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The influence of streamline curvature on small-scale turbulence and vertical mixing in stratified 
fluids is the subject of this study. The roles of curvature and stratification in enhancing and suppressing 
turbulent mixing are explored using second-moment closure for turbulence. Governing equations for 
second moments are expressed in generalized orthogonal curvilinear coordinates, from which, through 
a series of approximations, simplified expressions are derived for second moments in the limit of small 
streamline curvature. The governing equations are then used to obtain a quasi-equilibrium turbulence 
model suited for application to atmospheric and oceanic mixed layers. A typical model application is 
illustrated by simulation of stratified flows over two-dimensional, idealized mountains and valleys. The 
limit of local equilibrium is further invoked to derive semi-analytical results for the enhancement and 
suppression of vertical'turbulent mixing under the combined influence of stratification and curvature. 
It is shown that stabilizing curvature can drastically suppress turbulence even when the stratification 
is strongly destabilizing. Conversely, under strong stable stratification that would otherwise lead to 
total suppression of turbulence, destabilizing curvature can keep turbulence alive. Streamline 
curvature is also shown to significantly modify the Monin-Obukhov similarity laws for momentum and 
heat fluxes in the constant flux region of the atmospheric boundary layer. Finally, the need for 
observational data on curvature effects on mixing in stratified flows either in the laboratory or in flows 
over topography in the oceans and the atmosphere is highlighted. 

1. INTRODUCTION 

The effects of streamline curvature and gravitational strat- 
ification acting together on turbulence in a mixed layer is the 
subject of this paper. This problem is of considerable geo- 
physical interest in mesoscale flows over topography. The 
flow of stably stratified atmosphere over mountains and 
valleys leads to the generation of strong internal gravity 
waves, which can break aloft and lead to a strong divergence 
of momentum flux. Consequently, mountains can exert a 
large drag on the atmosphere and can significantly influence 
the skill of medium-range weather forecasts. More accurate 
mountain drag parameterization in medium range weather 
prediction models could improve their forecast skill. The 
momentum flux due to gravity waves propagating upward 
from the troposphere is also an important factor in the 
dynamics of the middle atmosphere. In the oceans, too, it 
might be important to account for curvature effects in 
understanding and modeling of flows over seamounts, espe- 
cially those straddling energetic streams (for example, the 
Emperor seamounts in the Kuroshio's path). Therefore a 
better understanding of flow over topography is of some 
importance for many practical reasons. 

Traditionally, in considering flows over topographic 
changes, not much importance has been given to accurate 
parameterization of turbulence and its generation and dissi- 
pation in the atmosphere. Most often, rather arbitrary sta- 
bility dependent mixing coefficients have been used in sim- 
ulations of such flows. The influence of the atmospheric 
boundary layer and, to some extent, the effect of rotation has 
also been traditionally ignored. This is understandable be- 
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cause of the focus on the low-drag regime, in which the 
waves do not break and therefore turbulent mixing regions 
do not form in the flow aloft. However, in the so-called 
high-drag regime, the intense turbulent regions created in the 
lee of mountains by breaking gravity waves call for a more 
careful look at the turbulence parameterization itself. In any 
event, the turbulence in the atmospheric boundary layer 
flowing over the topography itself needs to be taken into 
account in both low- and high-drag regimes. Therefore a 
careful examination of the behavior of turbulence in strati- 

fied flows over topography is helpful to our understanding of 
such flows. 

At a first glance, one might be tempted to ignore the effect 
of surface curvature on turbulence in stratified flows over 

topography. It is natural to assume that the curvature effects 
are secondary, while stratification exerts a dominating influ- 
ence on turbulence. Such an assumption needs to be put to 
a rigorous test, however. It is not at all clear a priori that 
curvature effects are always negligible. There might be some 
situations where these effects become large, if not dominant. 
In any case, the effects should be quantified in order to make 
it possible to delineate circumstances where the effects of 
curvature are negligible and those where they are not. The 
governing parameters and their plausible ranges need to be 
explored. The object of this study is to do precisely that. We 
will employ second-moment closure of turbulence to inves- 
tigate the properties of turbulence under the combined 
action of stratification and curvature. It is important to note 
that the additional terms that result in the equations do not 
present any closure problems. In fact, these terms do not 
have to be modeled. This certainly is a decisive advantage, 
since it removes the uncertainty of the precise manner of 
their modeling on the results. The interpretation of the 
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effects of curvature therefore becomes rather straightfor- 
ward. 

2. GOVERNING EQUATIONS 

It is convenient and appropriate to start an investigation of 
the effects of flow curvature on turbulence by rewriting the 
governing equations in generalized orthogonal curvilinear 
coordinates. It is then possible to proceed in an orderly 
fashion from the case of arbitrary curvature to the geophys- 
ically important case of small curvature. The derivation of 
the general form of these equations is necessarily cumber- 
some and is best omitted here. We will therefore present 
these equations without any derivation, making note of the 
fact that the turbulence closure approximations have already 
been incorporated into these equations (see Mellor and 
Yarnada [1982] and Galperin et al. [1988] for a discussion of 
these approximations in particular and second-moment clo- 
sure in general). We have also ignored any implicit curvature 
terms in the Rotta approximation for pressure-strain covari- 
ance terms (see Appendix A). It is straightforward though 
lengthy and time consuming for the reader to derive these 
equations by starting from momentum and heat balance 
equations in orthogonal curvilinear coordinates and using 
standard procedures for derivation of equations for second 
moments of turbulence quantities [see Hinze, 1975]. 

The equation for Reynolds stresses in tensohal form is 

0 (U-•) q- UiU j q- UiU j --• q-- O• • hi O•k hj 

• 10hk 1 ohk'• .... llitlk hi oei 

{, Ohihh3) + u•uiuj hi4.h 3 o• • h• 

ukujuk Oh• u•uiu• Ohk'• 
hih• oei h•h• •j 

= 

hi V• • •hiVi) h• •,] - Z•[•'•'•i+• 

I q3 q uiuj- l• O. - 3All • l•ij - 13[9juiO + 9iuj•] 

where 

- •i• = • •qSq • 

1 o 1 o + (u•) + (u•) (1) hj O•j 
The turbulent heat fluxes are given by 

0 

- (•) +- • • 
ot 

where 

- u•ujO = lqSuo •jj u•O + ujO (2) h•o• 

while the equation for the variance of temperature is 

__0 •+__ • + • •0 • 
Ot h• •-5 0:2• 

1 O0 2q• 
= -2u•O 02 (3) 

h• 0• B21 

where 

1 0 -- 
- u•O 2= lqSo 02 

h• 0:2• 

It is possible to derive the equation for q2, twice the 
turbulence kinetic energy, by contraction of (1): 

