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ABSTRACT

The sensitivity of Northern Hemisphere sea ice cover to global temperature change is examined in a group

of climate models and in the satellite-era observations. The models are found to have well-defined, distin-

guishable sensitivities in climate change experiments. The satellite-era observations show a larger sensitivity—

a larger decline per degree of warming—than any of the models. To evaluate the role of natural variability in this

discrepancy, the sensitivity probability density function is constructed based upon the observed trends and

natural variability of multidecadal ice cover and global temperature trends in a long control run of the GFDL

Climate Model, version 2.1 (CM2.1). This comparison shows that the model sensitivities range from about 1 to

more than 2 pseudostandard deviations of the variability smaller than observations indicate. The impact of

natural Atlantic multidecadal temperature trends (as simulated by the GFDL model) on the sensitivity dis-

tribution is examined and found to be minimal.

1. Introduction

A multidecadal decrease in Northern Hemisphere sea

ice cover has been detected with satellite and earlier

observations (Comiso et al. 2008). The anthropogenic

signal in the decline emerged in the early 1990s (Min

et al. 2008). The decline is qualitatively consistent with

climate model simulations of recent decades when an-

thropogenic forcings are included (Vinnikov et al. 1999,

2006; Stroeve et al. 2007). Vinnikov et al. (2006) found

that in a group of 11 Intergovernmental Panel on Cli-

mate Change (IPCC) Fourth Assessment Report (AR4)

models, 4 had annual NH ice extent decline rates larger

than observed over the 1972–2004 period. However, us-

ing a longer observed dataset (1953–2006), Stroeve et al.

(2007) found that the observed March and September

fractional rates of decline were triple the respective

model means and, for September, larger than the de-

cline rate in all of the individual model runs. The

disparities were smaller over the period of satellite

observations. They note that the disagreement between

models and observations could indicate a substantial

natural variability component to the observed decline

or an underestimation of the sea ice sensitivity in the

models. This study attempts to clarify this ambiguity

by quantifying the role of natural variability in multi-

decadal trends and assessing the likelihood that it can

account for the difference between simulations and

observations.

To sharpen the capacity of our analysis to verify or

falsify the simulations with observations, three changes

are made in the following analysis relative to previous

studies:

1) Only satellite observations are used. Although this

restricts the comparison to the post-1979 period, it

eliminates uncertainty associated with the sparse and

heterogeneous observations of the earlier period and

their blending with the satellite observations. Obser-

vational uncertainty is not completely eliminated by

restricting to satellite observations. There are two

algorithms used for converting the satellite obser-

vation to sea ice extent: National Aeronautics and

Space Administration (NASA) team and bootstrap.

The trends of monthly anomalies 1979–2006 (available

online at http://nsidc.org/data/smmr_ssmi_ancillary/

area_extent.html#gsfc) differ by about 5% with the

NASA team decline being larger. We use the Na-

tional Snow and Ice Data Center (NSIDC) sea ice

index, which is based on the NASA team including

the preliminary data through 2009.
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2) Some studies have focused on the dramatic September

ice cover decline (Boé et al. 2009a; Wang and Over-

land 2009; Zhang 2010). Here, annual average sea ice

extent is used in preference to September or other

monthly values. Observations and models show that

Arctic sea ice anomalies typically persist for only

a few months (Blanchard-Wrigglesworth et al. 2011).

Additionally, September sea ice cover, the focus of

many ice sensitivity studies, is particularly variable

and its variability is expected to increase with thin-

ning of the ice (Holland et al. 2006; Goosse et al.

2009; Eisenman 2010). Therefore, considerable var-

iation that is not related to long-term trends can be

reduced by using annual averages.

3) To factor out the potential for uncertainties in global

sensitivity or forcing to impact the results, we eval-

uate the ice cover sensitivity to global warming rather

than the ice cover change itself. The Arctic is strongly

coupled to the global climate through a large atmo-

spheric heat transport. Gregory et al. (2002) show for

the third climate configuration of the Met Office

Unified Model (HadCM3; and we will verify this for

other models) that the NH annual ice cover decline is

proportional to the global temperature change. There-

fore, an error in ice cover response may arise from

an error in simulated global warming either due to

problems with simulated global sensitivity or forc-

ing. This possibility can be eliminated by compar-

ing sensitivities—the ice cover decline per degree of

global warming. A similar sensitivity-based approach

has been employed by Zhang (2010), but using sea-

sonal ice cover and Arctic temperatures.

