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ABSTRACT

As a first step toward coupled ocean–atmosphere data assimilation, a parallelized ensemble filter is
implemented in a new stochastic hybrid coupled model. The model consists of a global version of the GFDL
Modular Ocean Model Version 4 (MOM4), coupled to a statistical atmosphere based on a regression of
National Centers for Environmental Prediction (NCEP) reanalysis surface wind stress, heat, and water flux
anomalies onto analyzed tropical Pacific SST anomalies from 1979 to 2002. The residual part of the NCEP
fluxes not captured by the regression is then treated as stochastic forcing, with different ensemble members
feeling the residual fluxes from different years. The model provides a convenient test bed for coupled data
assimilation, as well as a prototype for representing uncertainties in the surface forcing.

A parallel ensemble adjustment Kalman filter (EAKF) has been designed and implemented in the hybrid
model, using a local least squares framework. Comparison experiments demonstrate that the massively
parallel processing EAKF (MPPEAKF) produces assimilation results with essentially the same quality as a
global sequential analysis. Observed subsurface temperature profiles from expendable bathythermographs
(XBTs), Tropical Atmosphere Ocean (TAO) buoys, and Argo floats, along with analyzed SSTs from
NCEP, are assimilated into the hybrid model over 1980–2002 using the MPPEAKF. The filtered ensemble
of SSTs, ocean heat contents, and thermal structures converge well to the observations, in spite of the
imposed stochastic forcings. Several facets of the EAKF algorithm used here have been designed to
facilitate comparison to a traditional three-dimensional variational data assimilation (3DVAR) algorithm,
for instance, the use of a univariate filter in which observations of temperature only directly impact
temperature state variables. Despite these choices that may limit the power of the EAKF, the MPPEAKF
solution appears to improve upon an earlier 3DVAR solution, producing a smoother, more physically
reasonable analysis that better fits the observational data and produces, to some degree, a self-consistent
estimate of analysis uncertainties. Hybrid model ENSO forecasts initialized from the
MPPEAKF ensemble mean also appear to outperform those initialized from the 3DVAR analysis. This
improvement stems from the EAKF’s utilization of anisotropic background error covariances that may vary
in time.

1. Introduction

The El Niño–Southern Oscillation (ENSO) over the
tropical Pacific has been recognized as the earth’s dom-
inant climate fluctuation on interannual time scales
(Rasmusson and Wallace 1983; Glantz et al. 1991). Un-

derstanding ENSO is a key to understanding the global
climate anomaly. Theories exist to explain the ENSO
phenomenon, in which the converging part attributes
ENSO to the dynamic coupling between the atmo-
sphere and ocean in the equatorial Pacific region (Ze-
biak and Cane 1987; Suarez and Schopf 1988; Neelin
1991; Sun and Liu 1996; Neelin et al. 1998; Fedorov and
Philander 2001). The dynamic coupling refers to a posi-
tive feedback loop between surface wind stress, sea sur-
face temperature (SST), and ocean upwelling. Over the
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tropical Pacific Ocean, the surface winds are driven by
SST gradients (Lindzen and Nigam 1987) and changes
in SST gradients affect the strength of surface winds.
Since upwelling is driven by the surface winds, changes
in the strength of the surface winds affect the strength
of upwelling, which in return affects the SST distribu-
tion.

Modeling the ENSO mechanism of air–sea interac-
tion contains many uncertainties since the coupled
feedback process makes the climate system highly sen-
sitive to errors in simulations, such as inaccurate pa-
rameterizations of clouds, radiation, convection, and
turbulent mixing, etc. Therefore, viewing the modeled
ocean–atmosphere coupling system as a continuous sto-
chastic dynamical process may be more appropriate
than a single deterministic process, in which the climate
evolution is described by the vector stochastic differen-
tial equation (Jazwinski 1970),

dxt�dt � f�xt, t� � G�xt, t�wt. �1)

Here, xt is an n-dimensional vector representing the
coupled model state at time t (n is the size of the model
state), f is an n-dimensional vector function, wt is a
white Gaussian process (uncorrelated in time) of di-
mension r with mean 0 and covariance matrix S(t),
while G is an n � r matrix. The first and second terms
of the right-hand side in Eq. (1) respectively represent
the deterministic modeling and uncertainties in a
coupled system.

