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Abstract 

The sea surface pressure formulation of the rigid lid primitive equation oceanic problem is reviewed and clarified. 
The geostrophic limit for the sea surface pressure equation is then considered and a new diagnostic relationship is 
found that relates the surface pressure to the barotropic and baroclinic components of the subsurface flow field. We 
demonstrate that a direct insertion in the model equations of sea surface information, such as that provided by 
satellite altimetry, does not produce changes in the subsurface dynamics due to the divergenceless nature of the 
barotropic flow field. 

The geostrophic limit of the sea surface pressure field computed from a standard general circulation model of the 
world ocean is presented and the barotropic/baroclinic components of the absolute dynamic topography of the 
global general circulation are discussed. 

1. Introduction 

Numerical ocean modelling has become one of 
the principal tools to investigate the dynamics of 
the ocean and predict its natural variabilities. In 
recent years, numerical models have also been 
used as part of an oceanic data assimilation sys- 
tem which may include subsurface hydrography, 
satellite altimeter, current meter data, floats, etc. 
After the advancements produced by the assimi- 
lation of conventional hydrography in primitive 
equations general circulation models (Derber and 
Rosati, 1989), satellite altimetry seems to be the 
next promising data set to be considered. It is 
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then important to know if the conventional Gen- 
eral Circulation Models (GCM) could be used to 
assimilate such data which consist of sea surface 
height measurements at very high spatial and 
temporal resolution. 

In this note we try to point out the fundamen- 
tal characteristics of the sea surface height field 
as computed from a classical GCM. We will show 
the connection between the sea surface height 
field and the internal flow field variables used in 
the GCM. The latter uses the rigid lid approxi- 
mation at the sea surface and so there is some 
question as to how these models can properly 
assimilate sea surface topography information. 

From the pioneering work of Marchuk and 
Sarkysian (19861, Demin and Ibraev (1989) and 
the more recent implementation of Dukowicz et 
al. (1993), we have experience with two rigid lid 
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model formulations: the first, called the stream- 
function formulation, has been widely used 
(Bryan, 1969) and the second, called the sea 
surface pressure formulation, is of more recent 
development. The latter uses sea surface height 
directly in the form of sea surface pressure to 
force the vertically integrated momentum equa- 
tions. We show that even in this case the sea 
surface pressure is a purely diagnostic quantity 
and sea surface pressure information from a 
satellite would be of no use if purely inserted at 
the surface. The sea surface pressure relates to 
vertically integrated interior flow quantities (den- 
sity and velocity) and cannot impose any con- 
straint on their distribution in vertical. In this 
note we show formally that the sea surface pres- 
sure information cannot affect interior dynamical 
flow field variables in a standard rigid lid GCM. 

For a review of altimeter data assimilation 
methods applied to quasigeostrophic and primi- 
tive equations models see Arnault and Perigaud 
(1992). Ezer and Mellor (1994) present the most 
advanced implementation of satellite altimeter 
data assimilation techniques to a free surface 
model of the Gulf Stream. All these works showed 
some success in altimeter data assimilation if the 
satellite altimeter data is converted into subsur- 
face temperature or velocity profiles which can be 
directly assimilated in the GCM. Here we illus- 
trate the dynamical reasons underlying the need 
to transform the sea surface height into interior 
dynamical variables. In other words, it appears to 
be necessary to use satellite altimeter data in an 
indirect way, e.g., convert these data into “repre- 
sentative” data for the GCM in order to be 
effective in the data assimilation procedure. 

2. Splitting of barotropic / baroclinic components 
in primitive equations 

The momentum and divergence equations for 
the oceanic primitive 

u,+L(u) +$&xu= 

F =Aou,, + AhV2u 

equations are written: 

Lp+F (1) 
PO 

(2) 

Pz= -pg (3) 

L(1) = 0 (4) 

where the curvature terms have been neglected 
for simplicity. The notation is the following: f is 
the unit vector in the z direction, u = (u,v) and w 
are the horizontal and vertical velocity field com- 
ponents, f is the Coriolis parameter, f= 2fl2n,, p 
and p the density and pressure, m = seccp, n = sin 
cp, u =ai/m, u = a+, il= 1.710e5 s-l, rp indi- 
cates the latitude and A the longitude. Further- 
more, L(p) = m/aKup), + (upL/m)J + (wp*), 
and letter subscripts indicate partial differentia- 
tion. The thermodynamic equations are: 

C,+L(C) =FC (5) 

where C = (T, S) are the temperature, T, and 
salinity, S, tracers and 

F” = K,C,, -I- K,,V2C (6) 

