to apply linear regression across
all of the variables, the timeseries must have zero mean
and uniform variance. Hence, the CNI was constructed
by concatenating the zero-mean, normalized time series
of each of the indices into a single 400-year (40 point)
decadal time series. The control 100-year mean standard
deviation was used to normalise the data. As a check of
the internal variance estimate, rN was calculated for the
normalised index and was found to be very close topð1þ 1=NeÞfor each model. The NS index has been
omitted from the CNI since it has been shown here to

Fig. 5 a Single linear regression
coefficients (b) representing the
scaling amplitude of the GS
model response for each index
compared to the observed
(unity). b Multiple (linearly
combined) regression
coefficients representing GS,
SOL, LBB and NAT amplitude
scaling. Error bars represent
uncertainty in scaling at the
5–95% confidence interval
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display no significant response to anthropogenic forcing.
In addition, Karoly and Braganza (2001) and Braganza
et al. (2003) showed that NS is highly correlated with LO
for internal variations.

Following Tett et al. (2002) we test that the amplitude
of the simulated forced response is consistent with that
of the observed signal. If the two-tailed uncertainty in-
cludes unity then we infer consistency in the signal
amplitude at the 90% confidence level. Similarly, if the
uncertainty includes zero, then we conclude that there is
no significant signal of forcing present in the observa-
tions. Amplitude consistency plots for GS forcing are
shown in figure 5a. A significant anthropogenic climate
signal can be detected separately in the observed LO and
AC indices in all models except CSIRO, as well as in
GM. For NS, the amplitude scaling for all the models is
not significantly different to zero, indicating that an
anthropogenic climate signal cannot be detected in the
interhemispheric temperature contrast. For GM there
exists remarkable amplitude consistency in all but the
single GS realisation of CSIRO Mk2 which falls just
outside the confidence region. Similarly for LO of
CSIRO Mk2 and ECHAM4 where the response is too
small, as evidenced by the magnitude of the linear
trends. For CNI, consistency is found in HadCM2,
HadCM3 and GFDL-R30 but not in ECHAM4 (2
member ensemble) and CSIRO Mk2 (single run) at the
90% confidence interval.

Along with the amplitude consistency, further infor-
mation may be extracted from the linear regression
analysis by making use of the noise estimates we define
in the preceding section. As in Braganza et al. (2003),
where the variance of the detrended residuals from the
observations and transient experiments were compared
to the unforced variability of control simulations, the
error between the realised response and the actual ob-
served timeseries may be compared to the noise variance
r2

N defined above. Differences between the realised re-
sponse and observations may be expected to contain
more information than residuals calculated by removing
a polynomial trend (as in Braganza et al. 2003) since the

realised response effectively represents the estimated
contribution of the forced response to the observed
signal. If these residual errors are consistent with the
noise variance estimate then we may infer that the ob-
served signal is composed of the scaled forced response
plus intrinsic climate noise as in Eq. 1. As discussed
previously, given that the variability of the indices in the
control integrations of all the models is realistic, a large
mean residual error compared to internal noise suggests
that the observed signal contains responses to uniden-
tified forcings or processes (e.g. land-surface changes),
or errors in the simulated variance and observations.

Figure 6 shows the mean sum of squared errors
(MSE) taken from the difference between the observed
trend and fitted response for GS forcing alone, plotted
against internal variance for GM and CNI. Both values
shown are degrees Celsius scaled by a factor of ·100. If
the two-tailed uncertainty in the estimated internal
variance encompasses the MSE than we infer some
consistency between climate noise and residual errors.
For changes to global mean surface temperature (GM),
only the GFDL-R30 simulation has residual errors that
are consistent with unforced climate variability. For
HadCM3 GM, the magnitude of residual variability is
large when compared to intrinsic climate noise and
suggests either errors in the simulated forced response or
that other forcing factors may contribute to the ob-
served signal. This result highlights the problems in
attributing climate change using global mean alone. For
the combined index (CNI), no significant differences are
found between the internal variance and MSE in any of
the models.