In ocean modeling, surface temperatures are typi-
cally damped toward the analyzed SSTs, and estimated
fluxes of momentum, heat, and water are applied as the
surface forcings. Unfortunately, restoring SST may only
change the top layer structure, rather than building up
the whole vertical thermal structure, and the estimated
wind stress, heat flux, and water flux have errors (Wit-
tenberg 2004). Incorporating these inaccurate surface
forcings into a biased model cannot validly prevent the
drift of the modeled ocean state from climatology. In
addition, in eddy-resolving models, ocean data assimi-
lation is expected to introduce mesoscale eddies and
nonlinear dynamical features (Ezer and Mellor 1994),
which are inherently unpredictable in nonassimilated
models. Therefore ocean modeling needs ocean data
assimilation (ODA), which reconstructs the historical
series of the ocean evolution using model dynamics to
extract information from all observations available. An
ODA procedure attempts to produce consistent ocean
states that serve as initial conditions for model fore-
casts. On the other hand, with diagnostics, the ODA
reconstructed historical series of the ocean states with
three-dimensional structure aids further understanding

of dynamics and physics of ocean evolution and may
improve ocean modeling.

The traditional ODA methods that include the three-
dimensional variational data assimilation (3DVAR) ap-
proach (Derber and Rosati 1989) and the four-
dimensional variational data assimilation approach
(4DVAR; Galanti et al. 2003; Weaver et al. 2003) solve
a single estimate of ocean state by minimizing a defined
distance measurement between the analysis and obser-
vations (3DVAR), or between the modeled and obser-
vational trajectories (4DVAR). In these traditional ap-
proaches, the prior specified background error covari-
ance is usually flow independent and time invariant,
and therefore may be unable to properly describe the
uncertainties referred to in the second term in Eq. (1).

An ensemble filter uses finite samples to estimate the
probability density function (PDF) of the system state,
solving the data assimilation problem by computing the
product of modeled and observational PDFs. The back-
ground error covariance between state variables is di-
rectly derived from the model dynamics, using a Monte
Carlo approach. The error covariances are therefore
flow dependent and time varying (Zhang and Anderson
2003). This aspect of the ensemble filter is well suited to
the tropical Pacific Ocean, where flow structures are
highly anisotropic and strongly dependent on the sea-
sonal cycle and interannual (ENSO) fluctuations.

At the current state of the art, ensemble filters as-
sume consistency of the prior state PDF (estimated by
Monte Carlo samples of the model) and the real-world
PDF. Under this framework, ocean data assimilation is
in many ways a very different problem than atmo-
spheric data assimilation. Whereas the atmosphere is
highly sensitive to initial conditions (slightly different
atmospheric states can be expected to spread out from
one another very strongly after just a few days or
weeks), the ocean tends to be more stable and to evolve
more slowly. Model biases can therefore emerge as a
strong source of error in an ocean assimilation. More-
over, because ocean observations are generally sparse
and irregular in space and time, ocean model biases can
grow to significant amplitude in data-void regions. Out-
side strongly eddying zones, tropical upper-ocean vari-
ability is driven primarily by interactions with the at-
mosphere. Where the effects of the surface forcing are
less intense (e.g., in the deep ocean or away from the
equator), oceanic variability tends to be quite weak.

It is the combination of these aspects—weak en-
semble spread, sparse data, and strong model biases—
that make the ocean problem a challenge for an en-
semble filter. Our approach attempts to deal with each
of these problems. To enhance the ensemble spread
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and better sample the covariance structure of the ocean
model, the ocean model is coupled to a stochastic at-
mosphere. This provides a prototype system for 1) rep-
resenting the uncertainty of the atmospheric forcing,
and 2) truly coupled ocean–atmosphere data assimila-
tion, in the limiting case where no atmospheric data are
assimilated. Following the precedent of 3DVAR ODA,
observations are allowed to impact state variables over
a time window that includes a number of model time
steps before and after the time of the observation. Un-
der certain conditions, this is believed to lead to assimi-
lations that are smoother in time and reduce the mag-
nitude of undesirable shocks generated by sparse ob-
servations. Further work may be necessary to
incorporate this feature into the Bayesian theoretical
framework of ensemble filters.