In elaborating on the last point, the ice cover response

DI to a radiative forcing F can be written as

DI 5
DI

DT

DT

F
F, (1)

where DT is the change in global temperature. This pa-

per focuses on evaluating the first factor on the right-

hand side of (1). The second factor on the right is closely

related to the transient climate response (TCR)—the

global temperature change in a climate model at CO2

doubling in a reference 1% yr21 CO2 increase experi-

ment. Gregory and Forster (2008) make an observation-

based estimate of the TCR and its uncertainty. The

uncertainty is dominated by natural variability of DT,

which they estimate using a climate model. Since the

NH sea ice covers only about 2% of the global surface,

it is not a major contributor to this variation even after

accounting for a severalfold regional amplification of

temperature change. Gregory and Forster (2008) note

that the forcing has a smaller uncertainty over the

post-1970 period than over the entire postindustrial

period where changes in aerosol and solar forcing un-

certainty are major factors.

To evaluate the ice-temperature sensitivity term in (1)

DI/DT, we must choose a method for evaluating the re-

lationship from noisy time series of I and T. This is done

in section 2. After describing the model–observation

discrepancy in the sensitivity, we attempt to clarify the

individual roles of model bias and natural variability in

section 3. The variability that is most likely to account

for the discrepancy is multidecadal, not interannual, and

so must be evaluated with time series outside the period

of interest. We lack sufficiently long and accurate ob-

servations of ice cover and global temperatures that are

not contaminated by anthropogenic forcing that would

allow us to make an observational estimate of natural

multidecadal variability. Following Gregory and Forster

(2008), we rely on a model estimate of the natural var-

iability. The natural multidecadal variability of climate

models is sparsely documented, probably due to the

expense of generating historical ensemble members

and long control runs. In section 3, we will make use

of a 4000-yr control run of the Geophysical Fluid Dy-

namics Laboratory Climate Model, version 2.1 (GFDL

CM2.1), to develop a variability measure for the model–

observation discrepancy. Conclusions are presented in

section 4.

2. The ice cover sensitivity to global warming

To begin, we compare time series of global temper-

ature and NH sea ice cover in observations and five

climate models. The observed temperatures are global

means from the Goddard Institute for Space Studies

(GISS) surface temperature analysis (GISTEMP) com-

bined land–ocean dataset and the sea ice cover is North-

ern Hemisphere extent from the NSIDC sea ice index

dataset (Fetterer et al. 2009). The models shown are

the members of a multimodel ensemble with the more

sensitive ice responses. The ensemble and sensitivity

metric will be presented later. Figure 1 shows the time

series with the models displayed from most to least sen-

sitive (from top to bottom). The most sensitive model is

the new GFDL CM3 model developed for the IPCC fifth

report (Donner et al. 2011). The other models are IPCC

AR4 models. For all of the model runs, a short segment of

a scenario run is appended to the historical run to bring

the time series up to 2009. The GFDL CM3 run has a very

close simulation of the annual ice cover and its decline

but the accompanying global temperature trend is larger

than observed. We are not concerned here with whether

the individual model trends are within natural variability

of the observed, only the relationship between the two
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trends in models and observations. The Community Cli-

mate System Model, version 3 (CCSM3), and the Hadley

Centre Global Environmental Model (HadGEM) runs

also have ice trends comparable to observed but temper-

ature trends that are larger. Model for Interdisciplinary

Research on Climate (MIROC) and ECHAM5 have

temperature trends close to observed but ice declines

that are smaller. In summary, none of the runs has both

a temperature trend as small as observed and an ice

decline as large.

A clearer picture of this discrepancy comes from Fig. 2

where we scatterplot the temperature and ice cover

trends for the model runs and observations. We might

measure the sensitivity DI/DT as the ratio of the trends

(the slope of the line from the origin to the trend pair).

The slopes to the models trends are all smaller than

for the observed indicating less sensitivity in all of the

model runs. This trend ratio is a straightforward measure

of the sensitivity, but there are other possibilities to

consider.

Ordinary least squares regression (OLS) is appropri-

ate for estimating a relationship between a random and

nonrandom variable but gives a biased estimate when

both variables are random. OLS regression of ice cover

on temperature and the inverse of the temperature-on-

ice OLS regression give upper and lower bounds on the

relationship (Table 1). The ratio of standard deviations

is a neutral estimate equal to the geometric mean of the

two OLS estimates. This estimate, however, treats all

the variance of both variables as if it contributes to the

relationship between them. We can clearly see signifi-

cant ENSO variability in the global temperature that we

do not expect to be informative on the forced relation-

ship because of its equatorial origin and short time scale.