The system is closed by an equation of state of 
the form p =f(T, S, p). The vertical boundary 
conditions for the rigid lid are, at z = 0: 

w=o 

A+, = T (7) 

k,Cz = Q 

where 7 is the wind stress and Q = (heat flux, 
salt flux) for C = (T, S) respectively. At z = -H, 
where H(x, y) is the topography, w = -z&Z, - 
~‘3, and A,u, = TV, where 76 is the bottom 
stress. At the lateral walls we assume the tradi- 
tional no-slip boundary conditions, e.g., (u, U) = 0 
and the condition of zero tracer flux (e.g., VC * II 
= 0, where n is the unit vector normal to the 
lateral boundaries). 

Our intent is to show explicitly the connection 
between the sea surface pressure, ps, and the 
interior flow dynamic variables predicted by the 
primitive Eqs. (l)-(5). Thus we split the pressure 
into: 

P(X, Y, 2, t) =P,(x, Y, t) +g/‘, dz 
Z 

(8) 

The sea surface height, /z, is related to p, by 
the equality h =ps/pog. 

We have to show what the ps term controls in 
the momentum Eq. (1) in terms of barotropic and 
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baroclinic components of the velocity field. It is 
in fact a common practice in ocean modelling to 
solve separately for internal (baroclinic) and ex- 
ternal (barotropic or depth independent) veloci- 
ties. In doing so it will be possible to write the 
analytical expression which relates gradients of ps 

to the barotropic components of the velocity field. 
The velocity field is then divided into: 

u=U+u’ 

v=Z+u’ (9) 

where ii, C are the components of the vertically 
integrated velocity field (barotropic) defined as: 

(“‘“)=;j~ (u, v) dz 
H 

(10) 

and (u’, v’) are the baroclinic velocity field com- 
ponents. 

The equation for U is obtained taking the 
vertical integral of Eq. Cl), using Eq. (81, that is: 

= - lop, - Lj” j”Vp dz” 
PO p,H -H z’ 

1 0 
+- 

/ 
dz’F dz 

H -H 
(11) 

The baroclinic velocity equations are obtained 
subtracting Eq. (11) from Eq. (1): 

$d+L(u) -; I_oHL(u) +&fl;U 

=-f--(3-)+;(;) 
where: 

= - “I”Vp dz’ + --& j;;z$Vp dz” + F 
G,= j~HL(u)-fHii-j~HFA 

PO 2 

at least two approaches used (Gresho, 1991). 
Both of them derive an elliptic equation for an 
integral function, e.g., either the transport 
streamfunction I(, or the sea surface pressure, ps. 

For a comparative review of the two methods in 
ocean modelling see Marchuk and Sarkisyan 
(1986). 

2.1. Classical formulation: Streamfunction 

This method has been widely used in oceanog- 
raphy from the work of Bryan (1969) to the most 
recent developments of Haidvogel et al. (1991). 
The numerical implementation of the elliptic 
problem and its associated boundary value prob- 
lem has been shown to be robust for ocean cur- 
rent modelling. 

The streamfunction formulation of the prob- 
lem is obtained by taking the vertical component 
of the curl of Eq. (11). The streamfunction results 
from the fact that from Eq. (4): 

V*(S) =o 

so that ii = l/Hk X V$ = l/H(- l/a+,, m/a+*>. 
The resulting elliptic equation for 1(1( is: 

l (” -- _* F dz (12) 
HJ-H \ I 

It is already clear that the Vp, does not control 
the interior baroclinic velocity field because it has 
disappeared from Eq. (12). However it is present 
in the vertically integrated transport Eq. (11). We 
will show that even in the latter case, the Vp, 
term does not produce any effect on the interior 
barotropic flow field. To do so we have to review 
the classical methods of solving for the ii. For 
incompressible Navier-Stokes equations there are 

(13) 

G,= -j:,L(u)-fHii+j:HF' 

The boundary conditions for the elliptic Eq. 
(13) are deduced from the requirement that the 
normal velocity component is equal to zero, that 
is, (k X V$) * n 1 an = 0, or V$. t 1 ao = 0, where t 
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and n are the unit vectors in the direction paral- 
lel and normal to the boundaries. Thus I) is a 
function of time along the boundaries. Its value is 
determined by an integral constraint condition 
resulting from the area average of Eq. (13). To 
impose the full no slip boundary condition we 
need to impose a consistency constraint so that 
also VI) * R I a~ ~= 0. 