The current version of the GFDL data assimilation
system is based on a 3DVAR scheme. Similar systems
have been used in experimental climate predictions at
the Geophysical Fluid Dynamics Laboratory (GFDL;
Rosati et al. 1997) and operational forecasts at the Na-
tional Centers for Environmental (NCEP; Behringer et
al. 1998) for over a decade. This study documents ef-
forts to develop a next-generation system based on the
ensemble adjustment Kalman filter (EAKF; Anderson
2001, 2003). The system is implemented in a prototype
coupled ocean–atmosphere ENSO model, based on the
GFDL Modular Ocean Model Version 4 (MOM4)
coupled to a statistical atmosphere. The purpose of this
study is not to produce a fully operational forecast sys-
tem, nor to provide an exhaustive analysis of the as-
similation state estimate. Rather the intent is a proof-
of-concept for the EAKF technique applied to coupled
data assimilation for initialization of seasonal-to-
interannual climate forecasts. We describe the assimi-
lation methodology, its implementation for parallel ma-
chines, and an evaluation of some key assimilation met-
rics, including a comparison with the current 3DVAR
assimilation. We include among these assimilation met-
rics the skill of forecasts initialized from the assimila-
tion solutions, since the primary intent of the assimila-
tion will be to provide initial conditions for coupled
model predictions. A more comprehensive investiga-
tion of the assimilation quality will be performed once
the system is implemented in a fully coupled ocean–
atmosphere GCM.

The paper is organized as follows. After a brief de-
scription of the assimilation methods (ensemble filter
and 3DVAR) used in this study in section 2, section 3
describes how the hybrid coupled model sets the
coupled model prototype that represents the forcing
uncertainties in air–sea interaction. Section 4 presents

the parallel design of the EAKF and discusses the im-
pact of sequential adjustment in ensemble-based filters
on parallel analysis. Section 5 examines the assimilation
results, comparing to the existing 3DVAR scheme, and
the forecast verification is given in section 6. Finally a
summary and discussion are given in section 7.

2. Assimilation methods

a. Ensemble filter

1) SEQUENTIAL IMPLEMENTATION

A variety of ensemble filtering algorithms have been
developed for atmospheric and oceanic assimilation ap-
plications. These algorithms can be understood as
Monte Carlo approximations to the Bayesian filtering
problem (Jazwinski 1970). As pointed out by Houteka-
mer and Mitchell (2001), individual scalar observations
can be assimilated sequentially when the observational
error distribution for each is independent. If sets of
observations with correlated observational error distri-
butions are used, as application of a singular value de-
composition (Anderson 2003) continues to allow se-
quential assimilation for observations.

Anderson (2003) points out that the impact of an
observation on the set of model state variables can also
be computed sequentially as long as all state variables
are updated before the forward operator for the next
scalar observation is computed. In this context, an en-
semble filter can be described without loss of generality
by describing the impact of a single scalar observation
on a single state vector element.

Figure 1 schematically illustrates how a sequential
ensemble filter is implemented. In step 1, an ensemble
of model states is integrated forward in time from the
time of the previous set of observations, tk, to the next
time at which observations are available, tk�1. In step 2,
the forward observation operator, H, is applied to each
model state prior estimate to obtain an ensemble prior
estimate of an observed scalar quantity, the dark solid
ticks in step 3. The value of the observation from the

FIG. 1. Schematic diagram of how a sequential ensemble filter
uses an observation yo to update the ensemble. See context of
section 2a(1).
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instrument, yo (gray tick at step 3), and the observa-
tional error distribution (gray curve superposed at step
3), which is a function of the observing system, must be
combined with the prior ensemble estimate to get an
improved analysis estimate. Step 4 shows that updated
values (thin dark dashed on the y axis) can be associ-
ated with each of the prior ensemble estimates. An
innovation, or increment, is associated with each prior
ensemble estimate at the end of step 4. Finally, corre-
sponding increments for a given model state variable
are obtained by linearly regressing the observation in-
crements onto the state variable using the prior en-
semble joint distribution for the observation variable
and the state variable. This impact of the scalar obser-
vation is computed for each state variable in turn.
When all state variables are updated, the algorithm is
repeated for the next scalar observation from time tk�1.
When all observations have been applied, the state is
advanced forward to the next time at which observa-
tions are available.