The traditional way of filtering this is to take trends. The

trend ratio then becomes a measure of the sensitivity.

FIG. 1. (left) Global mean surface temperature anomalies from 1951–80 and (right) NH ice cover for observations

(black) and climate model simulations. The observed temperature anomalies and sea ice cover are from GISS and

NSIDC, respectively. For the simulations, a short section of a projection is concatenated onto the historical run to

bring the simulation up to present. The projection used is SRES A2 for all models except GFDL CM3, which uses

RCP8.5.
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The trend accounts for a greater proportion of the ice

time series (r2 5 0.83) than of the global temperature

time series (r2 5 0.71). Consequently the trend ratio

sensitivity is larger than the neutral estimate.

Another method can be constructed using the trends.

Total least squares (TLS), also known as Deming re-

gression in the two-dimensional case, minimizes the

squared orthogonal distance between the data and the

regression line. Since this distance incorporates units of

both variables, the TLS relationship depends upon the

choice of units. TLS is the maximum likelihood esti-

mator of the relationship when the units are chosen to be

the standard deviations of the respective normally dis-

tributed error terms. We use the residuals of the time

trends for our estimate of these standard deviations. The

TLS estimate of the sensitivity is (Fuller 1987)

�
DI

DT

�
TLS

[I(t), T(t)]

5
s2

I 2 ls2
T 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2

I 2 ls2
T)2

1 4lr2
I,Ts2

I s2
T

q
2rI,TsIsT

, (2)

where

l 5
s2

I

s2
T

1 2 r2
I,t

1 2 r2
T,t

(3)

is the ratio of the trend residual variances. The formula

for TLS is more complex than that for the trend ratio

and involves the correlation of the variables with each

other in addition to their correlations with time. We

can test TLS and the trend ratio by applying the two

techniques to artificial time series constructed by add-

ing known trends—0.5 K (31 yr)21 and 21.5 3 1012 m2

(31 yr)21—to 100 31-yr time series of global tempera-

ture and NH ice cover, respectively, taken from the long

control run of GFDL CM2.1. Table 2 shows the bias and

standard deviation of the two methods. Both methods

recover the specified sensitivity, 23 3 1012 m2 K21, with

small biases but the TLS estimate has much lower

variance, making it the better choice. Although the

two methods give similar estimates when the observed

satellite-era data are used, this test on a larger set of

FIG. 2. Simulated (colors) and observed (black) trends in global surface temperature and NH

ice cover. The trends are from the time series shown in Fig. 1.

TABLE 1. Ice cover (I )–global temperature (T ) sensitivity esti-

mation methods with values for the 1979–2009 observed changes.

Sample correlations and standard deviations of the subscripted

variables are denoted by r and s, respectively.

Estimator Expression Value (1012 m2 K21)

OLS DI on DT rI,T sI/sT 22.35

(OLS DT on DI)21 rI,T
21 sI/sT 23.44

Neutral estimate Sign(rI,T)(sI/sT) 22.85

Trend ratio (rI,t/rT,t)(sI/sT) 23.09

Total least squares (2) and (3) 23.01
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model-generated time series shows that this similarity is

not generally true.

Now we turn to the sensitivity of the models. The long-

term relationship between ice cover and global tem-

perature is quite linear for the large changes from 1900

to 2100 using forcing scenarios for the twenty-first cen-

tury. The OLS sensitivities over this period for eight

models are listed in Table 3. The method used to eval-

uate the relationship does not matter here because the

correlations are so high (all of the methods listed in

Table 1 approach 2sI/sT as rI,T approaches 21). Figure

3 shows scatterplots of global annual mean temperature

and NH ice cover for two GFDL models, which fall at

either end of the model sensitivity range. Two scenario-

forced experiments are shown: a strong forcing and a

medium forcing. For the medium forcing, we distinguish

the twenty-first century when the forcing is increas-

ing from the subsequent two centuries when forcing is

stabilized. The sensitivity, as represented by the OLS

regression line, is not dependent upon the magnitude of

the forcing or its rate of change. For each model the

sensitivity is well defined—the relationships are linear—

and the differences between the models are robust to

forcing details. Note that in the CM3 experiment using

the RCP8.5 (8.5 W m22 anthropogenic forcing), the an-

nual ice goes to 0. The Arctic ice is eliminated in winter

as well as in summer by the year 2100 in this experiment

but the trajectory in ice-temperature space remains lin-

ear right to the elimination of the NH sea ice. Thus the

ultimate magnitude of the forcing also does not disturb

the linearity of the relationship.

