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ABSTRACT

Longitudinal variations in the upper-tropospheric time-mean flow strongly modulate the structure and amplitude
of upper-tropospheric eddies. This barotropic modulation is studied using simple models of wave propagation
through zonally varying basic states that consist of contours separating regions of uniform barotropic potential
vorticity. Such basic states represent in a simple manner the potential vorticity distribution in the upper tro-
posphere. Predictions of the effect of basic-state zonal variations on the amplitude and spatial structure of eddies
and their associated particle displacements are made using conservation of wave action or, equivalently, the
linearized ‘‘pseudoenergy’’ wave activity. The predictions are confirmed using WKB theory and linear numerical
calculations. The interaction of finite-amplitude disturbances with the basic flow is also analyzed numerically
using nonlinear contour-dynamical simulations. It is found that breaking nonlinear contour waves undergo
irreversible amplitude attenuation, scale lengthening, and frequency lowering upon passing through a region of
weak basic-state flow.

1. Introduction

The longitudinal structure of the midlatitude storm
tracks is determined not only by zonal variations in the
lower-tropospheric baroclinicity (Hoskins and Valdes
1990), but also by zonal variations in the barotropic
mean flow that control the reversible and irreversible
deformation of upper-level disturbances. For example,
eddies propagating into a split jet stream typically un-
dergo zonal compression and meridional extension, as
well as simultaneous modulation of their middle- and
upper-tropospheric geopotential amplitude (Mullen
1987; Dole 1986; Lau 1988; Nakamura and Wallace
1993). However, the quantitative relationship between
these eddy structural changes and the zonal variations
of the underlying time-mean flow is not well understood.
Understanding this relationship is a necessary first step
in constructing a theory of the time-mean effects of
eddies upon the mean flow.

Even for the relatively simple case of small-amplitude
eddies undergoing reversible deformation, it is not clear
how strongly eddies are modulated by a zonally varying
flow. Lee (1995) makes the point that certain measures
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of eddy variance may indicate strong modulation of
variance while others may not. In her linearized model,
the eddy enstrophy is approximately uniform zonally,
but the geopotential variance and eddy energy are not
and decrease sharply where the zonal flow is locally
weak.

We have, therefore, been motivated to examine more
closely barotropic wave propagation on zonally varying
basic flows using highly simplified models. The models
we consider consist of one or two discontinuities in the
barotropic potential vorticity (PV), or ‘‘contours,’’ sep-
arating regions of homogeneous PV. This modeling ap-
proach is motivated not only by its analytical and nu-
merical accessibility, but also by the observation that
PV in the upper troposphere is characterized by local
regions of sharp gradients (e.g., Hoskins et al. 1985).
Additionally, such models provide instructive examples
of how wave propagation behavior changes when the
eddy amplitudes are sufficiently large to cause irre-
versible wave breaking.

Consider the simplest case of a single PV contour
located at y 5 0 on an infinite f plane, separating a
region of PV of value Q to the south from a region of
PV of value Q 1 D to the north of the contour, along
with the associated zonal flow U(y). The dispersion re-
lation for waves on the contour (see section 3a) is

v 5 U0 k 2 D/2, (1.1)
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where k is the zonal wavenumber and U0 5 Uzy50. As
for the classical b-plane Rossby wave (Pedlosky 1987,
chapter 3), the phase speed of these waves for positive
northward PV jump D is always slower than the flow
speed on the contour and approaches the value of the
flow speed on the contour in the short-wave limit. Of
course, there are important differences: unlike the b-
plane Rossby waves, the group velocity of these waves
has no meridional component and the zonal component
equals U0, independent of k.

Wave propagation on PV contours is considerably
simpler than propagation on continuous PV distributions
because waves on PV contours are edge waves that re-
main trapped in the vicinity of the contour. In the simple
one-contour example just introduced, normal-mode so-
lutions have the form c } ei(kx2vt)e2kzyz, that is, trapped
waves with a meridional decay scale equal to their zonal
scale. Classical Rossby waves, by contrast, are not mer-
idionally localized. Waves on PV contours cannot ra-
diate meridionally because of the absence of any PV
gradient in the surrounding fluid.

The confinement of the eddies close to the PV con-
tours circumvents a significant difficulty encountered in
the analysis of small-amplitude wave propagation on
jets with continuously varying cross-stream PV (e.g.,
Hoskins and Ambrizzi 1993). Typically, synoptic-scale
eastward propagating waves on a jet have critical lines
(where the phase speed of the waves equals the local
flow speed) on the jet flanks. Irreversible breaking and
mixing near the critical lines creates a ‘‘lossy’’ wave
guide even for small-amplitude waves, as in Dickinson’s
(1968) model of vertically propagating waves in the
stratosphere, unless the PV is sufficiently mixed in the
vicinity of the critical lines, as indicated by nonlinear
critical layer theory (Warn and Warn 1978; Killworth
and McIntyre 1985). Contour models avoid these com-
plications for small-amplitude waves; heuristically, one
can think of the PV mixing on either side of the jet as
having proceeded to completion due to prior eddy ef-
fects, leaving the contour as a ‘‘loss-free’’ wave guide.
Given the relative simplicity of the linear contour prob-
lem, nonlinearities can be introduced in a controlled
manner to study how the behavior of the system changes
when the eddy amplitudes become large enough to cause
irreversible wave breaking.

In this study, we examine the effect of zonal varia-
tions in the basic flow on contour wave structure for
both small-amplitude and finite-amplitude waves. We
use a variety of approaches in the analysis, including
conservation of wave action (Whitham 1965; Bretherton
and Garrett 1968), and the closely related conservation
of wave ‘‘pseudoenergy’’ (Arnol’d 1966; McIntyre and
Shepherd 1987), WKB theory, and linear and nonlinear
numerical simulations. Section 2 outlines the dynamical
equations and conservation properties for general piece-
wise-constant barotropic PV distributions. Section 3 ex-
plores the simplest model ‘‘storm track,’’ namely the
contour model introduced above, but with a zonally

varying basic flow on the contour. The predictions of
the linear theory are verified numerically, and the nature
of the nonlinear wave breaking that occurs for finite-
amplitude wave packets is examined. Section 4 extends
this inquiry to storm tracks with two PV contours, and
the results are discussed in section 5. To simplify the
presentation, details of the derivations of the linearized
perturbation equation and of pseudoenergy conserva-
tion, and the WKB analysis for the one-contour model
are included in the appendixes.

2. Wave dynamics on contours

a. Equations of motion

Consider barotropic dynamics on an f plane with to-
pography forcing a zonally varying yet steady basic
flow. The basic flow streamfunction C and barotropic
PV Q are related by

H(x, y)
2Q 5 f 1 ¹ C 1 f , (2.1)0 0 Href

where H(x,y) is the topography, Href the reference depth
of the fluid, and f0 the Coriolis parameter. The equation
of motion for the steady basic flow is

]xy(C, Q) 5 0, (2.2)

where ]xy(f,g) [ ]x f]yg 2 ]y f]xg is the two-dimensional
Jacobian. Perturbations to this flow evolve according to

]q
1 ] (C, q) 1 ] (c, Q) 1 ] (c, q) 5 0, (2.3)xy xy xy]t

where c and q [ ¹2c are the disturbance streamfunction
and PV, respectively.

The basic-state PV distribution is assumed to consist
of N 1 1 regions of constant PV Qj separated by N PV
jumps:

Dj [ Qj11 2 Qj at y 5 yj(x), j 5 1, · · · , N, (2.4)

located at the contours yj(x), where we assume that each
yj is single valued in x for simplicity. These PV jumps
are associated with jumps in the shear of the along-
contour wind. Because the basic-state flow is steady, the
contours are also streamlines; typical flow scenarios for
N 5 1 and N 5 2 and d function topography are sche-
matically illustrated in Fig. 1.