This leads us to consideration of the relative contri-
butions of GS and naturally forced responses to the
observed signal. Figure 5b shows the multiple regression
coefficients or linearly combined amplitude scaling for
each index and forcing, as well as the combined nor-
malized index, along with uncertainties at the 5–95%
confidence interval. Looking first at HadCM2, the
anthropogenic forced response makes a statistically
significant contribution to GM, LO and AC but not to

Fig. 6 Mean sum of squared
errors (MSE) from the linear
response (best fit) in a GM and
b CNI versus the noise variance
(r2N). Error bars represent the
5–95% confidence interval for
r2N. Values are degrees Celsius
· 100
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MTG and NS. GS amplitude scaling is consistent with
observations only for LO, with the relative contributions
from the solar and volcanic aerosol LO responses con-
sistent with zero. For the realised GM response, the
amplitude of the GS response is too large compared to
the observed (i.e. the required amplitude scaling is less
than 1). The LBB forced global-mean temperature was
found to be both highly correlated with (0.91) and
consistent in amplitude with observations. While the
magnitude of the LBB GM response is much smaller
than the response to GS forcing, amplitude consistency
is inferred due to larger uncertainties in the scaling of the
LBB signal. For AC, both LBB and VOL forcing make
possible zero contributions while the GS contribution
needs to be scaled upward as may be expected from
inspection of the linear trends. Interestingly, both
anthropogenic and volcanic forced MTG responses in
HadCM2 are equally scaled and are both highly corre-
lated (0.65 and 0.70 respectively) with the observed
changes. However considering uncertainties, both forc-
ings make potential zero contribution to the realised
response. The observed changes in NS show reasonable
correlation with VOL forced changes (0.60) as well as
amplitude consistency. For the combined normalised
index (CNI), anthropogenic forcing is consistent with
the observed while solar and volcanic aerosol forced
signals make possible zero contributions to the multi-
forced realised response with large uncertainties.

For HadCM3, a more uniform result is seen across
the indices with consistency in the amplitude of the GS
signal for GM, LO, AC and MTG individually, indi-
cating that the GS signal is detectable separately in each
of these indices even when a naturally forced signal is
also considered. However, NAT forcing is found to have
a significant influence on GM (but not the other indices)
after uncertainties are included. We may infer from
comparison with LBB and VOL GM signals that this
result is dominated by the solar forcing response. For
the combined index (CNI), only the GS forced response
makes a significant contribution to the observed index.
While the amplitude scaling of the NAT forced CNI
signal is of equal magnitude to observations, consistency
can not be inferred due to large uncertainty.

It must be noted that for weak forced signals, a po-
tential source of uncertainty comes from the sensitivity
of the scaling amplitudes to the use of ordinary least
squares regression. Recent work (Allen and Stott 2002)
has shown that ordinary least squares regression
underestimates the amplitude scaling for weak signals
and small ensembles. There is therefore the potential
that the amplitude of naturally forced signals is under-
estimated here. Sensitivity to ordinary least squares is
not likely to affect the amplitude estimate for GS forc-
ing, as this is a stronger signal in the second half of the
century.

Amplitude scaling factors for CNI may be compared
with optimal fingerprint scaling factors from HadCM2,
HadCM3 and ECHAM3/LSG from Mitchell et al.
(2001), who consider the simultaneous contribution of

individual forcing signals from greenhouse gas, sulfate
aerosol, solar, volcanic aerosol and combined solar and
volcanic aerosol simulations (see Fig. 12.12 from
Mitchell et al. 2001). Since greenhouse gas and sulfate
aerosol forcing are considered separately, we compare
GS forcing used here with greenhouse gas only forcing
from Mitchell et al. (2001) and find that scaling ampli-
tudes for CNI are consistent with those for optimal
fingerprints for HadCM2 and HadCM3. Similarly,
scaling of the VOL CNI response is also consistent with
that for volcanic aerosol optimal fingerprints in these
two models. While estimations of NAT and LBB scaling
differ, the relative contribution of the natural forcing
responses (ie possibly zero with large uncertainties) is
consistent.

7 Contribution to global warming

Estimates of the contribution to observed changes from
anthropogenic and natural forcing factors may be de-
rived by combining the estimates of amplitude scaling
from the models with the magnitude of the simulated
forced response. As shown by Mitchell et al. (2001),
optimal fingerprint scaling factors may be applied to the
global-mean temperature to estimate the contribution
from forcing changes to observed global mean warming
over the twentieth century (see Fig. 12.12, Mitchell et al.
2001). In a similar manner, here we apply the CNI
amplitude scaling to the model predicted change in GM.
We calculate estimated contributions from each of the
forcing simulations considered here to global warming
over three periods, the whole of the twentieth century
(1896–1995), the latter part of the twentieth century
(1946–1995) and the early part of the twentieth century
(1896–1945). Figure 7 summarises these estimates for
GS forcing in all the models, and for the linear combi-
nation of GS and natural forcing in HadCM2 and
HadCM3. Results for the period 1946–1995 are not
shown since they are similar to those for the whole
century. In order to calculate uncertainties in the con-
tribution to global warming from radiative forcing
changes we take into account uncertainty in the scaling
amplitude and uncertainty in the simulated forced re-
sponse. Uncertainty is estimated by taking the product
of the variance for two independent, normally distrib-
uted variables. In this case our variables are the CNI
amplitude scaling X,