U• { 0 2q 20hi 10hk'• Oq2+ 2 Ot • • q + 2UiUk -- hi O•k •ii •iJ 

{ 1 0 [hi2h33 (1 0 q2 2 0 __)] - hi2h 3 0• [-•-• • lqSq • • + h• 0• •i•k 

6 1 (1 0 2 0 )Oh• lqSq 2 5 h• ••q +----•i•k h• 0• O•i J 

{ • ]} q3 2u• 1 0 U• Oh• - 2- 2•9iuiO =- hi ••(hiUi) hk O•i] Bi I 
(4) 

Finally, an equation for the quantity q21 can be derived by 
inspection of its form in Cartesian coordinates and the form 
of (4): 

0 U•[ 0 2q21 Ohi I Oh•] Ot (q2/) + • • (q2/) q 2uiu• -- hi O•k •O•i] 

1 0 •h•h33 [1 0 2 0 ]} h•h 3 0• [ • • lqSt • • (q2/) + • • (u•l) 

6 10h•[•O 20 • +- lqSt (q21 S h• • • ) + (u•l) h• 

= -Ei• l • (hiUi) ha O•i 

- EiE31•9iuiO - E41 1 + E2 • (5) 
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In (1)-(5), conventional tensorial notation is employed. 
This means that when indices are repeated, the Einstein 
summation convention is to be invoked. The only exception 
is the indices on metrics hi; these are passive. Also, h 3 = 
h lh2h 3. The convention employed here is responsible for the 
compact form of the governing equations (H. J. Herring, 
personal communication, 1987). Note that when all spatial 
derivatives of metrics (i.e., Ohi/O •. = 0 for all i and j), are 
neglected, (1)-(5) reduce to their Cartesian counterparts and 
A1, A2, B1, B2, C1, El, E2, E 3 , E4, Sq, Sl, Suo , and So are 
universal constants [see Melior, 1973; Melior and Yamada, 
19821. 

It is clear that simplifications are essential before we can 
proceed further. One obvious simplification is to invoke the 
Melior and Yamada [1974] expansion scheme or its slightly 
modified version [Galperin et al., 1988]. The former leads to 

• 1 

the so-called '25 level" model, whereas the latter yields 
' 2• level' equations, which are somewhat more convenient 
to manipulate. We will therefore present the 2• level model 
equations, again without formal derivation. We also note 
that when we make the additional approximation of local 
equilibrium, we get identical forms for level 2 governing 

equations, irrespective of whether we start from level 27 or 
level 2•. The governing equations for the Reynolds stresses, 
the turbulent heat fluxes, and temperature variance are 

•U •2 3A'I {U-••• [O-•• (•i Ohi 10hJ• uiuj = -•- q + uiuj + uiuj • + -- q O•k h i •k/! 

10hk 10h•]} -- ltJlt k hi O • i lt ilt k •jj •jj ] 

3Ail•u-•-•[1 0 _U_•Oh___• 1 q [-•-j ••-•(hjUj) h•O•j 

uju•[1 0 U•Ohk] + (hiUi) 
hi •kk •-•k h k • •ii ] 

q- fk(EjklLllLli q- EiklLllLlj) q- •(#jLliO q- giLlj O) q- • •ij 

(6) 

ukO q • •-•ujO+UjOhjo• ••j] 

10Uj+ Uj Ohj U• Oh•] + Ouk h-• 0• hjh• O•k hjh• 

100 #j-•} -- • + fgSjklUlO + • (7) + uju• h• 

- 02 = B21 'u•O (8) q 
1 

Equations (4•(8) constitute a level 2i approximation to the 
governing equations for turbulence quantities. In the equa- 
tions given above for second moments, the advective terms 

have been ignored. In some mountainous terrain, the surface 
slope might be large enough to warrant inclusion of these 
terms. It is then necessary to appeal to the set of equations 
(1)-(3). Even then, the subset of equations (6)-(8) may be 
regarded as a first approximation. In most situations, how- 
ever, it should be possible to utilize the simpler subset of 
(6)-(8) to quantify curvature effects. 

We can now take advantage of the fact that in most cases, 
it is possible to ignore the gradients in all but the direction 
perpendicular to a solid surface, i.e., make the boundary 
layer approximation. Thus ignoring all spatial derivatives 
except in direction 3, i.e., 

1 o 1 o 1 o 

h 3 0•3 hi 0s el' h2 0•2 

equations (4)-(8) become 

-- lqSq at (q h3 0•3 •33 •3] 

8 10q 2 [ 1 Ohl -- lqSq 5 •33•3 h•h30•3 
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10U2 - 2u2u 3 h3 0•3 U2 Oh2] q3 
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(9) 
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(q3) + E1E31t3giuiO - E41 • (10) 
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3A21 { 2Utc 10htc ltjO = --W ltkO q h3 0•3 q2( 6A• 6Ad •j3 -• = -•- 1-• B• /! q 

+ + 

1 o!9 -- -- • + 13gjO 2 + fkejkl•--1-1010 (12) + UjU3 h30•3 

- u30 (13) q •33 
We make note of the fact that coordinate 3 is not neces- 

sarily in the direction of gravity, except in geophysical 
boundary layers. We can now take advantage of the fact that 
in most cases of interest, the radius of curvature of the 
underlying solid surface is such that in some sense, the 
curvature is small and therefore an expansion for small 
curvature is possible and would lead to a simpler form for 
(9)-(13). Thus, when tS/R, where • is a measure of the 
boundary layer thickness and R is the radius of curvature, is 
small, we can put 

hi= 1 + kxz h 2= l + kyz (14) 

where h30•3 = Oz; k x an.d ky are curvatures in the x and y 
directions. We note that we will henceforth denote the 

coordinates by x, y, and z and the corresponding velocities 
by U, V, and W. Noting that 

1 Ohi kx 1 Oh2 ky Oh3 
---- "- • • --"- • ----0 

hlh 3 0•3 1 + kxz h2h 3 0•3 1 + kyz O• 3 

(9)-(13) become, in component form, 

D 

(q2) 0 ( Oq2• 8 Oq2[ kx --- lqSq -•-Z /l - • lqSq oz + 1 +kyz 

OU kxU • '•ZZ l+•yZ' =-2 • •ZZ 17 •x Z /l + • 
3 
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= -Ell •-• + •-• l+•xZ ] 7Lz/] 
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(16) 

(17) 
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(18) 
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q 
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(19) 

3Ail [ OV •-• -- + u'-7 
q Oz 
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--] -f•uw + f yv--7 + f •(u 2 - v 2) (2O) 