Away from the contours, the PV is constant and the
disturbance PV vanishes; that is,

¹2c 5 0, away from contours. (2.5)

In appendix A, the dynamical equation for linear per-
turbations,

] ]
([] c] ) 1 (U [] c] ) 1 D ] c 5 0 at contour j,n j j n j j s j]t ]s

(2.6)

is derived using (2.3) and the delta-function character
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FIG. 1. Schematic representation of one- and two-contour PV dis-
tributions. Thick contours represent PV jumps, thin contours represent
typical streamlines, and small circles represent topography with as-
sociated forcing.

of the PV gradients in the basic-state flow. In (2.6), n
and s are the local coordinates normal and tangential to
contour j, respectively; Uj is the velocity on and tan-
gential to contour j; and the notation [j] 5 lime→0 (jzn51e

2 jzn52e) indicates a jump in the quantity j across the
contour. Additional boundary conditions on the pertur-
bation streamfunction c are that it must be continuous
everywhere and must vanish for zyz → `.

An eddy field of great importance is h, the Lagrangian
displacement of the contour normal to its basic-state
position. It is shown in appendix A that (2.6) leads to
the following relation between c, the disturbance
streamfunction, and h for small amplitude displace-
ments:

[] c]n jh 5 2 . (2.7)j Dj

b. Conserved quantities

One goal of this work is to use quantities that are
conserved by eddies propagating through zonally vary-
ing contour distributions to quantify the effect of zonal
variations on eddy amplitudes and particle displace-
ments. One such conserved disturbance quantity is the
pseudoenergy wave activity (Arnol’d 1966; McIntyre
and Shepherd 1987), a quantity defined for finite-am-
plitude disturbances to steady basic states. The pseu-
doenergy is an exact invariant of the nonlinear baro-
tropic PV equation (2.3). In appendix B, finite- and
small-amplitude expressions for the pseudoenergy A for
piecewise-constant PV distributions are derived. The
pseudoenergy satisfies

dA
5 0, where A 5 E 1 B. (2.8)

dt

In (2.8), E is the domain-integrated disturbance energy,

1
2 2E 5 (u 1 y )dxdy, (2.9)E 2domain

where u 5 2]yc and y 5 ]xc, and B is the domain
integral of the ‘‘generalized enstrophy’’ density (Mc-
Intyre and Shepherd 1987).

For small-amplitude disturbances to a contour distri-
bution, both the energy and the generalized enstrophy
may be written in a form that involves only quantities
evaluated on the contour:

N N1
E ø D c h ds 5 E ds,O OE j j j E cj2j51 j51y yj j

and
N 1

2B ø 2 U D h ds, (2.10)O E j j j2j51 yj

where cj is the disturbance streamfunction on the con-
tour, Uj is the velocity on and tangential to the contour,

and Ecj is the energy density associated with the jth
contour.

A related conserved disturbance quantity is the wave
action (Whitham 1965; Bretherton and Garrett 1968; see
the review by Grimshaw 1984), which is conserved for
eddies propagating on slowly varying basic states. From
general principles (Andrews and McIntyre 1978), pseu-
doenergy conservation reduces to wave action conser-
vation for linear disturbances on slowly varying basic
states. Consider wavelike disturbances with local wave-
number k (associated with the s coordinate) and fre-
quency v, propagating through a basic state that varies
on some slow spatial scale S 5 es along the contour,
where e K 1. To leading order in e, the linearized equa-
tion of motion (2.6) on the jth contour can be written

cj 2 Ujhj 5 2vhj/k, (2.11)

where we have used (2.7). Equation (2.11) can also be
written

hj 5 2kcj / j,v̂ (2.12)
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where j [ v 2 Ujk is the local intrinsic frequency onv̂
the jth contour (i.e., the frequency measured in a ref-
erence frame moving with the local basic flow on the
contour). Substituting (2.12) into (2.10) and (2.8), and
taking a phase average, we find

N Nd v 1 d ^E &cjD c h ds 5 v dsO OE 7 j j j8 Edt v̂ 2 dt v̂j51 j51j jy yj j

5 0, (2.13)

where the angled brackets denote phase averaging. For
a time-independent basic flow, under the WKB approx-
imation the frequency v is constant during disturbance
propagation. We can therefore identify the quantity

^E &cjW [ (2.14)j v̂j

as the wave action associated with the jth contour, whose
sum over all contours W 5 Wj is conserved:NSj51

d
W ds 5 0. (2.15)Edt

The local conservation law for the wave action is

]W ]
1 (c W ) 5 0, (2.16)g]T ]S

where cg 5 ]v/]k is the local group velocity and T 5
et. For a steady wave train, (2.16) implies that cgW is
independent of s. Manipulation of (2.16) yields

1 d ]g (c W ) 5 (logc ), (2.17)g gc W dT ]Tg

where dg/dT [ ]/]T 1 cg]/]S. For a time-independent
basic state, the right-hand side of (2.17) vanishes. There-
fore, for a localized wave packet with fixed frequency,
(2.17) implies that the value of cgW is conserved fol-
lowing the packet. Therefore, the amplitude of a wave
packet can also be obtained from the relation cgW 5
constant. The width of the packet must be proportional
to cg so that the integral of W over the packet is con-
served.

3. One-contour model

a. Linear analytic solutions

Consider the simple contour model mentioned in the
introduction, consisting of a single PV contour located
at y 5 y1 5 0, separating a region of PV with value Q1

5 Q to the south from a region of PV with value Q2

5 Q 1 D to the north. Since D 5 Q2 2 Q1 5 [2Uy]
(where, as in section 2a, the notation [·] indicates the
jump in a quantity across a contour), the jump in PV is
associated with a jump in the wind shear. In the absence
of topographic forcing, we then have

U(y) 5 U0 2 (½)Dzyz, (3.1)

where U0 5 Uzy 50 is a constant. Using (2.5) and (2.6),
where here the normal coordinate n is y and the tan-
gential coordinate s is x, the equation of motion lin-
earized about this basic state is

] ]
([] c]) 1 (U [] c]) 1 D] c 5 0 at y 5 0,y 0 y x]t ]x

(3.2)

along with

¹2c 5 0, y ± 0, (3.3)

and the boundary conditions zcz → 0 as zyz → ` and c
continuous everywhere. Modal solutions have the form
c } ei(kx2vt)e2kzyz, where

1
v 5 U k 2 D. (3.4)0 2

Note that the eddies are isotropic, with ^u2& 5 ^v2&, as
their zonal and meridional length scales are both equal
to k21.

In the presence of a zonally varying topographic dis-
tribution that is antisymmetric in y, a flow (UF, VF) is
induced upon this single PV contour system with VF 5
0 at y 5 0. The topographically forced steady basic state
has a zonal velocity component

1
U(x,y) 5 U (x,y) 2 Dzyz. (3.5)F 2

The equations governing the propagation of small-am-
plitude waves on this flow are (3.2) and (3.3), where
U0 5 UF(x, 0) is now a function of x. Note that U0(x)
occurs inside of the x derivative in (3.2).

Assuming that U0 varies on the slow zonal scale X
5 ex where e K 1, then to order e, we seek a modulated
wave train solution of the form

c 5 F(X)ei(kx2vt)e2kzyz 1 (complex conjugate). (3.6)

Here k 5 k(X) is the local wavenumber, and v is constant
owing to the time independence of the basic state. The
intrinsic frequency,

1
v̂ [ v 2 U k 5 2 D, (3.7)0 2

also remains constant as the eddies propagate through
the zonally varying flow, and the group velocity

cg [ ]v/]k 5 U0 (3.8)

is simply the local basic zonal wind along the contour.
The local wavenumber, k(X), is proportional to :21U0

v 1 D/2
k(X) 5 . (3.9)

U0

The conservation of wave action and (3.6)–(3.8) al-
low us to predict how the streamfunction amplitude
zF(X)z changes locally. Since, from (2.17) with ]cg/]T
5 0 and S [ X,
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FIG. 2. Evolution of (a) streamfunction c and (b) []yc] for the linear evolution on the basic flow (3.13). Dashed lines indicate the enve-
lope predicted by the WKB analysis.