X � Nðb; r2
bÞ

and the forced change in GM from the model simula-
tions Y,

Y � NðT ; r2
T Þ :

We can estimate the variance in the contribution to
global warming XY as,

varðXY Þ ¼ r2
br

2
c þ r2

bT 2 þ r2
T b2

i : ð7Þ
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The mean change T in GM is calculated as the ensemble
mean linear trend from the multi-decadal smoothed time
series. The variance of T is estimated from the range of
trends found in the control integration.

Figure 7 shows estimated contributions to global
warming from anthropogenic and natural forcing with
uncertainties at the 5–95% confidence interval. Uncer-
tainties in the magnitude of observed changes are esti-
mated using the range of multi-decadal trends from the
HadCM3 long control integration. Considering the
period 1896–1995, GS forcing alone (Fig. 7a, panel 2)
produces scaled changes in GM that are consistent with
observed changes and internal variability. For multiple
forcing (Fig. 7a, panels 3 and 4), GS forcing contributes
most to the observed warming with smaller and statis-
tically insignificant contributions from natural forcing.
These results are consistent with those shown in Fig.
12.10b from IPCC TAR.

Figure 7b shows the estimated contribution to global
warming during the early twentieth century. GS forcing
alone (Fig. 7b, panel 2) makes a non-zero contribution

to global warming in only two models, CSIRO Mk2
(0.06 �C) and GFDL-R30 (0.15 �C). Such changes can-
not fully account for the magnitude of observed change
(0.35 ± 0.11 �C) to global mean temperature for 1896–
1945. Previous studies (Stott et al. 2001; Tett et al. 2002)
have suggested that large changes to observed global
mean surface temperature during this period are more
likely to be explained by a combination of forcing fac-
tors rather than dominated by greenhouse gas changes.
This is supported here in analysis using HadCM3
(Fig. 7b, panel 2), which shows that anthropogenic
forced changes (0.10 ± 0.13 �C) and naturally forced
changes (0.12 ± 0.11 �C), as well as maximal changes
due to intrinsic variability (± 0.11 �C) may explain
observed global mean surface warming for the early
twentieth century.

Since all of the forced signals are weak and the
uncertainties larger during the early part of the twentieth
century, a number of considerations need to be taken
into account when assessing the relative contributions to
the observed response. It has been noted previously

Fig. 7 a Estimated contribution
to global warming over the
twentieth century (1896–1995)
b Estimated contribution to
global warming during the early
twentieth century (1896–1945).
Calculated as changes in GM
from anthropogenic forcing (all
models GS) and relative
changes in GM from combined
anthropogenic and natural
forcing (HadCM2 and
HadCM3) from the multi-
decadal smoothed time series
and scaled with CNI amplitude
scaling. Error bars represent the
5–95% confidence interval
estimated from uncertainty in
CNI amplitude scaling applied
to the estimated changes in
GM. The observed change is
calculated from the multi-
decadal smoothed time series
with the uncertainty taken from
the 5–95% confidence interval
from the distribution of trends
from HadCM3 control
integration
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(Johns et al. 2001; Stott et al. 2001; Allen and Stott 2002)
that the ability to detect naturally forced signals is sen-
sitive to the various choices made in the methodologies.
While the scaled warming in HadCM2 shows possible
zero contributions from natural forcing, estimated
changes for this period were found to be highly sensitive
to the sampling period of the multi-decadal time series,
particularly for the VOL forced response. By changing
the sampling period, it is possible to detect a non-zero
contribution to global warming due to changes in vol-
canic aerosol forcing. The sensitivity of VOL detection
to sampling is consistent with that of Stott et al. (2001)
for decadal averages on 50 year time scales. The estimate
of natural contributions to the observed warming may
also be sensitive to the use of ordinary least squares
regression.