LiW = ---- 3All I 2kxU •-•_ • q l+kxz 
u-•+w 2 --+ • 
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OU kxU 
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(21) 

__ 3All [ 2kxU • UW = •• HU 

q l+kxz 
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3A21 [ o19 (ou Uw •+ wO 
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(23) 

vO = 7'• -- + wO + 
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(24) 
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q OZ 
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1 +kxz 1 +kyzj 

(26) 

In (15)-(26) we have made use of the fact that in geophys- 
ical situations, the z coordinate is aligned with the vertical so 
that g l = g2 = 0 and g3 - -g. These then constitute the 
starting point for our analysis of curvature effects in strati- 
fied flows. But before proceeding further, we note that under 
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level 27 approximation, only the (17)-(19) change and need to 
be replaced by 

• q2 All [ OU OV u 2 = • + • -4u-• • + 2v-• • - 2/39w0 
3 q Oz Oz 

8kxU kyV ] lt-• - 2 • v-• - 6fy lt W + 6fz•-• 
1 + kxz 1 + kyz 

i q2 
V2=--+• 

3 All [ OU OV 2u-• • - 4v-• • - 2/39w0 
q Oz Oz 

-2 kxU kyV J u'-7 - 8 • v'-7 + 6 f xV'-7 - 6 f • 
1 + kxz 1 + kyz 

2 q2 All I OU OV = • + 2u'-• • + 2v-• • + 4139w0 
3 q Oz Oz 

(27) 

(28) 

kxU kyV ] + 10 • uw + 10 • v-• - 6fxv-• + 6fy•'-• (29) 
1 + kxz 1 + kyz 

As was mentioned earlier, we will deal with the set of 
equations (15)-(26). A further simplification is to put to zero 
all the rotational terms in these equations, a simple but 
nevertheless important step, which renders the tubulent 
mixing coefficients for momentum, scalars (as opposed to 
their tensorial form in the case of nonzero rotation [see 

Kantha et al., 1989]), and therefore the algebraic manipula- 
tions much simpler. 

Furthermore, since the mixing coefficients are scalars, it is 
possible to align the local coordinate system in the direction 
of the local flow vector (and therefore put V = 0), without 
any loss of generality. The equations become 

(30) 

+ t3awO] 

(31) 

(32) w 2=• 1-• +• •'-•' 
3 Bi J q 1 +kxz 

u-• = 0 (33) 

UW • 

3All 

1 +kxz 

kxU 

-- Clq2( OU Oz 
(34) 

v-• = 0 (35) 

u'• = • • + wO + (36) 
q Oz 1 +•xZ 

v• = 0 (37) 

3A21 I' 0{9 2kxU ] wO = • • -/30-• - • • (38) 
q Oz 1 + kxz 

We now let 

-• = B21• 019 -•wO 
q Oz 

OU 

- uw = lqSM • 
oz 

(39) 

(40) 

0t9 
- wO = lqSH 

Oz 
(41) 

G/-/= -•/3019z 

(42) 

(43) 

kxU 

1 + kxz 
(44) 

The set of (30)-(39), with the aid of (40)-(44) yield 

SM[1 -- 9AlA2GH + 72A•GM Ric (1 +Ric)] 

- SH[9Ai(2A1 + A2)GH(1 + Ric)] 

6Al = A 1 1 3C 1 (1 - Ric) 
B1 

SM[18A2(2Al + A2)GM Ric] + S•[1 - 3A2(6A• + B2)GH 

+ 18A22GM Ric (1 + Ric)] = A2(1 al/ 

where 

(45) 

(46) 

Ric = C = (47) 
1 + kxz 

For future reference, the equations for turbulence compo- 
nents will also be written in the following form after local 
equilibrium is further invoked' 

h 6Al (1 + Ric) u 2 1 6A•. 
q2 3 B• /l B• (1 - Rif- Ric) 

q2 3 B1 

q2 3 B1 // 
6A1 (R/f+ 2 Ric) 

B 1 (1 -- Rif - Ric) 

(48) 

(49) 

(50) 

where 

/39w0 
R/f=• (51) 

uw(OU/Oz) 

is the flux Richardson number, denoting the ratio of buoy- 
ancy destruction of turbulence kinetic energy to the produc- 
tion by shear. We note that when Ric = 0, (45) and (46) 
reduce to equations (39) and (38) of Melior and Yamada 
[1982], with (Ps + Pb)/e put equal to 1 as appropriate for 
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level 2X approximation. These equations also yield equations 
(24) and (25) of Galperin et al. [1988] when Ric = O. 

Equations (15) and (16) along with (45) and (46) form the 

equivalents of the Mellor and Yamada [1982] level 27 equa- 
tions (24), (48), (34), and (35) but with nonzero curvature 
effects and are readily applied to geophysical flows where 
curvature effects on turbulence may not be ignored. In 
section 4 we will describe results of simulations of stratified 

flow over mountains and valleys using these equations. But 
first, in the next section, we will present some simple 
analytical results in the limit of local equilibrium, which help 
shed some light on the effect of curvature on turbulence in 
the presence of stratification and help quantify these effects. 

3. LOCAL EQUILIBRIUM APPROXIMATION 

The limit of local equilibrium, when the turbulence pro- 
duction balances dissipation, is often well approximated in 
geophysical boundary layers and therefore is useful for 
understanding the behavior of turbulence under different 
external forcing. In this limit, the terms on the left-hand side 
of (15) for turbulence kinetic energy balance can be dropped. 
The resulting algebraic equation is 

q3 
+ tawO 

Bll 
= o (52) 

With the coordinates aligned with the local flow, the equa- 
tion further simplifies to 

- uw + l•9wO 
1 + kxz Bll 

-• = 0 (53) 

3.1. The Influence of Curvature on Turbulent Mixing 

Equation (53) can also be written in the form 

Bi[SMGM(1 --Ric) + SHGH] = 1 (54) 

Equations (45), (46), and (54) constitute the complete set of 
governing equations under the local equilibrium (level 2) 
approximation, and it is possible to solve now for SM and SH 
as functions of Rif and Ri c. First, we rewrite (45) and (46) 
using (54): 

A22 SH 
SH(I -- Rif - Ri•.) + 18 • Ric (1 + Ri•.) 

B1 SM 

= A2 1 •i (1 - Rif- Ri•.) - 3 • (6Al + B2) Rif 
A2 

- 18 (2A• + A2) Ric (55) 
B• 

SM A2 SM 

• S H(1 -- Rif- Ric)+ 9Al • Rif • SH 

= A1 1 3C1 (1 - Ric)(1 - Rif- Ric) - 9 m 
Bi 

ß (2A1 + A2)(I +Ric) - 72 m Ric (1 + Ric) 
B1 

A1 

(56) 
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Fig. 1. Variation of mixing coefficients SM and SH with strati- 
fication flux Richardson number Rif for various values of curvature 
Richardson number Ri c. 