^E & U ^E &c 0 cc W 5 c 5 5 const, (3.10)g g v̂ 2D/2

the phase-averaged energy ^Ec& must be proportional to
. However, since ^Ec& } ^ch& } kzFz2, it follows from21U0

(3.8)–(3.10) that zFz2 (and hence zFz) must be constant
on the contour. The same result can be obtained from
the order e WKB solution presented in appendix C.

The result zFz 5 const on the contour allows for
immediate insight into the variation of other dynamical
quantities. Specifically, the perturbation particle dis-
placements, which, following (2.7) with n 5 y, vary as

^h2&1/2 5 k^c2zy50&1/2/(D/2) } .21U0 (3.11)

Particles make larger excursions in regions of weak ba-
sic zonal winds. The eddy meridional and zonal wind
components u and y also scale with , but because21U0

their length scale of decay from the contour; k21 ;
U0, their meridionally integrated variances remain con-
stant.

Because ^Ec& 5 W 5 2(D/2)W for the one-contourv̂
model, we conclude that the total phase averaged dis-
turbance energy ^E& and, from (2.8), the phase-averaged
‘‘generalized enstrophy’’ B are separately conserved.
The invariance of ^E& can be seen as a consequence of
the fact that eddies are isotropic in the one-contour mod-
el. The momentum flux ^uv& vanishes owing to the ho-
mogeneity of the PV away from the contours, reducing
the time tendency for ^E& to

1
2 2] ^u 1 y &1 22d^E&

5 dxEdt ]t

1 ]U ]V
2 25 (^y & 2 ^u &) 2 dx dy, (3.12)EE 1 22 ]x ]y

where y is the basic-state maridional velocity compo-

nent. Since the eddies in the one-contour model are
isotropic, with ^u2& 5 ^y 2& everywhere, ^E& is conserved.

b. Numerical simulations

1) LINEAR CALCULATIONS

To explore the results of the previous section while
retaining the assumption of linearity, we numerically
solve (3.2). The solution method consists of using the
Fourier transform to relate c to []yc] as well as to cal-
culate the x derivatives, and numerically integrating
(3.2) with leapfrog time stepping, along with periodic
application of an Euler backward time step to damp the
computational mode. This method allows examination
of linear wave-packet propagation through arbitrary zo-
nally varying basic flows.

We consider a wave propagation problem in which
there is relatively little scale separation between the
wave and the basic-state flow in order to strain the va-
lidity of the WKB theory. The zonally varying basic
flow we examine is

21 2x
U (x) 5 1 2 exp , (25p # x # 5p),0 1 22 4

(3.13)

where we take the PV jump D to be unity. Upon this
basic flow we superpose an initial disturbance of the
form

22(x 2 x )0[] c] 5 exp exp(ikx) (3.14)y [ ]4

far from the weak flow region, where we take k 5 2,
which, applying (3.4), yields v 5 1.5. The evolution of
the disturbance fields c and []yc] } h with time is shown
in Fig. 2. The disturbance wavenumber and amplitude
variations resulting from interaction with the zonally
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FIG. 3. Deviation of pseudoenergy components E (dashed) and B
(dotted), as well as the pseudoenergy A 5 E 1 B (solid), from their
individual base values.

varying basic state agree remarkably well with the WKB
solutions, despite the fact that the basic flow varies on
a similar scale to the packet eddies. The maximum
streamfunction amplitude remains constant to within 2%
as the packet propagates through the zonally varying
flow, and the particle displacements scale like as21U0

predicted, increasing by a factor of 2 at the flow min-
imum.

Deviations in the domain-integrated wave action,
∫(^Ec&/ )dx, are of the order of 0.5% of its initial valuev̂
as the packet propagates through the weak flow region.
These deviations are the result of local violations of the
WKB assumptions. On the other hand, deviations in the
pseudoenergy ^A&, which is conserved independently of
the WKB approximation, are shown in Fig. 3 to be
negligible to within the accuracy of the numerical dis-
cretization. This is because of cancellation between the
two pseudoenergy components ^E& and ^B&, which in-
dividually have deviations from their initial values of
the same order of magnitude as the deviations in the
domain-integrated wave action. Clearly, the leading-or-
der WKB theory and wave action conservation provide
an almost complete characterization of linear distur-
bances in the one-contour model.

2) NONLINEAR CALCULATIONS

As the amplitude of the disturbance to the one-contour
model increases, at some point nonlinear effects such
as wave breaking will become important. To study non-
linear effects on the propagation of waves for the
one-contour model, the numerical method of contour
dynamics and surgery (CS) has been used to obtain
high-resolution solutions of (2.3) (Dritschel 1988,
1989a). This method has been used in a similar context
recently by Polvani and Plumb (1992), Waugh et al.
(1994), Nakamura and Plumb (1994), and Pieters and

Waugh (1996) to study wave propagation and breaking
on similar low-order contour models, and it has been
shown that such calculations reproduce some aspects of
wave breaking in the atmosphere.

In CS, the velocity at a point x is given by
N

u(x) 5 2p D G(x 2 x ) dxO j j j$Cjj51

1 u (x), (3.15)F

where G is the Green’s function for Poisson’s equation
in the domain of interest, uF is the velocity due to the
topographic forcing, and Cj is the jth PV contour. The
material conservation of PV ensures that it will remain
piecewise constant, and its subsequent evolution is then
completely determined by the advection of the contours.
The computational details of this procedure follow Drit-
schel (1988, 1989a); briefly, each contour is numerically
represented by a series of computational nodes that are
advected by the velocity field (3.15). To preserve the
resolution of the calculation, the positions of these nodes
are continually adjusted, with nodes added in regions
of high curvature. To enable efficient longtime integra-
tions, filamentary structures smaller than some cutoff
scale are removed using Dritschel’s surgery procedure.
The equations of motion are solved in a domain that is
10p periodic in x and unbounded in y; the details of
the solutions herein are not sensitive to the choice of
the domain width, provided it is large enough.

To create the zonally varying flow, we introduce to-
pography in the form of two point vortices,

2

H(x, y)/H 5 H d(x 2 x )/H , (3.16)Oref j j ref
j51

where xj is the vortex location and d is the Dirac delta
function. If these vortices are of equal but opposite
strength and are positioned symmetrically about y 5 0,
the basic-state meridional velocity will vanish along the
PV contour.

We choose the topographic vortex strength to be zH1,2z/
Href 5 4.08 and locate the vortices at (x, y) 5 (0, 65/
2). With a PV jump D 5 1 and adding an overall uniform
zonal velocity component of 1.031 (which differs from
unity due to the periodic domain), we obtain a velocity
field with unit maximum zonal wind that weakens by a
factor of 2 at the center of the domain. The basic flow
along-contour velocity and streamfunction are shown in
Fig. 4. The initial contour displacement for all one-
contour integrations herein is

22(x 2 x )0h(x) 5 h exp cos(k x 1 x), (3.17)0 0[ ]4

where h0 is the initial amplitude, x is a phase factor, x0

5 25p is the packet’s initial position, and k0 5 2 is
the packet’s initial wavenumber. In the nonlinear cal-
culations, h0 is varied to explore the effects of nonlin-
earity on the packet evolution, and the phase factor x
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FIG. 4. (a) Streamfunction and (b) along-contour velocity for the one-contour case considered in this subsection. The contour interval in
(a) is 2.5 3 1022.

is varied to explore the effect of the initial phase of the
wave. Some phase dependence is to be expected when
the scale separation between the wave and the basic-
state flow is modest, as is the case in our example.

In order to properly interpret the nonlinear calcula-
tions, it is desirable to understand how large h0 must
be for wave breaking to occur. As Polvani et al. (1989)
and Polvani and Plumb (1992) found in their studies of
wave breaking in contour distributions, breaking occurs
when, in the reference frame associated with the phase
velocity of the wave, a stagnation point approaches the
perturbed contour. Neglecting transients, simple kine-
matics indicate that flow about the stagnation point will
pinch off wave material, causing the wave to break.