It is clear that in the streamfunction formula- 
tion U is determined within the arbitrary field of 
Vp, since it disappears from Eq. (13). After the 
total barotropic flow field is computed as de- 
scribed above, the Vp$ term can be computed 
diagnostically from Eq. (11). This is the demon- 
stration that the E field is dynamically independ- 
ent from the surface pressure field. The 
barotropic flow field is produced solely by the 
external wind action, nonlinear/ frictional and 
baroclinic-topographic effects in the fluid. This 
barotropic mode in turn produces a sea surface 
pressure anomaly on the rigid lid as a surface 
manifestation of the subsurface dynamics. 

2.2. Sea surface pressure formulation 

The sea surface pressure approach has been 
used only recently in oceanography (Demin and 
Ibraev, 1986, 1989; Dukowicz et al., 1993) while it 
has been widely applied elsewhere to solve in- 
compressible Navier-Stokes equations. However, 
the explicit analytical formulation of the bound- 
ary conditions has not been written for the gen- 
eral oceanic case and we will present it here. 
Instead of taking the curl of Eq. (11) we take the 
divergence so that we obtain another elliptic 
problem: 

=$[e^] +;[:I 
where: 

Q* = -j--/(u) + 2fln/’ u + /” F* 

- 2 j”,$/,g di” 

-H 

(14) 

Q‘P= - j~HL(U)-2nnj~Hu+ l_oHF’ 

The time varying I, term has disappeared 
from the right hand of Eq. (14) because the ii 
field is divergenceless. Eq. (14) allows one to 
solve the p, field as purely diagnostic variable 
and thereafter the U field is solved by the finite 
time differencing of Eq. (11). 

To solve Eq. (14) we need boundary condi- 
tions. Given Eq. (11) it is evident that the bound- 
ary conditions will consist of the partial deriva- 
tives specified at the domain boundaries. In par- 
ticular, following the work of Gresho and Sani 
(1987) we claim that the appropriate boundary 
conditions for the elliptic Eq. (14) are Neumann 
boundary conditions. We write the normal com- 
ponent of Vp, as: 

%‘p;n = -Hu;n -1” L(u) *n-flu *t 
PO -H 

'Vp . n dz’ 

/ 

0 
+ Fan dz 

-H 
(15) 

After a long controversy on which boundary 
conditions are most appropriate for the surface 
pressure approach, Gresho (1991) shows that for 
the incompressible Navier-Stokes equations the 
elliptic equation for surface pressure with Neu- 
mann boundary conditions has a well posed solu- 
tion. Imposing the no slip boundary conditions 
and the condition of zero density diffusion 
through the boundaries, Vp . n = 0, we obtain: 

‘VP,- n = (T-Tb)‘n 
PO an H an 

an 
(16) 
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The no-slip surface pressure formulation of 
the oceanic problem consists of Eq. (14) with 
boundary conditions Eq. (16). It is interesting to 
note that the numerical implementation of Eq. 
(14) and Eq. (16) is straightforward because in a 
staggereed grid the imposition of Neumann 
boundary conditions can be made to disappear as 
discussed by Canuto et al. (1988) and Gresho 
(1991). 

In conclusion we have shown that the pS term 
enters only the barotropic velocity computations 
and that even for that part of the flow field the pS 
is a purely diagnostic quantity. The time varying 
barogropic transport is determined either by di- 
rectly timestepping the momentum Eq. (11) or by 
solving the elliptic problem Eq. (13) for the $,. 
Both methods give the same solution for the 
barotropic component of the velocity field. 

Given this equivalence, it is easy then to show 
that if: 

P:=Ps+P,* 

where P,* is a correction due to data insertion. 
To mantain the zero divergence constraint we 
have to constrain P,* such that: 

v-(HvP;) =o 

which implies that there is no induced change in 
the barotropic field, given the same external forc- 
ing to the dynamical equations. It is then con- 
cluded that for the large scale oceanic circulation 
described by the primitive equations, the surface 
pressure is a purely diagnostic quantity which 
does not directly affect the dynamics of the inte- 
rior flow field. The fundamental dynamical rea- 
son for this is that the surface pressure changes 
do not induce modifications in the other dynami- 
cal variables since the zero divergence constraint 
for the vertically integrated velocity field has to 
be enforced. The changes in surface pressure 
have to be inserted in the barotropic and/or 
baroclinic flow fields a priori, knowing what the 
changes in sea surface height are most likely to 
produce in the subsurface flow. In this respect 
pioneering work has been done for altimeter data 
assimilation by Hurlburt (1986) and De Mey and 
Robinson (1987). 