Equations (55) and (56) reduce to equations (41a) and (4lb) 
of Mellor and Yamada [1982] when Ric -- O. 

Equations (55) and (56) are readily solved by a technique 
such as Newton-Raphson's for solving simultaneous nonlin- 
ear algebraic equations. Figure 1 shows the variations of SM 
and S• with flux Richardson number Rif, for various values 
of curvature Richardson number Ric. It is clear that positive 
Ri•. (i.e., stabilizing curvature) can drastically suppress 
turbulence even when the stratification is strongly destabi- 
lizing. Conversely, under strong stable stratification that 
would otherwise lead to total suppression of turbulence, 
negative Ri•. (i.e., destabilizing curvature)can produce 
strong turbulent mixing. 

Figures 2 and 3 show the variations of q.(=q/u), u/q, and 
w/q, with Rif (v/q remains a constant) for various values of 
RIG.. It is important to note that unlike rotation [Kantha et 
al., 1989], curvature terms occur explicitly in the turbulence 
kinetic energy equation. Thus while rotation tends mainly to 
redistribute turbulence kinetic energy among its compo- 
nents, curvature tends to suppress or enhance turbulence 
production, somewhat akin to the effect of buoyancy on 
turbulence. One would therefore expect buoyancy and cur- 
vature effects to be more similar in some aspects than 
rotation and curvature effects, in general. Figure 4 shows a 
plot of the critical buoyancy Richardson number Rif for 
complete suppression of turbulence as a function of the 
curvature Richardson number Ric. 

In geophysical flows, one is often concerned with the limit 
of strong stratification but relatively weak curvature effects. 
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Fig. 2. Variation of q2/u,2 with stratification flux Richardson num- 
ber Rif for various values of curvature Richardson number Ric. 
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Fig. 4. Variation of critical stratification flux Richardson num- 
ber Rif for extinction of turbulence with curvature Richardson 
number Ri c. 

It is therefore natural to consider a small perturbation 
expansion for small Ric but for arbitrary values of Rif. Thus 

Sm(Rif, Ric) = Smo(Rif) + Ric Sml(Rif) +'" 

SH(Rif, Ric) = SHo(Rif) + Ric Sm(Rif) +'" 
(57) 

The resulting algebraic expressions are rather messy. It is 
preferable instead to plot $2u• and S H1 as functions of Rif as 
indeed is done in Figure 5. These plots show that the 
maximum influence of curvature occurs under slightly desta- 
bilizing stratification conditions. Under these conditions, 
SMO and SH0 are roughly 0.8 or so, and therefore for the 

curvature to exert, say, a 50% enhancement or curtailment 
of mixing, IRicl needs to be about 0.1, a value that is rather 
easily attained in atmospheric boundary layer flow over 
mountains and valleys. It may therefore be important to 
include the effect of curvature on turbulence in our under- 

standing and simulation of flow over topography. 

3.2. Curvature Effects in the Constant Flux Region 

The region of the atmospheric boundary layer close to the 
surface is characterized by relatively constant values of 
momentum and heat fluxes. In this so-called constant flux 
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region, extending to perhaps 50 m above the surface, the 
momentum flux is constant to within 20% or so [see Monin 
and Yaglom, 1971] and the wind turning angle is within about 
10 ø. Monin-Obukhov similarity laws pertaining to the pro- 
files of velocity, temperature, and other quantities for the 
atmospheric constant flux region in the presence of stratifi- 
cation are rather well known [Monin and Yaglom, 1971]. 
Considerable observational [Businger et al., 1971] and mod- 
eling [Mellor, 1973; Lewellen and Teske, 1973] efforts have 
been expended in determining the form of these similarity 
functions. In fact, the widespread "popularity" of second 
moment closure techniques in geophysics can be attributed 
to the "successful" prediction of these Monin-Obukhov 
similarity functions in the early seventies [Mellor, 1973; 
Lewellen and Teske, 1973]. It is therefore natural to inquire 
how curvature affects Monin-Obukhov similarity and to 
what extent. To explore this aspect, we rescale (30) to (39) 
and (53), which yield after some manipulation 

3Alq, [ ] 
6A1 

•--(qbm+•rc) Yl q,3 (•r+2•rc) -Cl(cbm-•-c) 

[ 
6A1 3A2•r 

-2•rc •/•+ q,3 (qbm+•rc) q,3 + + (58) 

3A2q, 6A• ] -qbH •/• q,3 (•r+2•rc) 
B2 6A2 

q,3 CbH•' q,5- (Cbm + CbH + •'c)•'c (59) 
q,3_ B•(CbM- •'- •'c) (60) 

where 

q 
q, = -- (61a) 

I ou 
CbM = -- -- (6lb) 

u, 0z 

lu, O© 
&u = (61c) 

H Oz 

1391H 

•'- u* 3 (61d) 

u, 1 + kxz 
(61e) 

The quantities u, 2 (= -uw) and H (= - wO) denote the nearly 
constant kinematic momentum and heat fluxes in the con- 

stant flux region. Also •/• = • (1 - 6A•/Bi) and I - kz. 
We note that (58)-(60) reduce to equation (42) of Mellor 

[1973], when src - 0. 
Equations (58)-(60) can be solved for •bM, •b•, and q, by 

the Newton-Raphson technique for arbitrary values of s r and 
sr•.. But before presenting these results, for future reference 
we will record the rescaled equations for turbulence energy 
components: 
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Fig. 6. Variation of Monin-Obukhov similarity functions qb M 
and qb H in the constant flux layer with stratification Monin-Obukhov 
similarity variable • for various values of curvature similarity 
variable •c. 