For the present case, such a stagnation point first oc-
curs when the perturbed contour is farthest from the rest
contour, that is, at a wave crest or trough. As the per-
turbation meridional velocity vanishes at wave crests
and troughs, the criterion for a stagnation point at such
points is

U(x, y) 1 u 5 cph, (3.18)

where

U(x, y) ø U0(X) 2 (½)Dzyz (3.19)

is the basic-state zonal wind near the contour, u is the
perturbation zonal wind, and the cph is the phase speed
for the one-contour model, which can be obtained ap-
proximately from the linear dispersion relation (3.4):

cph 5 U0(X) 2 (½)D/k. (3.20)

The approximation used in (3.19) holds for points close
to the contour and makes a negligible difference in the
calculation to follow.

Consider perturbation particle displacements with the
local form
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FIG. 5. Plot of zhcrz (dotted) and zhmaxz (solid) for initial amplitude
h0 5 0.3, as described in text. Breaking expected in region zxz # xb

ø 1.73, where the location of 6xb is denoted by the dashed lines.

FIG. 6. Time evolution of the h0 5 0.4 case for the one-contour
storm track.

h 5 zhcrz cos(kx 2 vt), (3.21)

where zhcrz is the minimum magnitude at which breaking
will occur for a given U0, D, and k. Using (2.7) and
(3.6), the perturbation zonal velocity has the form

u 5 2]yc 5 (½)Dzhcrz cos(kx 2 vt)e2kzyz. (3.22)

Substituting (3.19), (3.20), and (3.22) evaluated at a
wave crest into (3.18) and simplifying, we arrive at the
following expression:

kzhcrz (1 2 e ) 5 1,2kzh zcr (3.23)

which has the immediate solution

kzhcrz ø 1.35. (3.24)

As indicated in (3.9) and (3.11), linear theory predicts
that both the maximum particle positions zhmaxz 5

2^h2&1/2 and the local wavenumber k vary as .21UÏ 0

Hence, as U0 becomes smaller, breaking occurs closer
to the basic-state contour at y 5 0. Figure 5 shows the
variation of zhcrz from (3.24) for the basic-state flow U(x,
y) of Fig. 4, where we take the local wavenumber to be
k 5 2 at the basic-state flow maximum. Using (3.24)
and (3.9), the minimum value of zhcrz is found to be
zhcrzmin ø 0.338 for the present choice of basic-state and
wave parameters. For reference, the linear theory max-
imum particle displacements zhmaxz from (3.11) for initial
particle displacement amplitude h0 5 0.3 are also shown
in the figure. Breaking is expected in the region where
zhmaxz . zhcrz, which in this example occurs for zxz # xb

ø 1.73.
For this basic-state flow and wavenumber, Eq. (3.24)

predicts that breaking will occur when h0 $ 0.169. The
nonlinear simulations confirm this expectation, as we
find that for h0 # 0.165, the waves behave quasi-linearly
and do not break. The breaking observed for h0 $ 0.17
is not the familiar roll-up of PV contours associated

with Rossby wave critical layers in a continuous PV
distribution (Warn and Warn 1978), but instead is char-
acterized by the development of filaments of PV. This
is apparent in the time evolution of an h0 5 0.4 sim-
ulation shown in Fig. 6. This shedding of PV filaments
is a common signature of wave breaking in nondiv-
ergent barotropic contour dynamics simulations (Drit-
schel 1988; Polvani and Plumb 1992) and arises be-
cause the strain of the large-scale flow overcomes the
local tendency of the vorticity to roll up (Dritschel
1989b).

The nonlinearity associated with the wave breaking
and the shedding of PV filaments changes the structure
of the wave-packet eddies. Consider the final maximum
meridional particle displacement amplitude hf of the
wave portion of the packet (as opposed to the filament
portion, as outlined in Fig. 7) after exiting the weak
flow region. Figure 8a shows hf for h0 in the range
[0.025, 0.5]. For each h0, simulations for four values of
the initial phase x 5 (0, p/4, p/2, 3p/4) have been
performed to illustrate the phase dependence of the
wave breaking. The figure shows that hf is never larger
than a maximum value of approximately 0.25, whatever
the value of h0. In effect, the wave packets have had
their amplitudes attenuated, or ‘‘clipped,’’ to a maxi-
mum value by the wave breaking.

We propose a simple hypothesis to explain the max-
imum value of hf observed in the simulations. This hy-
pothesis is that the maximum particle displacements are
clipped nonconservatively to the minumum stagnation
point distance zhcrzmin, but otherwise undergo conser-
vative linear modulation as usual. Explicitly, we inte-
grate the equation.

] ]
2 2(c W ) } (U ^h &) 5 0 (3.25)g 0]x ]x

for increasing x, with the proviso that the particle dis-
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FIG. 7. Decomposition of a typical solution (top) into wave (mid-
dle) and filament (bottom) components.

placements are clipped to zhcrz whenever zhz . zhcrz lo-
cally. For the initial disturbance (3.17), and this basic
state, for which U0 has a minimum at x 5 0, this implies
that

h U (2`) zh z U (0)0 0 cr min 0h 5 min , , (3.26)f 1 2U (1`) U (1`)0 0

where the notation 7` denotes values of quantities in
the regions well upstream and well downstream of the
region of breaking, respectively. An illustration of this
clipping with linear modulation is shown in Fig. 9.
Figure 8b shows the numerical experiments along with
the prediction from (3.26), which, with zhcrzmin ø 0.338,
yields a maximum value for hf of approximately 0.169.
(Note that this is the same estimated value as the es-
timated minimum initial amplitude, h0, for the onset
of breaking.) The clipping hypothesis provides a re-
sonable estimate of the amount of attenuation associ-
ated with wave breaking in all cases. The estimated hf

tends to be too large for the small h0 cases and too
large for the large h0 cases. This mechanism and the
estimate of the final amplitude may be a useful way to
characterize and paramaterize upper-tropospheric wave
breaking.

Clipping also results in a significant irreversible loss
of wave action. For example, for h0 5 0.3 and zhcrzmin

ø 0.338, (3.26) predicts that the domain-integrated
wave action associated with the wavy part of the flow
will decrease by

W dxE
2final zh zcr min

5 ø 0.321. (3.27)
2{U(2`)h /U(0)}0

W dxE
initial

This prediction can be compared to the actual loss of
wave action directly calculated from the four h0 5 0.3
numerical integrations using the wave/filament decom-
position illustrated in Fig. 7. From these integrations,
we find 0.26 # ∫final W dx/ ∫initial W dx # 0.54. This loss
of wave action from the wavy part of the flow may be
attributed to the generation of filaments.

Another interesting aspect of the simulations in
which wave breaking occurs is that the disturbance
wavelength has increased markedly after exiting the
weak flow region. Figure 10 shows that the final dis-
turbance wavelength increases as the initial amplitude
of the packets is increased above the critical breaking
amplitude. For the h0 5 0.4 integration with x 5 0,
the final disturbance wavelength is double that of the
h0 5 0.1 integration with x 5 0, which behaves more
or less linearly. Since the disturbances are still wave-
like away from the breaking region, the dispersion re-
lation still holds, yielding k 5 (v 1 D/2)/U0(x), where
U0(x) is approximately constant and equal to its value
at x 5 25p. Hence, we conclude that the irreversible
decrease in k due to the breaking is associated with a
corresponding irreversible decrease in the frequency
v. This reduction in frequency is intriguing and sug-
gests a mechanism relating low-frequency variability
and regions where the jet strength is weak, a relation
that is well established observationally (Wallace and
Blackmon 1983).
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FIG. 8. (a) Final wave amplitude hf versus initial wave amplitude h0 for one-contour model simulations. The scatter for each value of h0

is the result of simulations with different initial wave phases. Also shown is the line h0 5 hf. (b) Ratio hf/h0 (circles) as a function of h0

along with the prediction (solid) given by the clipping hypothesis described in the text.