TABLE 2. Test of trend ratio and OLS on CM2.1 31-yr data

sections with trends added [0.5 K (31 yr)21 for temperature; 21.5 3

1012 m2 (31 yr)21 for ice cover].

Bias (%) Std dev (1012 m2 K21)

Trend ratio 13 1.6

TLS 25 0.85

TABLE 3. Model sensitivity (from OLS) and global temperature–

NH ice cover correlation for climate model annual data from 1900

to 2099.

Model Sensitivity (1012 m2 K21) Correlation

GFDL CM3 22.2 0.98

NCAR CCSM3 21.9 0.99

UKMO HadGEM1 21.6 1.0

MIROC MEDRES 21.5 0.98

MPI ECHAM5 21.3 0.98

CNRM CM3 21.3 0.98

GFDL CM2.1 21.2 0.96

CCMA CGCM3 20.78 0.98

FIG. 3. Global temperature and NH ice cover annual means for GFDL CM2.1 (blue) and CM3

(red) projection experiments. Results are shown from a medium-forcing-scenario twenty-first

century (plus signs) and 2100–2300 with stabilized forcing (open circles). Strong-forcing twenty-

first-century results are shown as dots. The medium-forcing scenario is SRES A1B for CM2.1

and RCP4.5 for CM3. The strong-forcing scenarios are SRES A2 and RCP8.5, respectively.
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The large correlations of temperature and ice cover

in Table 3 show that other models have similarly linear

relationships. Thus, it makes sense to think of the sen-

sitivity as a property of a climate model, and—assuming

the linear dynamics that characterize all the models is

correct—the climate system as well. While the sensi-

tivity from observations using trend-based methods is

about 23 3 1012 m2 K21 (Table 1), the model sensitiv-

ities listed in Table 3 range from 22.2 3 1012 to about

20.8 3 1012 m2 K21. As is the case with the TCR, the

models agree that the ice-temperature sensitivity pa-

rameter is fairly constant in forced transient simulations

but they have substantial disagreement on the value of

that constant. However, unlike the TCR where the ob-

servational estimate falls in the middle of the model

range (Gregory and Forster 2008), the model ice-tem-

perature sensitivity values are all well less in magnitude

than the observed value. Ridley et al. (2007) explore

variation of the ice-temperature sensitivity due to

perturbing parameters in HadCM3 and find that the

change in total heat transport into high latitudes strongly

influences the range of sensitivities.

The discrepancy between observed and simulated

sensitivities does not necessarily imply model error be-

cause the observed sensitivity is an apparent sensitivity

that is influenced by both the true sensitivity of the cli-

mate system and natural variability. Over time the ap-

parent sensitivity approaches the true sensitivity as the

forced component of the temperature and ice cover re-

sponses rises above natural variability. We can observe

this convergence in the model projections. Figure 4

shows a twenty-first century time series of the model

apparent sensitivities calculated with the TLS method

using data from 1979 up to the particular date. Noting

the convergence of ensemble members and comparing

the 2100 values with those listed in Table 3, we see that

the model sensitivities converge on their true values

over the twenty-first century. The ensemble members

approach the true value from both directions; there is no

indication that the current apparent sensitivity is a bi-

ased estimator of the true sensitivity. At the beginning of

the century the runs show considerable disagreement

among the apparent values. The running TLS apparent

sensitivity from observations is also plotted up to pres-

ent. Currently, the observed sensitivity is larger in mag-

nitude than that in any of the model runs. The observed

value has increased in magnitude over the last decade as

global warming has slowed but the ice retreat has ac-

celerated. Earlier in the decade there were ensemble

members with sensitivities as large in magnitude as the

observed but that is no longer the case as these ensemble

members have converged toward their true values. The

model sensitivities shown in Fig. 4 were also calculated

using the trend ratio method for comparison to TLS

(not shown). The root-mean-square difference between

the 1979–2009 sensitivities and the 1979–2100 sensitivity

FIG. 4. Total least squares sensitivity estimate over time in observations and for more sensitive

models.
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was found to be 50% larger with the trend ratio method

confirming the test result with CM2.1 generated time

series (Table 2).