6A1 

3' • + q,3 (•b M + s r c) (62a) 

3'1 (62b) 

6Ai 

3'• q,5-(st + 2src ) (62c) 
Figures (6)-(8) present &3•, &u, q,2, u2/q2, and w2/q 2 as 
functions of •r for various values of •r c. These plots display 
the strong influence (both stabilizing and de stabilizing effect) 
that strong curvature can exert in stratified flows. However, 
in most geophysical situations the parameter •r c is rather 
small (less than 0.03 or so), and interesting as the plots in 
Figures (6) to (8) are, it would be of interest to explore small 
perturbation expansions for 4•M and 4•u in terms of •rc: 

4u(, 4u0(O + +'" (63a) 

•Hb ?', b?'c): •H(b?') q- b?'c•H(b?') q-.-- (63b) 

q*(g, gc) = q•(g) + gcq•(g) +''' (63c) 

The governing equations yield 

qbM0[(3'l -- Cl)q3,o - (6Al + 3A2)s r] - qbHo(3A2s r) =- 
q,o 

3Al 

(64a) 
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q,0 
qb/_/0[ylq3,0- (6A1 + B2)s r] = • (64b) 

3A2 

q3,0 = Bl(qb•40- s r) (64c) 
which are identical to equations (42) of Melior [ 1973] for zero 
curvature, and 

[('y• - C•)q3,o - (6A1 + 3A2)sr]qbM1 - (3A20•m 

+ 3(T, - C,)•moq}o-- 
= 24AlUm0 + (T1 - Ci)q•o + 3(2A1 + A2)• (65a) 
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2q*ø 1 [ylq3,0- (6A1 + B2)sr]qbH1 + 3ylq2,0qbH0 --•22]q,1 
= 6A2qbm0 + 6(2A1 + A2)qbH0 (65b) 

- Blqbm! + 3q2,oql = B1 (65c) 

Figures (9) and (10) show qb3•l, qb/-n, and q,1 as functions of 
s r. The maximum effect of curvature occurs very near neutral 
stratification and amounts to less than perhaps a few tens of 
percent on qb•u but significantly lesser on qb/_/. For neutrally 
stratified flows, 

4)M-' 1 + (1 + 54A12B•-2/3)•' c (66a) 

qb H = (3A2,Y1B•/3) -1 

{ 6 } ß 1 + [2A1 + A2 + 371B•/3(A22 - A12)]•'c (66b) 
YlB1 

Thus qb•u = 1 + 8.02Src for neutrally stratified flows. Once 
again, assuming Src can be about 0.02 in the constant flux 
region, qb•u can change by about 15% or so, a small though 
nonnegligible amount. 

Finally, the relative importance of stratification and cur- 
vature in the constant flux region is governed by the ratio 

Src L 
IIc .... (67) 

• Lc 
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where L = u,3/kl3gH is the Monin-Obukhov length scale that 
indicates the relative magnitude of buoyancy production 
vis-h-vis shear production in the surface layer, while 

l+kxzU R U 
Lc - (68) 

kkx u, k u, 

is the corresponding curvature length scale, essentially a 
modified radius of curvature. 

4. CURVATURE EFFECTS IN FI•OW OVER TOPOGRAPHY 

In this section, we will proceed to incorporate curvature 
effects in simulations of flow over two-dimensional moun- 

tains and valleys to illustrate the application of the model to 
geophysical flows and the utility of the turbulence closure 
incorporating curvature effects. These simulations serve 
rather well the limited purpose of demonstrating the simplic- 
ity of incorporating curvature effects in atmospheric bound- 
ary layer calculations. The investigation of more realistic 
topography is desirable but beyond the scope of this paper. 

1 

We will use a level 2• model consisting of (15), (16), (45), and 
(46). We will, however, ignore curvature terms in turbulence 
diffusion in (15) and (16). This is inconsequential because the 
diffusion terms are in most cases rather small anyway. For 
convenience, we will also align the local coordinate in the 
local direction of flow when calculating shear production in 
these equations, which can then be written as 

Dt (q • qlSq • (q = 2q!S•4 (1 - Ric) 
3 

q 
- 2 qlSHj•/Oz -- 2 (69) 

B•l 

(q2/) _ Oz qlSl • (q2/) E•ql2S• (1 Ric) 

- EiE3ql2SuBaOz-• 1 + E2 • (70) 
We have used tildes over the velocity to remind the reader 

that the coordinate is aligned in the local flow direction so 
that the total shear is O U/Oz. The flow then does not "feel" 

the curvature in the direction perpendicular to the mean flow 
direction and the resulting expressions are hr simpler than 
those that would result when the coordinates are aligned in 

D 

Dt 

an arbitrary direction. It is important to stress that there is 
no loss of generality at all in adopting this particular proce- 
dure in calculating the turbulence properties. Note also that 
in (69) and (70), Ri c (equation (47)) is also based on U. 

Equations (69) and (70) along with (45) and (46) constitute 
1 

the level 2• equations for calculating the properties of 
turbulence in the flow of stratified fluids over curved sur- 

faces in geophysical context. These equations can be solved 
by standard techniques, along with the momentum, continu- 
ity, and heat balance equations to simulate flow over topog- 
raphy. Since we are mainly interested in the influence of 
curvature on such flows, we will not describe the details of 
the simulation. Instead, we will briefly summarize the con- 
ditions of two identical twin experiments, with and without 
curvature effects, of a flow over a two-dimensional mountain 
and a two-dimensional valley. 

The model uses Bousinesq and hydrostatic approxima- 
tions as well as dry perfect gas relation for the atmosphere. 
The grid resolution is 2 km in the horizontal, and the domain 
is 160 km wide. There are 60 levels in the vertical with a 

resolution of 250 m in the upper regions but a maximum of 10 
m immediately adjacent to the ground so as to resolve the 
lower layers of the atmosphere. The model uses topograph- 
ically conformal coordinate (o-coordinate) in the vertical and 
mode splitting for efficiency. But the most important feature 
of the model is the inclusion of second-moment closure of 

turbulence field, so that the turbulent mixing in the boundary 
layer and the wave-breaking regions aloft are parameterized 
properly and not in an ad-hoc fashion. Since intense regions 
of turbulence aloft are a prominent feature of high mountain 
drag situations, it is our hope that the flow can be better 
simulated by a model such as this. Finally both the atmo- 
spheric boundary layer and rotational effects on the flow are 
retained explicitly in the model. 

Both the mountain and the valley have a vertical scale H 
of 1 km and a horizontal scale (effective half-width W) of 10 
km, and are in the shape of a witch of Agnesi curve. A 
mountain of this shape has a moderate concave shape over 
most of the width, with a stronger convex shape near the 
center. The atmosphere is stably stratified, with potential 
temperature increasing linearly with height. The buoyancy 
frequency is 0.02 s -1 , and the flow is from the right to the left 
at 10 m s -[ . The relevant nondimensional parameters are 

NH fW NW 
Fi = • = 2 Rol- • = 0.1 FH = • = 20 

U U U 

where Fl is the inverse Froude number, Ro• is the inverse 
Rossby number, and F H is the hydrostatic parameter. The 
value of F• is slightly larger than the value at which the 
waves break and the high drag regime results. F• is suffi- 
ciently large so that the hydrostatic approximation holds 
well. The inverse Rossby number is small but not small 
enough for rotational effects to be ignored in the momentum 
equations. The values chosen are typical of the high moun- 
tain wave drag regime. The calculations are carried out until 
steady state conditions are attained. 