FIG. 10. ‘‘Wave’’ portion of the contour displacements at t 5 27.5
for the one-contour case as a function of initial amplitude h0.

FIG. 9. Plot of zhcrz (dotted) and zhmax(x)z (solid) for initial amplitude
h0 5 0.3 assuming clipping to linear theory critical lines, as described
in text. Clipping occurs in the region 2xb # x # 0, where xb ø 1.73.
The location of 6xb is denoted by the dashed lines.

4. Two-contour model

The next member of the contour model hierarchy is
the two-contour model, consisting of three regions of
homogeneous barotropic PV, separated by two zonally
varying PV contours. The presence of a second contour
adds two features absent in the one-contour model. First,
since the basic-state contours are streamlines, the con-
tour separation is proportional to the strength of the
zonal flow, and hence the effective PV gradient given
by the contour separation is also proportional to the
strength of the zonal flow. Second, eddies are aniso-
tropic in the two-contour model. These features make
the two-contour model a more realistic representation
of wave propagation in the upper troposphere than the
one-contour model.

a. Linear analytic solutions

The simplest two-contour model consists of two con-
tours located symmetrically about the meridional origin
at y 5 y1 5 2y0(x) and y 5 y2 5 1y0(x), each marking
a PV jump D1 5 D2 5 D . 0. In the absence of to-
pographic forcing, y0(x) is constant, and the basic-state
wind is zonal and given by

U 2 Dzy 2 y z, y . y0 0 0

U(y) 5 U , 2y # y # y ,0 0 05U 2 Dzy 1 y z, y , 2y ,0 0 0 (4.1)

where U0 is a constant.
To facilitate comparison with the one-contour model

results, we seek solutions to the linearized equations of
motion (2.6) that have streamfunction symmetric about
y 5 0. Vanishing of the perturbation PV away from the
contours (2.5), along with the boundary conditions
zcz → 0 as zyz → ` and c continuous everywhere, yields
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FIG. 11. Anisotropy index a for the two-contour system.

FIG. 12. Transition from an equivalent one-contour to a two-con-
tour system. The dark lines indicate particle positions in the coupled
region where y0k K 1 and in the uncoupled region where y0k k 1.

a symmetric modal solution of the form c 5 (y)ei(kx2vt)ĉ
1 complex conjugate, where

2kzy2y z0e y , y0

ĉ(y) 5 cosh(ky)/cosh(ky ) 2y # y # y .0 0 05 2kzy1y z0e y , 2y0

(4.2)

Substituting this solution form into the linear equations
of motion (2.6) then gives the dispersion relation

v 5 U0k 2 (½)D(1 1 e ).22y k0 (4.3)

The quantity y0k in (4.3) measures the weakness of the
coupling between the contours. For y0k k 1, (4.3) re-
duces to the one-contour dispersion relation (3.4) with
a PV jump of D, and the eigenfunction (y) in (4.2)ĉ
decays exponentially on both sides of each contour; the
contours are uncoupled, apart from sharing a common
disturbance frequency and wavelength. For y0k K 1,
(4.3) reduces to the one-contour dispersion relation
with a PV jump of 2D, and the eigenfunction (y) isĉ
approximately constant between the contours and de-
cays exponentially away from them; the two contours
are strongly coupled and act effectively as a single
contour.

Unlike one-contour model eddies, eddies in the
two-contour model are not isotropic. One measure of
eddy anisotropy is the quantity

`

2^y & dyE
2`

a 5 , (4.4)
`

2^u & dyE
2`

where eddies with a . 1 are meridionally extended and
zonally compressed. For symmetric modes in the two-
contour model, we have

2sinh(2y k)/2 1 y k 1 cosh (y k)0 0 0
a 5 $ 1. (4.5)

2sinh(2y k)/2 2 y k 1 cosh (y k)0 0 0

As shown in Fig. 11, in the tightly coupled limit y0k →
0, as well as in the limit in which the contours are
independent y0k → `, the eddies are nearly isotropic.
Once again, the two-contour model reduces to the
one-contour model in both the weakly and strongly cou-
pled limits. Eddy anisotropy peaks at a ø 1.75 for a
moderate value of the coupling y0k ø 0.63.

Because the two-contour model behaves like the
one-contour model for both weak and strong coupling,
the one-contour model wave action analysis of section
3 can be used to analyze wave propagation through a
zonally varying two-contour flow in the following
thought experiment. Consider a linear wave packet that
propagates from a region where the two contours are
tightly coupled (y0k K 1) into a region where they are
completely uncoupled (y0k k 1), as illustrated sche-
matically in Fig. 12. Assuming each contour marks a
PV jump of D, where the contours are tightly coupled,
they will act as if they were a single contour with PV
jump 2D. This effective one-contour system will have
wave action Wcoupled 5 ∫^Ec,coupled&/Ddx, where the eddy
energy ^Ec,coupled& ø kcoupled^ follows from2c z &coupled zyz5y0

the one-contour results of section 3a. Where the con-
tours are widely separated, they will act as two inde-
pendent one-contour systems, each with PV jump D.
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In this region, each contour will have wave action Wun-

coupled 5 ∫^Ec,uncoupled&/(D/2)dx, where ^Ec,uncoupled& ø
is the eddy energy on each of the2k ^c z &uncoupled uncoupled zyz5y0

two independent contours.
Conservation of wave action requires

2 ∫ ^Euncoupled&/(D/2)dx 5 ∫ ^Ecoupled&/Ddx (4.6)

or ∫^Euncoupled&dx 5 ¼ ∫^Ecoupled&dx. The eddy energy on
each of the uncoupled contours is one-fourth the eddy
energy in the tightly coupled region, implying a halving
of the total eddy energy from its initial value. The other
half of the energy has been transferred to the mean flow.
This result shows that unlike the one-contour model,
the two-contour model’s wave action and eddy energy
are not equivalent; the former is conserved during prop-
agation through the zonally varying basic state, while
the latter is not. The loss in eddy energy is associated
with the anisotropy of the two-contour eddies [cf.
(3.12)] as they pass through the intermediate region
where y0k ; 1 and ]xU0 , 0, since ^y2& . ^u2& between
the contours in this region.

For this thought experiment, conservation of wave
action implies modulations in the eddy streamfunction
of the form

1/2zF z 1 v 1 Duncoupled ø (4.7)1 2zF z 2 v 1 D/2coupled

and particle displacement modulations

21/2zh z U v 1 Duncoupled max coupledø . (4.8)1 2zh z U v 1 D/2coupled max uncoupled

Although the eddy energy and the streamfunction de-
crease somewhat on each contour, the particle displace-
ments are greatly amplified in the region of weak flow,
just as in the one-contour case. Hence, it is expected
that initially small amplitude waves will break most
easily in the weak flow region.

To understand wave propagation in the two-contour
model more generally for all values of y0k, we follow
the procedure of section 3a and assume a slowly zonally
varying basic-state wind U(X) with modulated wave
train perturbations of the form

c 5 F(X) ei(kx2vt) 1 complex conjugate.ĉ (4.9)

Here, and v are respectively given by (4.2) and (4.3),ĉ
and k, y0, and U0 are all functions of the slow spatial
scale X. In contrast to the one-contour case, the two-
contour symmetric mode intrinsic frequency

5 2(½)D(1 1 e )22y k0v̂ (4.10)

is not independent of the basic flow, and the two-contour
symmetric mode group velocity

cg [ ]v/]k 5 U0 1 Dy0e22y k0 (4.11)

is not simply the local basic-state zonal wind, but ex-
ceeds it by an amount dependent on y0, D, and k. The

functional dependence of cg upon k indicates that ini-
tially localized wave packets will spread with time.