3. Natural variability of the sensitivity

Our goal is to construct the probability density function

(PDF) of true sensitivities given the apparent sensitivity

of the observations in order to gauge the likelihood of

the model true values. The few ensemble members

available for the models are grossly inadequate for this

purpose. Because of the lengthy integration needed to

bring a simulation to the beginning of the satellite pe-

riod, it is prohibitively costly to produce the sensitivity

PDF from an ensemble of historical runs. Assuming that

the natural variability is not altered by the climate change

since preindustrial times, we can use a long preindustrial

control run to generate potential influences of natural

variability on apparent sensitivity.

Our method involves subtracting a potential natural

trend from the observed data to obtain a residual con-

taining a forced component and interannual variability.

These artificial time series are specified as

Ti(t) 5 TO(t) 2 bTit and (4a)

Ii(t) 5 IO(t) 2 bIit, (4b)

where i ranges from 1 to 100; and bTi and bIi are the

trends of temperature and ice cover, respectively, in the

ith 31-yr segment of the CM2.1 control run. The O sub-

scripts indicate the observed time series. For the trend

ratio method we calculate the trends of (4a) and (4b) to

estimate each potential forced component. The ratio

of ice cover and temperature-forced components is the

trend ratio estimate of the true sensitivity. For the TLS

estimate we feed the (4a) and (4b) time series into (2)

and (3). The 100 potential natural trends are obtained by

segmenting the final 3100-yr section of the 4000-yr control

run of CM2.1—an early period of drift is removed.

The natural trends from these segments are plotted

in Fig. 5 along with the observed trend pair. The natural

trend standard deviations are 0.14 K (31 yr)21 and 0.59 3

1012 m2 (31 yr)21 for temperature and ice cover, respec-

tively. Since the observed trends are 0.51 K (31 yr)21 and

21.631012 m2 (31 yr)21, the observed changes are

extremely unlikely to be due to natural variability alone.

The natural trends are correlated (r 5 20.61) and their

axis of covariation aligns fairly well with the observed

trend. Therefore, the CM2.1 natural variability associ-

ates a larger ice cover loss with a degree of warming than

does its forced response, which is significantly smaller

than observed (Table 3). Part of the natural variability of

northern ice in CM2.1 is forced by fluctuations in the

meridional overturning (Mahajan et al. 2011) and the

FIG. 5. Trends from one hundred 31-yr sections of the CM2.1 preindustrial control run (red).

Observed trends are plotted in black. A bivariate normal fit to the natural trends is also plotted

(black contours).
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difference in mechanism may be responsible for the

difference in sensitivity compared to the radiatively

forced response where a reduced overturning plays

a damping, ice increasing, role. The trend ratio true

sensitivities are easy to visualize in Fig. 5 as the slope of

the line connecting the observed trend pair with a natu-

ral trend pair. The alignment of the natural trends with

the observed limits the variation of these slopes, re-

ducing the uncertainty in the estimated true sensitivity.

The TLS estimate cannot be easily visualized, but is

subject to the same qualitative considerations. To obtain

a smoother representation of the sensitivity distribu-

tions, we fit a bivariate normal distribution to the cor-

related trends and feed stochastically generated trend

pairs based on this distribution into the two sensitivity

formulas.

Figure 6 shows the PDFs of sensitivity that are gen-

erated using this procedure—both the scaled histograms

generated from the actual natural trends and the smooth

fits from 10 million correlated random pairs. The dis-

tributions are fairly symmetric and have means near the

observed trend ratio and TLS means. We would like to

characterize these distributions with standard deviations

but a technical detail must be considered. It is known

that the distribution of the ratio of correlated, normally

distributed random variables does not have moments

because of the potential for very large values when the

denominator variable, global temperature change in

this case, takes values very close to zero (Marsaglia

2006). This is true even when the denominator vari-

able has a nonzero mean and prevents the trend ratio

distribution from having a well-defined standard de-

viation. Simulations with random numbers indicate

that this is also the case for the TLS sensitivity esti-

mate. However, it can also be shown that, as the mean

of the denominator variable grows in magnitude, the

distribution becomes symmetric and the tails thin. For

denominator coefficients of variation (standard devia-

tion to mean ratios) somewhat smaller than we have

here, the distribution is well approximated by the nor-

mal distribution (Hayya et al. 1975). At some point it

makes sense to disregard rare large values and calculate

pseudomoments to characterize the central part of the

distribution. This bounding is done here by placing

a floor of 28 3 1012 m2 K21 and a ceiling of 1 3

1012 m2 K21 on the sensitivity values. The slight up-

ticks at the ends of the distributions in Fig. 6 are a con-

sequence of this range restriction. The range-limiting

procedure makes a slightly larger distortion to the

trend ratio distribution than to the TLS distribution.