3. The geostrophic limit for the sea surface pres- 
sure equation 

In this section we show now that the uncon- 
trollability of the rigid lid primitive equations by 
the surface pressure field can be extended to the 
quasigeostrophic modelling framework. In order 
to show this we convert the surface pressure in 
the traditional surface streamfunction writing the 
geostrophic limit of Eq. (14). We rewrite the 
surface pressure equation as: 

-V*(fHI;Xu)+V*R (17) 

where the term of l!,dzVjZopdz’ in Eqs. (11) 
and (12) is now transformed to /! JZ + H)Vpdz, 
and R = -(/!! ,15(u) -A, V2u) + TV. 

We nondimensionalize Eq. (17) by using: t = 
d/uot’, ii = ugii’, ps = (fouodpo)p;, z = hoz’, f= 
f&f’, (x, y> = d(x’, y’), w = h&)/dW’, B = 
G$+&l)P’, P = (ffp&o/&b’7 7 = 7OT’Y Tb 
= TUT’, where ho, d, uo, f. are the vertical and 
horizontal scales, the velocity and Coriolis param- 
eter scales respectively. The resulting Rossby 
number for the system is E = uo/fod, The nondi- 
mensional form of Eq. (17) is: 

V*(HVp,) = -V./-;H(~+H)Vp dz 

-V.(JH,$XU)+EV.R (18) 

where the primes have been dropped and 

R=- 

i 
/ 
O L(u)- 
-H 

-$-V”u 
0 I 

+ $(T--T~) 

0 

The geostrophic balance form of Eq. (18) re- 
sults by taking the zero-th order balance of the 
equation after the dynamical variables 4 = (U, V, 
ps, p, p> have been expanded in series of E, e.g., 
4 = &O) + ,+(i) + . . . . . The geostrophic diagnostic 
relationship results: 

V+lVp~“)) = -V./~H(z+H)Vco)~ dz 

- v. (fH& x iP’) (19) 
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SLPB depth = 5.m jul , 1987 
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Fig. 1. Sea surface height for July 1987 computed from the global ocean model. (a) the solution of Eq. (14); (b) the baroclinic 
component from Eq. (26) and (c) the barotropic component from Eq. (25). Units are cm. 

Knowing that fi co) = i x VI), where JI is the 
transport streamfunction, we can write 

v*(Hvp,) = -VfH(z+H)Vp dz 

where the superscripts have been dropped. This 
relation shows that the sea surface pressure is 
composed of barotropic and baroclinic contribu- 
tions from the interior flow fields. The baroclinic 
contribution results from a vertical integral of the 
density structure of the ocean. This could have 
been expected since we usually compute dynamic 
height at the surface to compare with surface 
pressure satellite data. Mellor et al. (1982) de- 
duced a somewhat equivalent form of Eq. (20) for 
the velocity field and called part of the first term 
in the r.h.s. of Eq. (20) the potential energy. 

If we examine now the case of open ocean flat 
regions of limited extension for which we can 
consider f = 1, ps can be split explicitly in 
barotropic and baroclinic components,‘e.g.: 

p =T_ I_UH(z+H)pdz 
’ H H 

(21) 

or dimensionally: 

1 foJI g 
-PS=-- H poHj-J)z +H)P dz 
PO 

(22) 

Since h =ps/pog then: 

We want to transform Eq. (23) in the familiar 
relationship between h and the surface geo- 
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SLPB depth = 5.m jul , 1988 
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Fig. 2. Sea surface height for July 1988 computed from the global ocean model. (a) the solution of Eq. (14); (b) the baroclinic 
component from Eq. (26) and Cc) the barotropic component from Eq. (25). Units are cm. 

strophic streamfunction, called 4(x, y, z, t) I r-o. 
To achieve this, we use the geostrophic balance 
in the hydrostatic relationship which results in: 

Pofo 
P 

(0) = - 4 - 

L g 

and the equality, /!&Lx, y, z, t) dz = q/H for 
the geostrophic barotropic mode. We obtain: 

z, t) dz 

fo 
= y4(x, Y, 2, f) I z=o P-4) 

Thus this classical formula is valid in the limit 
of f-f0 and small topographic changes. The 

usage of surface altimeter data as surface stream- 
function to control the dynamical evolution of the 
flow fields has shown different degrees of uncon- 
trollability (Haines, 1991). This depends crucially 
on the number of levels used, e.g., the number of 
baroclinic vertical modes used in each model, as 
shown recently by Rienecker (1994, pers. com- 
mun.). 