For two-contour symmetric modes (4.2), the phase-
averaged energy associated with each contour is

^Ec& 5 (½)k(1 1 tanh(y0k)) .2^c z &zyz5y0
(4.12)

Wave action conservation then implies
22y k 202^E & 4(U k 1 Dy ke )^c z &c 0 0 zyz5y0c W 5 c 5 2g g 22y k 20v̂ D(1 1 e )

5 const, (4.13)

which, after some algebra, gives
2 1/2zF(X)z } ^c z &zyz5y0

22y k01 1 e
} . (4.14)

1/21
2y k0v 1 D[1 1 (1 1 2y k)e ]01 22

It may be shown that this result also follows directly
from an order e WKB solution after a calculation along
the lines of that in appendix C (but much more labo-
rious). Taking the limits of weak and strong coupling,
the thought experiment results (4.7) and (4.8) may be
easily recovered from this solution.

b. Numerical simulations

1) LINEAR CALCULATIONS

In section 4a we emphasized the strongly coupled (y0k
k 1) and weakly coupled (y0k K 1) regimes of the two-
contour model, in which the two-contour model behaved
essentially like the one-contour model. We begin this
section by considering the behavior of a wave packet
propagating from a strongly coupled region into an in-
termediate region (y0k ; 1). In the intermediate regime,
which cannot be represented by the one-contour model,
eddy anisotropy becomes important and eddy energy is
no longer conserved.

The particular basic-state along-contour velocity U0

and contour positions 6y0(x) we use for the numerical
integrations are shown in Fig. 13. The mean flow is
reduced by a factor of 4 at the jet minimum (see caption
for details). The steady basic states for the zonally
varying two-contour distributions are found using it-
erative relaxation of the PV contours (Pierrehumbert
1980). Given U0(x) and y0(x), and a value of k at a
particular point, (4.3) can be used to calculate numer-
ically the x dependence of k, and hence the stream-
function and particle position amplitudes from the
wave action solution (4.14). In this case, y0zx565p and
kzx565p were chosen to represent highly coupled con-
tour waves at the zonal flow maximum. Figure 14a
shows the variation in the scaled wavenumber k/kzx565p,
the scaled streamfunction amplitude zFz/zFzx565p, and
the scaled particle position amplitude zhzmax/zhzmax,x565p,
where y0zx565p 5 0.025 and kzx565p 5 2. Figure 14b
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FIG. 13. (a) Basic-state along-contour velocity and (b) contour
positions for the linear two-contour case example. Each PV contour
marks a PV jump of D 5 1/2, and the strength of the topographic
forcing at (x, y) 5 (0, 65/2) has been increased over that of section
3b to zHjz/Href ø 5.825, so that the minimum along-contour velocity
(which occurs at x 5 0) is one-quarter of its maximum value.

FIG. 14. (a) Scaled variations in wavenumber k (solid), h (dashed),
and c (dotted) for the linear two-contour case example. (b) Variations
in anisotropy a (solid) and contour coupling y0k (dashed) for the
linear two-contour case example.

shows the variation in the anisotropy a and the contour
coupling y0k.

As in the one-contour case, the wavenumber k in-
creases strongly in the weak flow region, although not
by a full factor of 4 as it would were this a one-contour
system. As shown in Fig. 14b, the contour coupling
y0k increases by a factor of ø 16 at the weak flow
region from (y0k)zx525p ø 0.05 to (y0k)zx50 ø 0.8, lead-
ing to an increase in the eddy anisotropy a from a
reasonably isotropic value of a ø 1.1 at x 5 65p to
a strongly anisotropic value of a ø 1.75 at x 5 0 where
the basic-state zonal flow is weakest. The WKB so-
lution indicates that this increase in anisotropy leads
to a decrease in the along-contour streamfunction am-
plitude by 35% in the weak flow region. However, the
approximate increase in k with still dominates the21U0

variation in the particle displacements where the flow
is weak, leading to an increase in the particle displace-
ments by a factor of approximately 3.5 at the flow
minimum. This is consistent with the general principle
that particle displacements are largest in regions of
weak PV gradients.

The zonally varying contours do not allow direct so-
lution of the linear equations of motion (2.6) using one-
dimensional spectral methods. In order to test the va-
lidity of the WKB theory, we therefore compare the
WKB solutions to contour dynamics integrations using
small amplitude waves with initial amplitude h0 5
0.025. Figure 15 shows that the WKB solution accu-
rately represents the modulation of the particle positions
and streamfunction, although variations in the actual
particle positions and streamfunction are approximately
10% stronger than the WKB theory would suggest. The
WKB solution appears to break down sooner in this
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FIG. 15. Numerical simulation (solid) and WKB predictions (dashed) for wave propagation in the linear two-contour case example.
(a) Perturbation streamfunction and (b) perturbation particle positions.

two-contour system, perhaps due to the coupling of sym-
metric and antisymmetric modes when the basic state
is no longer slowly varying.

2) NONLINEAR CALCULATIONS

As in the one-contour model, it is expected that when
the initial wave amplitude h0 is increased beyond a crit-
ical value, wave breaking will occur, leading to an ir-
reversible loss of wave action and reduction in wave
amplitude. Wave breaking in the two-contour model is
interesting for two different reasons. First, since the
shear (4.1) about each individual contour is not sym-
metric, we do not expect the breaking to be symmetric.
Second, the two-contour model allows us to test the
generality of the clipping hypothesis outlined in section
3b(2).

Similarly to section 3b(2), the calculation of the min-
imum particle displacement amplitude at which break-
ing occurs involves determining the wave amplitude for
which a stagnation point in the total flow intersects the
contour. For the two-contour model, it can be shown
that this will occur for the critical particle displacement
amplitude for breaking to occur, zhcrz, satisfying

kzhcrz {2 2 (1 1 e ) e } ø 1 1 e .22ky 2kzh z 22ky0 cr 0

(4.15)

Comparing (3.23) and (4.15), we see that zhcrz depends
on the wavenumber k, as in the one-contour model, and
additionally on the coupling parameter y0k. In the
strongly coupled limit y0k → 0, the breaking criterion
is identical to the one-contour breaking criterion (3.24),
namely kzhcrz ø 1.35. However, in the weakly coupled
limit y0k → `, there is a quantitative change in the
breaking criterion to kzhcrz ø 1.17. In other words, for
a given wavenumber, waves break at smaller amplitudes

when the contours are far apart than they do when they
are close together. This is primarily because the intrinsic
phase velocity (the phase velocity relative to the basic
flow on the contour) is smaller for widely separated
contours, which follows from the dispersion relation
(4.3).

To study breaking in the two-contour model, we use
the same topographic forcing as in the one-contour sim-
ulations of section 3b(2) to generate a zonally varying
mean flow. We use this topographic forcing because it
facilitates direct comparision with the one-contour
breaking results and because the strong zonal varia-
tions in the basic flow used to study linear wave prop-
agation in section 4b(2) cause extensive breaking at
small amplitudes that is computationally expensive to
resolve. The basic-state along-contour velocity and
particle positions are shown in Fig. 16; as in the
one-contour model, the along-contour basic-state wind
is reduced by a factor of 2 at the center of the domain.
The initial condition for the numerical simulations be-
low are particle displacements of the form (3.17) on
each contour with k0 5 2 and x0 5 25p, and integra-
tions are performed for various values of h0 and x,
similarly to section 3b(2).

Figure 17 provides an example of wave breaking in
the two-contour model. The initial particle position
amplitude for this simulation is h0 5 0.2, with phase
x 5 0. Similarly to the one-contour model, the primary
signature of wave breaking is the shedding of PV fil-
aments. However, in the two-contour model breaking
only occurs outward from each contour, provided the
initial amplitude of the perturbation is sufficiently
small. This agrees with the findings of Nakamura and
Plumb (1994), who showed that waves typically break
in the direction of stronger shear, which is outward in
this case.
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FIG. 16. (a) Basic-state along-contour velocity and (b) particle po-
sitions for nonlinear two-contour simulations.

FIG. 17. Particle positions as a function of time for the two-contour
simulation with initial perturbation amplitude h0 5 0.4 and phase
x 5 0.