Figure 11 compares the potential temperature distribution 
with and without curvature effects on turbulence. The most 

noteworthy aspect is the absence of significant wave activity 
above the breaking region, when curvature effects are in- 
cluded. Although the drag exerted by the mountain on the 
flow changes by a small amount, the absence of wave 
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Fig. 11. Distribution of potential temperature over a mountain 
(top) without and (bottom) with curvature effects on turbulence. The 
contour interval is 2øK. The flow is from right to left. Note the 
hydraulic jump in the lee of the mountain in both cases and residual 
wave activity aloft in the former. 

Fig. 12. Distribution of turbulence kinetic energy over the 
mountain (top) without and (bottom) with curvature effects on 
turbulence. The contour interval is 0.1 m 2 s -2. The flow is from 
right to left. Note the hydraulic jump and the associated strong 
turbulence near the ground, in addition to the turbulence in the wave 
breaking region aloft, in the lee of the mountain in both cases. 

activity aloft is more significant, and this could be potentially 
important for the dynamics of the middle atmosphere. Figure 
12 compares the turbulence kinetic energy distribution in the 
two cases. The differences are well within 10%. Both cases 

show a strong turbulent region produced by the hydraulic 
jump to the lee of the mountain. Strong turbulence is also 
evident over the leeward slope due to intense shear of the 
flow plunging down the leeward slope and aloft due to wave 
breaking. However, the turbulence in the boundary layer 
appears to be rather small compared with those in these 
intensely turbulent regions. Figures 13 and 14 show the cross- 
slope and along-slope wind velocity distributions. Once again, 
the significantly lesser wave activity aloft is evident in cross- 
slope wind distribution. Both cases, however, show strong 
downslope winds characteristic of the high mountain drag 
regime. The along-slope winds are strong in the region ahead of 
the mountain, indicating some blocking effects. They are also 
strong in the breaking region aloft on the leeward side. Values 
of curvature Richardson number (not shown) as high as 0.1 and 
as low as -0.3 occur in some localized regions, but typical 
values range between -0.1 to +0.1. 

Figures 15 and 16 show the corresponding distributions of 
potential temperature and turbulence kinetic energy for an 
identical flow over a valley. It immediately becomes appar- 
ent that valley flows differ significantly from mountain flows. 
The asymmetry is rather sinking. There is some wave breaking 
aloft, but strong turbulence is confined to the upwind side of 
the valley. There is litle wave activity aloft with or without 
curvature effects compared with that over a mountain of 
similar shape and size. The turbulence created aloft is not as 
intense as in the case of a flow over a mountain. Curvature 

effects tend to reduce these intensities even further, as can be 
seen from Figure 16. They also appear to suppress wave 

activity aloft as can be seen from the distribution of cross-slope 
winds in Figure 17. Strong cross-slope winds are confined to 
the vicinity of the underlying surface (Figure 18). 

From these results it is clear that curvature effects, if not 
overwhelmingly important, are not negligible. Some moder- 
ate influence is surely present in flow over topographic 
changes. An encouraging aspect, however, is that it is rather 
simple to include it with little or no influence on model 
structure and economy. Since curvature effects depend clearly 
on the details of the topography, their influence will not 
necessarily be the same for mountains (or valleys) of equivalent 
size, unless they are also of equivalent shape. In any case, a 
mesoscale model of flow over a rugged terrain that includes not 
only the turbulence'Caused by wave breaking activity but the 
effect of curvature on the resulting turbulence as well can be 
readily constructed. Such a model should further our under- 
standing of topographic effects on the atmosphere. 

A particular lesson from these simulations is that the 
details of the topography bel øw are important in at least as 
far as the influence of the topography on the lower and perhaps 
the middle atmosphere as well. An interesting corollary is that 
it may not be possible to accurately simulate all topographic 
effects in general circulation models, if there is not sufficient 
resolution in both the horizontal and vertical directions to 
resolve the regions in the immediate vicinity of the terrain 
below that are affected by topographic effects. Envelope orog- 
raphy can to some extent account for blocking effects of 
mountains, but an accurate simulation of the topographic drag 
on the atmosphere may still be elusive. Curvature effects of 
topography, which depend so strongly on the details of topog- 
raphy below, would be another complicating factor in this 
picture. 
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Fig. 13. Distribution of velocity component across the moun- 
tain (top) without and (bottom) with curvature effects on turbulence. 
The contour interval is 1 m s ]. The flow is from right to left. Note 
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residual wave activity aloft in the former. 
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Fig. 15. Distribution of potential temperature over a valley (top) 
without and (bottom) with curvature effects on turbulence. The 
contour interval is 2øK. The flow is from right to left. Note the wave 
activity upstream of the valley in both cases. 

5. CONCLUDING REMARKS 

It is clear from this study that curvature exerts a nonneg- 
ligible influence on small-scale turbulence and vertical mix- 
ing in stratified fluids. It is of potential importance in the 
study of flows over mountains and sea mounts in the 
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Fig. 14. Distribution of velocity component parallel to the 
mountain (top) without and (bottom) with curvature effects on 
turbulence. The contour interval is 1 ms-]. Note strong velocities 
upstream of the mountain in both cases. 

geophysical context. Unfortunately, geophysicists have paid 
little attention to these matters, and there are few observa- 
tional data on the combined effects of curvature and strati- 

fication on small-scale turbulence and mixing in geophysical 
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Fig. 16. Distribution of turbulence kinetic energy over the val- 
ley (top) without and (bottom) with curvature effects on turbulence. 
The contour interval is 0.1 m 2 s -2. The flow is from right to left. 
Note the strong turbulence aloft upstream of the valley, especially in 
the former case. 



KANTHA AND ROSATI: EFFECT OF CURVATURE ON TURBULENCE 20,325 

I i I I I I I I I I I I I I I 

6 

'!- 
2 

1 

O, 

i i i • ! _ 

I I I I I I I I I I I • I I I 20 40 60 80 100 1 0 140 160 

DISTANCE (km) 

Fig. 17. Distribution of velocity component across the valley 
(top) without and (bottom) with curvature effects on turbulence. The 
contour interval is 1 m s-1. The flow is from right to left. 

or laboratory boundary layers. Although an excellent start 
has been made in investigating curvature effects on geophys- 
ical boundary layers [Zeman and Jensen, 1988], the investi- 
gation considered only the neutrally stratified case. Similar 
investigations on flow over topography under stratification, 

both stable and unstable, would be of great help in furthering 
our understanding of stratified flow over topography. 