Almost all ensemble filter algorithms that have been
applied in atmospheric and oceanic applications can be
described by Fig. 1. The differences between the algo-
rithms are normally confined to the detail of step 4,
computing the observation increments given a prior es-
timate, the observation, and the observational error dis-
tribution. Here, the EAKF (Anderson 2001) is used.
The EAKF is one of a class of deterministic square root
filters (Tippett et al. 2003; Bishop et al. 2001; Whitaker
and Hamill 2002), all of which would be expected to
give qualitatively similar results in this application.
Other nondeterministic ensemble filters, such as the
original ensemble Kalman filter of Evensen (1994) as
corrected by Houtekamer and Mitchell (1998) would
likely give qualitatively different results.

2) COVARIANCE FILTERING

The algorithm outlined in section 2a(1) assumes that
the assimilating model is perfect and that the ensemble
size is large enough to fit a PDF well. In practice, an
assimilating model will have biases that may cause the
analysis ensemble members to systematically drift away
from reality. This drift tends to be greatest in those
locations where observations are sparse in space and
time. This can induce problems in the filter—as the
observations begin to look increasingly “unlikely” un-
der the (erroneous) assumption that they were drawn
from the ensemble PDF, they are given increasingly
less weight in the analysis distribution, further worsen-
ing the bias. This filter divergence is especially perni-
cious in regions where variability is small compared to
model systematic error; in these regions the analysis
ensemble tends to give little weight to observations that
depart from the ensemble. Filter divergence can cause
further problems where observations appear after be-
ing absent for awhile; the sudden shift in the ensemble
solutions (in localized regions near the observational
locations) can induce large gradients in the physical
fields, giving rise to spuriously strong currents and nu-
merical instabilities in the model. Small ensembles like
the ones used here are even more prone to problems of
this kind.

To help control these problems, we define a time
window to smooth the impact of observations in time.
To reduce the computational burden and enhance par-
allelism, and minimize sampling error, we further use a
distance-dependent weighting function to constrain the
spatial extent of the observational impacts (Hamill et
al. 2001). The resulting weighting function takes the
form (Gaspari and Cohn 1999)

��a, d� � �
�

1
4 �d

a�5

�
1
2 �d

a�4

�
5
8 �d

a�3

�
5
3 �d

a�2

� 1, 0 � d � a;

1
12 �d

a�5

�
1
2 �d

a�4

�
5
8 �d

a�3

�
5
3 �d

a�2

� 5�d

a� � 4 �
2
3 �d

a��1

, a � d � 2a;

0, d � 2a.

Here d is either a Euclidean spatial distance (hori-
zontal or vertical), or a time difference, between the
model grid point and the observation location, and a
controls the observational impact window. The hori-
zontal a is set to be 1000 km so that the observational
impact radius is 2000 km. To change the shape of the
weighting function near the equator, a cosine factor
multiplying the difference of grid point and observation

latitudes scales the horizontal weight (therefore the
horizontal weight contours are ellipses). The vertical a
is set to be 20 m, and each observation is only allowed
to impact at most two neighboring levels (one on each
side).

In theory, the information contained in individual
observations would be assimilated only once; the model
would be expected to correctly propagate the state PDF

NOVEMBER 2005 Z H A N G E T A L . 3179



in time. Unfortunately, ocean models typically show
large biases and little ensemble spread, and subsurface
temperature observations are sparse and infrequent. In
the present case, using a too-short time window pro-
duces an unacceptable assimilation bias when and
where observations are absent. To constrain the en-
semble to the observations without inducing large
shocks, we smooth the impact of the observations in
time by setting a to 5 days by weighting the covariance
using the distance of an observation from the center of
the window. This value is consistent with previous
three-dimensional variational ocean data assimilations
(Derber and Rosati 1989; Harrison et al. 1996). Increas-
ing the width of the time window greatly increases the
assimilation cost by effectively increasing the number
of observations. An additional effect of the time win-
dow is analogous to reducing the observational error
associated with the observation since time windows
may have overlap that observations may be repeatedly
used with different weights in windows nearby. This
results in an exaggerated reduction in the spread of the
assimilated ensemble while possibly leading to a more
aggressive fit of the observation. While the tighter fit
may be an advantage when using a model with large
systematic error, the reduced spread acts to reduce the
impact of later observations. Based on the representa-
tion of data, the model bias, and the ensemble size, how
to select an optimal time-window length will remain a
topic for further research. Finally, the independent
products of weighting functions for horizontal, vertical,
and time are accounted as a covariance factor into as-
similation computation.