As in the one-contour model, breaking results in the
loss of wave action and the reduction of wave ampli-
tude as it propagates through the weak flow region.
Figure 18 summarizes the effects of breaking on the
final wave amplitude for a series of experiments using
the two-contour model and the topographic forcing of
section 3b(2). The clipping hypothesis described in
section 3b(2) for the one-contour model provides a
reasonable description of the reduction in wave am-
plitude associated with breaking for the two-contour
model. In particular, for this basic state and an initial
value of kzx525p 5 2, (4.15) leads to the prediction that
waves will break for zhcrz . 0.298 or h0 $ 0.15. The
numerical results support this threshold, as no breaking
is found for initial particle displacement amplitudes
smaller than this value. The breaking experiments
shown in Fig. 18 highlight two points in particular.
First, even for cases which do not break, there is an
approximately 10% reduction in wave amplitude upon
passing through the weak flow region. Because this

reduction is significantly smaller in the wave action
(not shown), it presumably results from the dispersion
of the initially localized packet, as the group velocity
for the two-contour symmetric modes is no longer
wavenumber independent. Second, the amplitude re-
duction in waves that do break is even better described
by the clipping-hypothesis (the solid curve in Fig. 18)
than was the case for the one-contour simulations.
There is significantly less spread of the wave amplitude
about the clipping-hypothesis predicted value upon ex-
iting the weak flow region.

5. Discussion

We have investigated the behavior of barotropic
waves propagating through zonally varying contour dis-
tributions. In this simple framework, it is possible to
make specific and testable predictions of eddy structural
changes brought about by zonal variations in the basic
flow. We have used conservation laws, WKB theory,
and linear and nonlinear numerical simulations to de-
termine the dependence of eddy wavelength, stream-
function amplitude, and Lagrangian particle displace-
ment amplitude on zonally varying one- and two-con-
tour storm track models. The one-contour model is rel-
atively simple and instructive. The two-contour model
adds realistic features appropriate for modeling upper-
tropospheric eddies, by allowing eddies to be aniso-
tropic and by allowing zonal variations in the effective
PV gradient across the contours.

In the linear regime of small amplitude waves, the
effect of zonal variability on eddy structure in the one-
and two-contour models is similar. Because the one-
contour model is linearly dispersive with ]2v/]2k 5 0,
and the two-contour model has ]2v/]2k small for Dy0 K
U0 [see (3.4) and (4.3)], the eddy wavelength scales with
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FIG. 18. As in Fig. 8 but for two-contour model simulations.

the along-contour velocity in both models. In a weak
flow region, for example, the eddy wavelength shortens
to maintain the same packet frequency. Conservation of
wave action (or pseudoenergy) then leads to the pre-
diction that eddy streamfunction amplitude remains con-
stant in the one-contour model and is weakly modulated
in the two-contour model. Lagrangian particle displace-
ment amplitude, on the other hand, scales inversely with
the along-contour flow; in a weak flow region it is great-
ly amplified.

In the nonlinear regime of finite-amplitude waves, the
models still share important features. Wave breaking is
greatly enhanced in weak flow regions since stagnation
points approach the basic-state contour most closely and
since the contour displacements are largest in these
regions. In both models, this breaking is characterized
(i) by filamentation rather than vortex roll-up; (ii) by
reduction, or ‘‘clipping’’ of the contour displacement
amplitude to the minimum distance between the stag-
nation points and the basic-state contour; (iii) by a sig-
nificant loss of the wave action associated with the pack-
et; (iv) by an increase of the disturbance wavelength;
and (v) by an associated reduction of the disturbance
frequency.

Despite the similarities in the nature of the breaking,
the meridional distribution of the breaking is quite dif-
ferent in the two models. In the one-contour model, the
symmetry of the basic flow shear implies that the break-
ing and clipping are symmetric about the contour. In the
two-contour model, by contrast, the asymmetry in the
basic flow shear implies that breaking and clipping oc-
cur preferentially toward the region of stronger shear,
which is toward the exterior of the contours in the case
examined in section 4b.

The result, from the linear theory in sections 3a and
4a, that the streamfunction amplitude is at most only
weakly modulated by the underlying basic flow in these

models, differs from the results of Lee (1995). Lee
studied barotropic f-plane eddy dynamics in the ab-
sence of basic-state PV gradients and found that the
rms eddy streamfunction scales as the square of the
zonal flow, that is, ^c2&1/2 ; U2. Because Lee focused
on eddies with little meridional structure, a more ap-
propriate field to compare to Lee‘s results might be the
meridionally integrated contour disturbance stream-
function, which scales as ^c2zcontour&1/2/k } U in our con-
tour models. This quantity indicates some local weak-
ening of streamfunction variance in regions of weak
flow, but the dependence on U is weaker than in Lee’s
analysis.

Understanding the dependence of upper-tropospher-
ic eddy amplitudes on the local zonal flow is important
in developing a theory of the longitudinal structure of
the storm tracks. For example, Lee (1995), based on
the prediction that ^c2&1/2 } U2, suggested that ‘‘bar-
otropic modulation’’ of eddies could be in part re-
sponsible for the observed storm track eddy amplitude
modulations and, in particular, for the termination of
the storm tracks at the jet exit regions. The results
presented here, if meridionally integrated streamfunc-
tion variance is used as the measure of eddy activity,
support this suggestion, albeit with a weaker depen-
dence on variations in the zonal flow. Nonlinearities
are presumably important in the observed reduction in
eddy activity as well. The nonlinear CS simulations
presented in sections 3b(2) and 4b lead to the picture
that nonlinearities associated with wave breaking and
filamentation in the weak flow region result in a de-
crease in the barotropic eddy activity in excess of that
expected from purely linear modulation. This reduction
depends strongly on the measure of eddy variance,
however. Wave action, since it is conserved by the
dynamics, can only be lost if wave breaking takes
place. However, other measures of eddy activity are



1 APRIL 1997 807S W A N S O N E T A L .

FIG. 19. Region in which generalized enstrophy contribution to
pseudoenergy is nonzero.

ambiguous and may increase or decrease reversibly
depending on the structural changes brought about by
the mean flow modulation and wave breaking.

Regarding directions of further study, the reduction
in frequency due to nonlinear breaking investigated in
section 3 indicates that, at least for simple contour mod-
els like these, nonlinear effects and scale interactions
can lead to the generation of low-frequency variability.
The possibility of such a mechanism existing in the
atmosphere is intriguing, as it is a mechanism with no
linear manifestation, but it could potentially be impor-
tant given the strong deformation of PV contours and
wave breaking associated with the termination of the
storm tracks. The dynamical basis for this mechanism
needs to be better understood and its possible existence
in more complicated models and in the observations
further explored.

Finally, the inclusion of baroclinic effects represents
a significant step in difficulty above the analysis pre-
sented above. Exponentially growing modes have zero
vertically integrated wave action, and hence it is not
apparent a priori how to apply wave action conservation.
However, as wave action is typically sign-definite in the
upper troposphere, a heuristic wave action equation for
the upper troposphere of the form

]W ]
5 2 (c W) 2 clipping 1 baroclinic sourceg

]T ]X
(5.1)

can be hypothesized. Application of such a simple equa-
tion diagnostically to model baroclinic storm tracks will
hopefully lead to new insights regarding the relative
roles of barotropic and baroclinic processes in gener-
ating the modulations in eddy variance. Understanding
how the baroclinic source term is related to the up-
per-level wave action even in simple models would be
a significant step in the development of a complete the-
ory of tropospheric storm tracks.
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APPENDIX A

Derivation of Eqs. (2.6) and (2.7)

The tangential–normal coordinates (s, n) described in
section 2a satisfy

]xy(s, n) 5 1 and z¹nz 5 z¹sz 5 1. (A.1)

The transformation is a local rotation of coordinates and
is therefore area and orientation preserving.1

The component of the velocity tangential to the con-
tour is

5 =s · (2(C1c)y,(C 1 c)x) 5 2(C 1 c)n,ṡ (A.2)

and similarly the component of the velocity normal to
the contour is

5 (C 1 c)s.ṅ (A.3)

From (A.2)–(A.3), the basic-state velocity is U 5
(2]nC,]sC) and the perturbation velocity is u 5 (2]nc,
]sc).