We refer to the standard deviation of the bounded vari-

able as a pseudostandard deviation.

FIG. 6. PDF of the true sensitivity using trend ratio (green) and TLS (blue) methods from

histograms (asterisks) and from simulated trends drawn from correlated bivariate normal

distribution (smooth curves). Natural trends are combined with observed temperature and ice

time series using (4a) and (4b).
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Both trend ratio and TLS methods give pseudos-

tandard deviations of about 1 3 1012 m2 K21 with the

TLS standard deviation slightly smaller. The models

range from about 1 to more than 2 pseudostandard de-

viations of the sensitivity natural variability smaller (in

magnitude) than the observed value. Table 4 lists the

two-sided p values for the models determined from the

smoothed distributions. These numbers can be inter-

preted as the fraction of natural 31-yr trends that allow

for a true sensitivity value as far from the observed ap-

parent value as the true sensitivity of the particular

model. About 1/3 of the variability gives true values as

far from observed as CM3’s; for CCSM3, about 1/5; for

MIROC, about 1/10. The TLS distribution is slightly more

constraining than the trend ratio distribution. Only one

model is falsified by the customary 95% confidence in-

terval. Although all of the models are significantly less

sensitive than observations, generally the difference is

not so extreme as to rule out natural variability as a

cause. We emphasize that these results are based on the

natural variability of a single model. To indicate their

sensitivity to the distribution of trends, we increased and

decreased the trend standard deviations by 20% and

recalculated the model p values with the broader and

narrower sensitivity distributions produced by the ran-

dom number method. With the larger variability, no

model was falsified by the 5% criterion, while with the

smaller variability, all but the three most sensitive were

falsified.

There are indications from observations and model-

ing that the North Atlantic Ocean is subject to natural

multidecadal variability related to its overturning cir-

culation, and that this variability has impact upon the

NH sea ice cover and global temperature (Polyakov

et al. 2003; Chylek et al. 2009; Mahajan et al. 2011). The

observed index for the Atlantic multidecadal oscillation

(AMO) has a significant upward trend over the satellite

era (Enfield and Cid-Serrano 2010). It is difficult to

separate the influence of natural variability and forcing

on the observed AMO (Zhang et al. 2007), but the in-

crease in North Atlantic temperatures since the mid-

1970s may partly be due to natural variability. The sit-

uation we have, with all of the model sensitivities to one

side of the observation, is what would be expected from

a nonneutral state of the natural variability and rea-

sonable agreement between the models. Setting aside

the ambiguity in interpreting the observed index, we can

ask if natural trends in the model’s AMO contribute to

the true sensitivity that is diagnosed by the procedure

that we have used to generate the sensitivity distribu-

tion. The AMO index used here is simply the average

North Atlantic SST between the equator and 658N in the

CM2.1 control run. Figure 7 shows the diagnosed sen-

sitivities using TLS scattered against AMO trends over

the same period. The correlation is positive but weak (r

5 0.18). AMO trends are correlated with both global

temperature (r 5 0.64) and NH sea ice cover trends (r 5

20.53). An AMO trend makes it a little more likely to

diagnose a smaller value of the true sensitivity because

a growing AMO contributes slightly to a large apparent

sensitivity. But the relationship is too weak to be very

useful. The mean AMO trend of the points in Fig. 7 that

are in the model range (.22.2 3 1012 m2 K21) is less

than 1/4 of an AMO trend standard deviation. The nat-

ural variability of the apparent sensitivity is not well

characterized by the AMO because the AMO variability

impacts both global temperature and sea ice in a pro-

portion that moves the temperature-ice state, roughly,

along the major axis of the natural variability (Fig. 5).

Because a natural AMO trend has small impact on the

sensitivity and the natural component of the observed

trend is uncertain, we make no adjustment to our esti-

mate of the true sensitivity distribution.