APPENDIX A: IMPLICIT CURVATURE TERMS 

We have ignored implicit terms involving curvature and 
retained only the explicit terms in the equations for Reynolds 
stresses and turbulent heat fluxes. The implicit terms are 
terms that could be included in the modeling of pressure 
strain and pressure-temperature gradient covariances to 
account for the possible influence of curvature (or rotation) 
on these covariances. Zeman and Tennekes [1975] extended 
the Rotta model for the pressure strain covariance term to 
include the effect of rotation by invoking tensorial invariance 
principles. The resulting form for the implicit rotational 
terms is identical to that of the explicit rotational terms, and 
the consequence of retaining the implicit terms appears to be 
that these terms tend to counteract the explicit terms and 
thus decrease the influence of rotation on turbulence 

stresses. 

Recently, Zeman and Jensen [1988] have invoked a loose 
anology between rotation and curvature to suggest a possible 
form for the implicit curvature terms in the turbulence stress 
equations. Once again, they are similar in form to the explicit 
curvature terms and they tend to counteract the latter. With 
the coordinate system aligned such that the horizontal com- 
ponent of the velocity vector is along the x• axis, the implicit 
terms take the form [Zeman and Jensen, 1988] 

2a 2C[ e i2qUqlljq- Ej2qUqUiq- E i21U llljq- e j21 u lUi q- • u--• ij] 

so that (30)-(36) become, in the absence of rotation and 
buoyancy terms, 
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Fig. 18. Distribution of velocity component parallel to the val- 
ley (top) without and (bottom) with curvature effects on turbulence. 
The contour interval is 1 m s-•. Note strong shear downstream of 
the valley in both cases. 

u 2=• 1 .... u'-• '•+ 1- a 
3 B•J q Oz • 2 l+kxz 

(A1) 

7=0 5- -. B 1 J q -• a2 1 + kxz 

w2=-• - 1 ---' +•u• 2---a2 B•/ q 3 1 

(A2) 

kxU 'J + kxz 

(A3) 

Uv=0 (A4) 

• + (1 - 2a2)(w 2- 2u 2) 
q Oz 1 + kxz 

21ou ) - C•q [• •'• 1 + kxz' (A5) 

vw = 0 (A6) 

Equations (A1)-(A6), along with the use of the local equilib- 
rium form of the turbulence kinetic energy equation (53) give 
rise to 
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Fig. A1. Variation of momentum mixing coefficient S M with 
curvature Richardson number Ri c for two cases a2 = 0 and a2 = 
0.3; a2 is the implicit curvature parameter. The extinction value of 
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[ // 6Al• 6A12 Ric 
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ß (11 + 25Ric - 26a 2 Ric)] (A7) 

The value of a2 is not known with certainty. Zeman and 
Jensen [1988] suggest a value of about 0.3, and they cite field 
observations over Askervein Hill in Scotland that appear to 
support a value of this magnitude. Figure A1 shows SM 
plotted against Ri c for a2 = 0 and a2 = 0.3. It is clear from 
this plot that inclusion of implicit terms tends to ameliorate 
curvature effects. For example, the magnitude of Richardson 
number Ri c at which the turbulence is extinguished increases 
substantially for a2 = 0.3. However, it is not at all clear 
whether this high value of a2 is justified and even whether 
the form of these terms should be what Zeman and Jensen 

[1988] hypothesized by using a rather loose anology between 
curvature and rotation. Their extension to the Rotta [1951] 
model lacks concrete support, although the suggested form 
is certainly plausible. As for the value of a2, it should 
probably be substantially smaller, since a model by Melior 
[1975], which is similar to the model discussed here and 
which ignored implicit terms, yields quite good agreement 
for the extinction curvature Richardson number with labo- 

ratory observations of turbulent boundary layer on a convex 
wall by So and Mellor [1973]. Although Zeman and Jensen 
[1988] suggest that the above cited field data supports their 
model for the implicit terms, it is not clear whether the model 
is valid for the very strong curvature of the Askervein Hill. 
Even if it were, the model-predicted extinction Ri c would 
substantially differ from the observations of So and Mellor 
[1973], which suggests a value near zero for a2. So we regard 

the question of implicit curvature terms as an unresolved 
issue and for simplicity ignore all implicit terms in the 
turbulence equations. The reader should remember that the 
curvature effects are therefore somewhat overestimated 

here; we suspect the overestimation is small but we cannot 
say how much. 

APPENDIX B' EFFECTS OF STRATIFICATION IN FLOWS 

AFFECTED BY CURVATURE 

We looked at the combined effects of stratification and 

curvature on turbulence, mainly from the point of view of 
geophysical flows, particularly the atmospheric boundary 
layer. We therefore regarded stratification as the primary 
and dominant effect, but curvature was considered to be a 
secondary influence. It is, however, instructive to inquire 
what the effect of stratification would be in flows affected by 
curvature, instead of exploring the effect of curvature in 
stratified flows. It should be noted that neutrally stratified 
flows over curved surfaces are important in engineering, and 
considerable effort has been expended in modeling such 
flc•ws [see Bradshaw, 1973; Mellor, 1975; So, 1975]. Al- 
though gravitational stratification is rather negligible in en- 
gineering devices, it is nevertheless interesting to study the 
effect of stratification on flows over curved surfaces. 

The governing equations (55) and (56) can also be solved 

for SM and S//as functions of Ric for various values of Rif; 
the results are shown in Figure B1. A noteworthy aspect of 
Figure B 1 is the strong suppression of turbulent mixing at 
sufficiently large de stabilizing values of Ri c. This is some- 
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Fig. B 1. Variation of mixing coefficients S M and S H with cur- 
vature Richardson number Ri c for various values of stratification 
flux Richardson number Rif. 
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Fig. B4. Variation of critical curvature Richardson number Ri•. 
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what analogous to a similar phenomenon that occurs with 
rotation [see Kantha et al., 1989]. Figures B2 and B3 show 
q,2, u2/q2, and w2/q 2 as functions of Ric for various values of 
Rif. Figure B4 shows the critical curvature Richardson 
number for extinction of turbulence, as a function of strati- 

fication flux Richardson number Rif. Outside the domain 
delineated by the curve, turbulence is quenched. 

The case of neutral stratification is of special importance 
to engineers. For this case, the expressions for S M and S n 
become 
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Fig. B3. Variation of u2/q 2 and w2/q 2 with curvature Richard- 
son number Ri c for various values of stratification flux Richardson 
number Rif. 