Consider now the linearized dynamics. Near contour
j, ]sQ 5 0, and using (A.1), (2.3) becomes

]q
1 ] (C, q) 1 D d(n)] c 5 0, near contour j,sn j s]t

(A.4)

where d(·) is the Dirac delta distribution. Then we may
obtain (2.6) by transforming ¹2 to (s, n) coordinates and
integrating across the contour and using the fact that
]sC vanishes along the contour.

We obtain (2.7) as follows. The small-amplitude La-
grangian displacement, j 5 (j, h), satisfies (e.g., Drazin
and Reid 1981, section 15.1)

]j
u 5 1 U·=j 2 j ·=U. (A.5)

]t

1 Demonstration of (A.1): For an arbitrary function g we have

]g ]x ]g ]y ]g ]g ]g
5 1 5 =g · n 5 n̂ 1 n̂ ,(x) (y)]n ]n ]x ]n ]y ]x ]y

where the notation n̂(x), for example, denotes the x component of n.
This, together with an analogous statement for ]sg, and using the fact
that ŝ 5 n 3 ẑ, implies (A.1).
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Using the above definitions of U and u9 the n component
of (A.5) is

]h ](U h )j j j] c 5 1 . (A.6)s j ]t ]s

Comparing (A.6) and (2.6), (2.7) immediately follows
apart from a constant of integration that may be set to
zero.

APPENDIX B

Pseudoenergy Conservation

We divide the full domain V into a disturbance region,
Vq, where q is nonzero, and its complementary region,
VQ 5 V\Vq, where q 5 0 but where c may be nonzero.
The region Vq is represented by the hatching in Fig. 19.

The local flux law for pseudoenergy is (McIntyre and
Shepherd 1987)

]tA 1 = · J 5 0, (B.1)

where the pseudoenergy density is
q1

2A 5 E 1 B 5 z¹cz 1 {C(Q 1 q̃) 2 C(Q)} dq̃E2 0

(B.2)

and the pseudoenergy flux is

J 5 (B 2 qc)(U 1 u) 2 c ¹(]tc) 1 (½)c2z 3 =Q,
(B.3)

where U is the basic-state velocity and u is the distur-
bance velocity. Using the boundary conditions de-
scribed in section 2, we have

dA
5 Adxdy 5 0. (B.4)Edt

V

The pseudoenergy A may be expressed in terms of
quantities local to the contours. In VQ, q 5 0, implying
that B 5 0 and

1 1
2 2 2A 5 E 5 z¹cz 5 ¹ c . (B.5)1 22 4

Then

N11 N11 1
2Adxdy 5 Adxdy 5 = c ·n ds,O OE E Qj$]V 1 2Qj 4j51 j51V VQ Qj

(B.6)

where VQ, represents part of VQ with Q 5 Qj, ]VQj

represents the boundary of V represents the, and nQ Qj j

outward normal to that region. Equation (B.6) may also
be interpreted as the flux of ¹(¼c2) into the disturbance
region V associated with contour j; that is,qj

N 1
2Adxdy 5 2 = c ·n ds, (B.7)OE qj$]V 1 2qj 4j51VQ

where n . For small-amplitude disturbances,5 2nq Qj j

then

N 1
2Adxdy ø 2 ¹ c ·n ds, (B.8)OE E j1 2[ ]4j51 jV yQ j

where nj is the unit normal to the jth contour and points
to the left of direction of increasing arc length s, and
the notation [(·)]j indicates a jump in the value of the
quantity (·) across a contour. However, from (2.7), it
follows that ¹c·nj 5 2Djhj, and this expression sim-
plifies to

N 1
Adxdy ø D c h ds, (B.9)OE E j j j2j51V yQ j

where cj 5 c (s, 0) is the disturbance streamfunction
evaluated along contour j.

In Vq, B is evaluated following the method described
in Shepherd (1988, appendix B) for expressing the pseu-
domomentum defined with respect to piecewise constant
zonal PV distributions. Within Vq, assuming that the
disturbed contour j does not cross the location of another
basic-state contour,

B(s, n) 5 sgn(n) Dj{C(s, n) 2 Cj} 5 2UjDjznz
1 O(Dj¹2Cn2), (B.10)

where Cj 5 C(s, 0) is the value of C on the contour
j, Uj 5 2=C·n is the basic-state velocity component
tangential to the contour, and n is the displacement nor-
mal to the basic-state contour. Letting hj represent the
disturbed contour’s displacement, then B ; 2UjDjhj is
linear in the disturbance amplitude, but E is quadratic
and therefore comparatively small for small-amplitude
disturbances. Therefore,

N

Adxdy 5 AdxdyOE E
j51V Vq qj

hN

5 (sgn(n̂)D {C(s, n̂) 2 C(s, 0)}OE E j
j51 y 0j

1 E) dn̂ ds (B.11)

N 1
2ø 2 U D h ds.O E j j j2j51 yj

(B.12)

In (B.11), the change of variables from Cartesian co-
ordinates (x, y) makes use of (A.1).

Combining (B.4), (B.7), and (B.11) yields a finite-
amplitude conservation law for the wave activity as-
sociated with contour perturbations. For small-ampli-
tude disturbances, from (B.9) and (B.12), the conserved
pseudoenergy is given by (2.8) with (2.10).
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APPENDIX C

WKB Solution for the One-Contour Model

In order to construct a WKB solution to the one-
contour problem with a zonally varying basic flow, we
note that solutions of the form

c6 5 c(X 6 iY) (C.1)

exactly satisfy Laplace’s equation away from the con-
tour, where

(X, Y) 5 e(x, y). (C.2)

The form of this solution implies that if the stream-
function is oscillatory in the zonal direction, it is eva-
nescent in the meridional direction. Assuming a
WKB-type solution of the form

c6 5 F6e 1 complex conjugate,6iS /e (C.3)

it follows that
66 6 6 6 iS /e] c 5 (iS 9F 1 eF 9)e ,x

66 6 6 6 iS /e] c 5 6i(iS 9F 1 eF 9)e ,y

2 6 6 2 6 6 6 6 6] c 5 6i(2(S 9) F 1 ie(2S 9F 9 1 S 0F )xy

62 6 iS /e1 e F 0)e , (C.4)

where the prime denotes differentiation with respect to
the argument. For the one-contour case, we seek solu-
tions of the form

c 5 e2ivt 1 complex conjugatec̃ (C.5)

and the spatial dependence

11 iS /e for y . 0F e
c̃ 5 (C.6)22 iS /e5 for y , 0.F e

The appropriate solution branches have been chosen in
the above to satisfy the boundary condition that →c̃
0 as zyz → ` as well as to ensure the continuity of the
solution at y 5 0, where S1 5 S2 5 S and F1 5 F2

5 F.
Defining k [ S9, at y 5 0, we have to order e

iS/e˜] c 5 (ikF 1 eF9)e , (C.7)x

iS/e˜[] c] 5 2i(ikF 1 eF9)e , (C.8)y y50

2 2 iS/e˜[] c] 5 2i(2k F 1 ie(2kF9 1 k9F))e . (C.9)xy y50

Substituting these expressions into the equation of
motion (3.2), we find to order e

2v(ikF 1 eC9) 1 2iU0(2k2F 1 ie(2kF9 1 k9F))
2 e2U90kF 1 D(ikF 1 eF9) 5 0. (C.10)

The leading-order terms yield the dispersion relation,

v 5 U0k 2 D/2, (C.11)

as expected from (3.4).
At order e, an equation for the streamfunction am-

plitude at y 5 0 is obtained, namely

(U0kF)9 5 0. (C.12)

Using the dispersion relation (C.11), we have U0k 5 v
1 ½D 5 constant, implying that

F 5 const, (C.13)

that is, that the streamfunction amplitude zcz is con-
served as the eddies propagate through the zonally vary-
ing flow.
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