In the following we will discuss the baroclinic 
and barotropic contribution to the surface pres- 
sure in the geostrophic limit but for finite ampli- 
tude topography and variable Coriolis parameter. 

4. Barotropic and baroclinic components of the 
sea surface pressure 

Here we will show the results of using the 
diagnostic sea surface pressure Eq. (14) to iden- 
tify barotropic and baroclinic components of the 
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ocean sea surface pressure field. The model here 
is the GFDL-MOM adapted to the world ocean 
geometry by Rosati and Miyakoda (1988) and 
used for data assimilation studies by Derber and 
Rosati (1989). The experiments use realistic sea 
surface boundary conditions as described in 
Rosati and Miyakoda (1988) and they were inte- 
grated for about a decade. We examined the 
results of integrations from 1987 to 1988 and 
computed the sea surface pressure diagnostically 
with Eq. (17). Furthermore we split the 
geostrophic relationship Eq. (20) into its 
barotropic component: 

v* (HV#‘) = v* ( fV$) 

and baroclinic component: 

(25) 

V+U’pj*)) = -Vj~H(r+H)Vp dz (26) 

so that the total geostrophic pressure is ps =pi’) 

+p(*) Numerically we solve the two elliptic prob- 
lem; Eqs. (25) and (26). 

In Figs. 1 and 2 we show the corresponding 
(h =p,/pOg) sea surface height fields for the July 
months of 1987 and 1988. The mean surface level 
is unknown in our system and thus we have 
subtracted the horizontal average of each field. 
The two months of July correspond to the two 
opposite phases of the large El Nifio event which 
started in December 1986-January 1987. 

In the tropical region (- 10 S - 10”N) we 
notice the distinct change in sea level height at 
the Eastern boundary going from an El Nifio 
(July 1987) to La Nina phases of ENSO. The total 
change is of the order of 20 cm. During El Nifio 
phase the northern and southern Subtropical 
Gyres are disconnected (see the 40 cm isoline in 
Fig. la and b) while they connect across the 
equator in July 1988. 

The subtropical and subpolar gyres are well 
defined in the Pacific while the Atlantic subtropi- 
cal gyre is less defined in terms of closed stream- 
lines. The Atlantic subpolar gyre is deeper than 
the corresponding Pacific one. 

The Antarctic Circumpolar Current (ACC) is 
strong and it meanders on several locations. The 
southern Indian ocean shows a well defined sub- 

tropical gyre which composes part of the Agulhas 
retroflection region. 

It is interesting to compare the relative impor- 
tance of barotropic versus baroclinic contribu- 
tions to the total sea surface pressure signal at 
the geostrophic level. The baroclinic contribution 
dominates everywhere except in the ACC region 
where the barotropic contribution is over 50% of 
the total signal. The subpolar gyres have also a 
nonneglegible barotropic component even though 
the baroclinic dominates. The subtropical areas 
of the southern Atlantic and Inidian Oceans show 
also relevant contributions from the barotropic 
component. 

The time variability of the sea surface pressure 
is contained both in the barotropic and baroclinic 
components, as shown by comparing Fig. 1 and 
Fig. 2. The largest baroclinic changes are in the 
equatorial regions, as expected, but relevant am- 
plitude variability occur also in the North At- 
lantic subpolar gyre. 

5. Summary 

We have shown the analytical surface pressure 
formulation of the oceanic primitive equation 
problem in the rigid lid approximation. We have 
demonstrated the diagnostic relationship between 
the sea surface height and the interior dynamical 
variables which shows that the sea surface pres- 
sure cannot control by itself the internal dynami- 
cal structure of the ocean. It is then concluded 
that for these dynamical reasons, the sea surface 
pressure cannot be simply inserted at the surface 
of GCM, expecting the associated changes in the 
subsurface interior flow field. 

The geostrophic limit of the surface pressure 
equation has been demonstrated for finite ampli- 
tude topography and variable Coriolis parameter 
(the standard limit of small topographic excur- 
sions and f-f,, has also been recovered). It is 
also concluded that quasigeostrophic models are 
uncontrollable by insertion of surface information 
only. The geostrophic sea surface height for the 
global ocean has been studied with respect to its 
baroclinic and barotropic components and we 
show that subtropical and subpolar gyres have 
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large interannual changes in amplitude. The 
Antarctic Circumpolar Current is shown to be the 
major current system to have relevant contribu- 
tion at the sea surface from the vertically inte- 
grated velocity field. 
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