4. Conclusions

In this paper we have investigated the sensitivity of

Northern Hemisphere ice cover to global warming in

observations and models. The interpretation of this

sensitivity is more straightforward than that of the ice

cover response itself. We have used the robust simu-

lated proportionality between the ice cover change and

global temperature change to factor out influences such

as global sensitivity and forcing that primarily affect the

latter.

The sensitivity is also better constrained by observa-

tions than the ice cover response. This can be shown

using the multidecadal variability of ice cover, sensitiv-

ity, and global temperature from the GFDL CM2.1

control run along with the values of these quantities in

the observed record—our central estimates of the forced

component. From these we can form a noise-to-signal

TABLE 4. The p values for the climate model true sensitivities

(as in Table 3) using trend ratio and TLS sensitivity estimates on

combined CM2.1 natural trends and observations.

Model

Sensitivity

(1012 m2 K21)

Trend ratio

p value

TLS

p value

GFDL CM3 22.2 0.34 0.34

NCAR CCSM3 21.9 0.22 0.20

UKMO HadGEM1 21.6 0.13 0.12

MIROC MEDRES 21.5 0.11 0.10

MPI ECHAM5 21.3 0.08 0.06

CNRM CM3 21.3 0.08 0.06

GFDL CM2.1 21.2 0.07 0.05

CCCMA CGCM3 20.78 0.04 0.02
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ratio as the ratio of the standard deviation of the vari-

ability to the observed changes. These coefficients of

variation are 0.38, 0.31, and 0.27 for the ice cover change,

the ice-temperature sensitivity, and the temperature

change, respectively. The sensitivity is considerably

better constrained than the ice response and nearly

as well constrained as the temperature response—

remarkable considering that the northern ice covers

only about 2% of the globe. The reason for the tight

constraint on the sensitivity is the similarity in the ratio

of ice and temperature changes in the natural variability

and observations. Even though the observed changes

are too large to be solely due to natural variability, a

natural component does little to disturb the relationship.

Currently, the sensitivity distribution is approximately

symmetric with the model true sensitivities ranging from

about 1 to more than 2 pseudostandard deviations less

sensitive than the observed apparent sensitivity. Only

the least sensitive model of the ensemble used in this

study is falsified using the 95% confidence interval. It is

interesting to contrast this situation with that for ob-

servational estimate of the TCR. Gregory and Forster

(2008) found that the 95% confidence interval for the

TCR estimated using 1970–2006 observations was very

similar to the range of TCRs in climate models. Here we

find that the models occupy only the less sensitive portion

of the ice-temperature sensitivity confidence interval.

Using the IPCC recommended language all but one of

the six models used in this study have ice-temperature

sensitivities that are unlikely (,33% probability), four are

very unlikely (,10% probability), and one is extremely

unlikely (,5% probability). The IPCC also recommends

characterizing the level of scientific understanding be-

hind a result based on the amount of evidence and the

level of agreement between evidence. Since only one

model has been used, the level of understanding for these

results is low. Clearly, a next step toward answering the

title question is to estimate the sensitivity PDF using the

natural variability of other climate models. Climate models

are known to have differences in the magnitudes of their

variability and the alignment of GFDL CM2.1 natural

trends and the observed trends might also be fortuitous.

Assuming the fidelity of the GFDL CM2.1 natural

variability, the AMO does not introduce significant un-

certainty in the sensitivity since it affects ice cover and

temperature in a proportion similar to general natural

variability and the observed sensitivity. To ascertain the

natural variability component of the observed trends it

would be useful to understand the nature of the vari-

ability in the perpendicular direction, which associates

ice cover increases with increases in global tempera-

ture, for example. This is left to future work.

Although most models are not strictly ruled out by the

analysis here, substantial natural variability is necessary

FIG. 7. TLS sensitivities and North Atlantic SST (AMO) trends using 31-yr sections of the

GFDL CM2.1 control run.
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to reconcile even the most sensitive model with observa-

tions. The observational constraint will tighten slowly with

time but in the interim it is useful to explore the possibility

that the models are not sufficiently sensitive. This has

been the theme of several analyses of IPCC AR4 models

since the Stroeve et al. (2007) study (Bitz et al. 2011; Boé

et al. 2009b). The results here support the importance of

this work while holding onto the possibility that, at least

for some of the models, the model–observations discrep-

ancy may be due solely to natural variability.
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