8 Summary

Over the last 50 years, observed linear trends in the
global-mean temperature (GM), the land-ocean tem-
perature contrast (LO), the magnitude of the annual
cycle in temperature over land (AC) and the Northern
Hemisphere meridional temperature gradient (MTG)
are found to be significantly larger than changes ex-
pected due to internal variability and changes in solar
and volcanic aerosol forcing. Good agreement is found
between the observed trends and greenhouse gas plus
sulfate aerosol (GS) forced response in all of the indices
except the hemispheric temperature contrast (NS), which
displays no climate change signal, and the magnitude of
AC, which shows a large negative trend in the obser-
vations that is consistently too small in each of the
models analysed here. Consistency between the observed
and GS trends in four different indices suggests that
anthropogenic forcing has had a large influence on ob-
served changes during the later part of the twentieth
century.

Single and multiple linear regression of the observed
and modelled response of the indices to different radia-
tive forcing factors provides useful information for the
attribution of recent observed climate change. Signal
amplitude consistency tests were performed to compare
anthropogenic forced changes to observed changes in
each of the five climate models considered here. The
magnitude of GS simulated and observed responses of
each of the surface temperature indices as well as a
combined normalised index (CNI) were tested for con-
sistency. In addition, amplitude scaling was calculated
for simultaneous (linearly combined) anthropogenic and
naturally forced responses from HadCM2 and Had-
CM3. Results from this analysis reveal the relative
importance of anthropogenic, solar and volcanic aerosol
forcing, as well as intrinsic climate noise, in the observed
changes in the indices. For the four climate change
indices, GM, LO, AC and MTG, there is good agree-
ment in the amplitude of the observed and GS signals in
almost all of the models. In addition, the GS-forced

model simulations show reasonably high correlation
with observed changes, although results vary between
the models. For global mean temperature, results indi-
cate that GS forcing has a significant influence on
changes during the twentieth century and dominates the
climate change signal over the last 50 years. For the
early part of the century, changes to GM may be ex-
plained by a combination of natural and GS forcing, as
well as internal climate variability. This result is con-
sistent with the IPCC Third Assessment Report
(Mitchell et al. 2001) and several recent studies (Stott
et al. 2000a, 2000b, 2001; Tett et al. 1999, 2002). The GS
forced response is also found to dominate the observed
LO signal.

For changes to AC, we may infer from multiple
regression analysis that differences between the large
observed trend and the more modest GS forced response
are unlikely to be explained by contributions from solar
or volcanic forcing. Similarly, comparison of residual
errors between the observed and realised response due to
multiple forcing with estimates of unforced climate
variability suggest that these differences are also unlikely
to be explained by uncertainty due to climate noise. It is
therefore likely that the GCM simulation of AC is
inadequate or that the observations are responding to
some as yet unknown forcing. Of all the models con-
sidered here, changes to AC are largest in HadCM3.
This model includes more realistic representation of
clouds, including some representation of the indirect
effect of increasing aerosols on clouds, and no flux
adjustments. Two ensemble members from HadCM3 GS
simulations produce relatively large trends (–0.38 �C
and –0.35 �C) for the period 1950–1999 that may be
considered consistent with observations (–0.49 �C) after
taking into account sampling uncertainty.

While results also indicate that GS forcing can ex-
plain much of the observed signal in MTG, results from
HadCM2 indicate that volcanic aerosol forcing may also
produce changes in MTG that are consistent with
observations. This result supports suggestions from
previous studies (Graf et al. 1998; Mao and Robock
1998; Kirchner et al. 1999) that changes in circulation
and warming in the Northern Hemisphere high latitudes
may be associated with volcanic eruptions.

Detection results for MTG again underline the limi-
tations of using a single indicator of climate change in an
attribution context. Considered alone and over short
periods (less than 100 years), MTG and to a lesser extent
global mean temperature provide ambiguous evidence
for the attribution of climate change as they do not
clearly differentiate between the effects of anthropogenic
and natural forcing. In this respect, the combined nor-
malised index provides an improved signal of climate
change in much the same manner as spatial fingerprints,
while being easier to analyse and interpret. For the CNI,
only the GS response was found to have both consistent
amplitude and temporal correlation with the observed
index in all of the models except CSIRO Mk2 and
ECHAM4 (both of which have relatively small GS
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ensembles, with 1 and 2 member ensembles respectively).
In addition, residual errors from regression of the GS
forced responses of CNI are found to be consistent with
climate noise. Considering multiple forcings simulta-
neously, the contribution of natural forcing factors to
changes in CNI over the twentieth century are not sig-
nificantly greater than changes due to internal climate
variability. Amplitude scaling factors from CNI applied
to global warming estimations are also found to be
consistent with more-complex optimal fingerprint results
and reinforce evidence that GS forcing makes a signifi-
cant and dominant contribution to observed climate
change during the last 100 years.
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