SM = Al[1 - (6A1/B1) - 3C1](1 - Ric) 

72A • Ric (1 + Ric) 
ml(1 - gic) 

(B1) 

A211 - (6AliBi)](1 - Ric) - (18A2/B1)(2A1 + A2) Ric 
SH = 

(1 - Ric) + 18(A22/B1)(Ric/SM) 
(B2) 

It is worth noting that both S•4 and Sn are strongly affected 
by curvature. It is also of interest to explore the influence of 
a weak stratification on flows over curved surfaces by 
expanding the expressions for S•4 and Sn in terms of small 

Sm(Rif, Ric) = Smo(Ric) + RifSml(Ric) +''' 
(B3) 

SH(Rif, Ric) = SHo(Ric) + RifSm(Ric) +"' 

The expressions for S•40 and Sn0 are given by (B 1) and (B2), 
while Figure B1 shows them plotted as a function of Ric. 
Figure B5 shows S•41 and Sm as functions of Ric. 

Equation (B1) predicts that at Ri• = 0.085 and -1.45, 
turbulent mixing is completely suppressed by curvature 
effects. We note that both stabilizing and destabilizing cur- 
vatures can lead to extinction of turbulence, unlike the 
effects of gravitational stratification, but more akin to rota- 
tional effects [see Kantha et al., 1989]. 

Both Me#or [1975] and So [1975] used second-moment 
closure to determine the effects of curvature on neutral 

flows. Mellor [1975], however, defines the curvature Rich- 
ardson number in a more conventional manner as 

Ri3 = 2kxU kxU + (B4) 

and his mixing coefficient Sh is defined as 

.... kxU -- kxU S•(Rl3) (B5) 
Oz 

Apart from these differences in the definition of Ri3 and S•, 
his results are the same as to those presented here if we put 
1 + k•z • 1. So [1975] also defines S• and Ri• similar to 
Mellor [1975] and his results are also somewhat similar; 
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a form identical to equation (12) of So [ 1975], if we make use 
of (B7) and the fact that So puts C1 = 0. Making use of (B4) 
and (B5), (B8) can be written as 

' I -2/3 S• = 1 - 32A•2B1 
- 

2/3 

(B9) 

an expression identical to that of Mellor [1975]. 
In the limit of neutral stratification, (58)-(60) for the 

constant flux region can be written as 

•= ((•M + •c) •1 .... C ((•M-- •c) 3 A lq, q3, • 

-2•'c Yl + q3, (•bM+ •'c) 

1 I12Al•'c]6A2 3A2q,- •H ')/1 c q3, q3, + 
q3, = ;c) 

(B10) 

(Bll) 

(B12) 

The solution of these equations is shown in Figure B6, where 
•b•/and •bn are plotted as functions of •c for various values 
of •. Figures B7 and B8 show q.•, u2/q 2 and w2/q 2 as 
functions of •c also for various values of •. 

Derivation of Monin-Obukhov similarity functions for the 
constant flux region for curvature-affected turbulent bound- 

Fig. B5. Variation of first-order terms in mixing coefficients S Mi 
and S HI with curvature Richardson number Ric. 

although he put C• = 0, he did not use the approximation 
l +kxz-•l. 

It should be pointed out that in this paper, the curvature 
Richardson number Ri c is defined as proportional to kxU/ 
OU/Oz (if we put 1 + kxz "• 1). This is somewhat different 
from the conventionally defined number Ri•, which is pro- 
portional to kxU/(kxU + OU/Oz) and therefore proportional 
to Ric/(1 + Ric). In our terminology, negative Ric corre- 
sponds to destabilization and positive Ri c to stabilization. 
However, note that negative Ric does not necessarily imply 
negative Ri•. We have preferred this alternative definition of 
curvature Richardson number (and mixing coefficient) for 
two reasons. The primary reason is that the definition 
adopted here is somewhat more utilitarian; for example, it is 
not necessary to change the definition of SM when rotational 
effects are considered. The algebra is also somewhat sim- 
pler. Moreover, the results can always be translated to 
conventional values in any case. If we make note of the fact 
that 

B1 
= • (1 - Rif- Ric) q,4 SM 

a,(1 

(B6) 

(B 1) can be written as 

- uw = 12(Uz - C)2[ 1 - 

6A1 3C1) = B• -1/3 (B7) B1 

2 -2/3 13/2 
72A1Bl C(U z + C) 

(U• - C) 2 
(B8) 
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Fig. B6. Variation of Monin-Obukhov similarity functions qbM 
and qbH in the constant flux layer with curvature similarity variable 
•c for various values of stratification Monin-Obukhov similarity 
variable •. 
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ary layer, both in the limit of neutral stratification and for 
arbitrary stratification was given previously. However, it is 
desirable to expand these functions for weak stratification 
effects. Therefore we put 

+ +"' 

•bu(sr, Src)= •buo(src) + sr•bm(•'c) +... (B13) 

= e,0(c) + +'" 
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in (58) to (60). Then •b/u0, •bu0, and q,0 are given by 
expressions (B10) to (B12), while •bM1, •bH1, and q,1 are 
given by 

[('Yl - C1)q3,o - 24Al•'c]qbM1 

2q,o] + 3(3,1- Ci)q2,o(&MO- •'c)- 3Ai/q*l 
= 3(2A1 + A2)•' c -Jr 3(2A1 + A2)qbM0 + 3A2qbH0 (B14) 

[-6A2•'c]qbmi + [Tlq3,o - 6(2A1 + A2)•'c]qbHi 

2q,o] + 3'y,q2,o•bHo--•2-2]q,, = (6A, + B2)•bHo (B15) 
- Biqbmi + 3q,2oq,1 = -B1 (B16) 

Figures B9 and B10 show •bM], •bm, and q,1 as functions of 
•c- The maximum values occur for nearly flat surfaces, i.e., 

For neutrally stratified flows (s r = 0), (B10)-(B12) can be 
used for expansion in terms of small sr½ to show that 

2 2/3 
•bM = 1 + (1 + 54AiB•- )•'c (B17) 

qbH = (3A2'Y1B•/3) -1 

6 ß 1+• 
3,•B• ß -• 1/3,,• 2 } [2A1 + A2 + 3Ylt•l •,•t 2 -A12)]•'c (B18) 
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18A12 
q, = B •/3 -t- • •'c (B 19) 

B1 

Equation (B17) can be integrated to obtain the velocity 
profile in the constant flux region for weak curvature and 
zero stratification effects. But first we put 1 + kxz = 1 and 
a = 1 + 54A12B• -2/3' 

• = • + akx •, 
dz kz u. 

which yields 

(B20) Uu, = lk {In zzO + akx[z(ln z - 1) - z0(ln z0- 1)]} 

This profile is different from the familiar log-linear profiles 
that are obtained for weakly stratified and slowly rotating 
constant flux layers. 
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