Normally, EAKFs are able to applied in a multivari-
ate fashion with an observation of any type being al-
lowed to impact all close state variables, given that
cross covariances between different physical variables
can be easily estimated by the ensemble samples. The
ensemble sampling size determines the accuracy of the
estimated cross covariance. As the first step of efforts to
implement the ensemble filter into the coupled assimi-
lation with a relatively small ensemble size, the EAKF
applied here is univariate; that is, observations of tem-
perature are only allowed to impact temperature vari-
ables, which is expedient to compare with the existing
3DVAR system. Following up, the multivariate filter-
ing is expected to minimize imbalances in the assimi-
lated state since the correlative relations found in the
prior ensemble state estimates are maintained to some
extent in the state increments. It is expected that future
implementations of an EAKF without the univariate
modification would lead to more balanced assimilations
that might eliminate the need for the time window

while leading to an overall improved assimilation. This
will be explored in future research.

b. Brief description of GFDL 3DVAR ODA
system

The original 3DVAR system was set up by Derber
and Rosati (1989) and certain modifications were per-
formed by Harrison et al. (1996). Because of the un-
certainty of estimating the cross-covariance matrix and
the requirement of defining an observation operator
between different physical variables in the multivariate
3DVAR system, the GFDL 3DVAR still is a unvariate
system. Instead we are engaged to develop the en-
semble filter outlines in section 2a(1), which can be
naturally expanded to conduct the multivariate assimi-
lation. For the purpose of comparison and contrast in
this study, what follows provides a brief description of
main characters of the GFDL 3DVAR scheme.

Taking the standard 3DVAR objective functional
form, which includes a background term and an obser-
vational term (e.g., Kalnay 2003), operating on the field
of the temperature correction instead of the tempera-
ture itself, the objective function minimized is

J �
1
2

�TTB�1�T �
1
2

�H��T� � �T0�TR�1�H��T�

� �T0�, �2�

where 	T is an N component correction vector of tem-
perature referred to the first guess (background), B is
the N � N background error covariance matrix, 	T0 is
a K component difference vector between the observa-
tions and the interpolated first-guess temperature at the
observation location, R is the K � K observational er-
ror covariance matrix (only considering variance, R is
diagonal), and H is a simple bilinear interpolation map-
ping operator from model space to observation space.

In minimization of the functional (2) by a precondi-
tioned conjugate gradient algorithm (Gill et al. 1981;
Navon and Legler 1987), avoiding the expensive com-
putational cost of directly inverting the B matrix, each
analysis step instead approximately approaches the so-
lution by an iterative procedure.

The key quantities in the preconditioned conjugage
gradient algorithm are the gradient of the functional
with respect to the correction field (g � �|	TJ) and h �
Bg, a scaled gradient vector by the background covari-
ance. For the functional defined in (2), the gradient is
given by

g � B�1�T � HTR�1�H��T� � �T0�. �3�

The procedure first starts from setting the correction
field 	T(1) � 0, and then g(1) � �HTR�1	�0, and h(1) �
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Bg(1). If also initializing the initial search direction [d(0)

and e(0)] and 
(1) to be zero, the algorithm reaches the
solution by the following iterative procedure:

d�n� � �h�n� � ��n�d�n�1�,

e�n� � �g�n� � ��n�e�n�1�,

f�n� � e�n� � HTR�1Hd�n�,

��n� �
�g�n��Th�n�

�d�n��Tf�n�
,

g�n�1� � g�n� � ��n�f�n�

�T�n�1� � �T�n� � ��n�d�n�

h�n�1� � Bg�n�1�,

��n�1� �
�g�n�1��Th�n�1�

�g�n��Th�n�
, �4�

where n is the iteration counter, initially set equal to
one.

The background error covariance matrix B is con-
structed by multiplying a uniform background variance

(�2
b) to an equivalent correlation model (implemented

by repeating a Laplacian smoother using the zonal
scale, xL, and the meridional scale yL) as

	�r� � e��rx�xL�2��ry�yL�2, �5�

where rx and ry are the zonal and meridional distance of
the grid point to the observation location respectively.
The elliptic property of correlation structure is con-
trolled by xL and yL, which are plotted in Fig. 2b. For
example, roughly 700 km xL and 50 km yL at the equa-
tor account for the effect of the well-known narrow
correlation scale along the east–west near the equator
(marked by “1” in Fig. 2a) while the correlation struc-
ture around 20°N(S) appears roughly isotropic due to
the approximately equal xL and yL over there (marked
by “2” in Fig. 2a). These correlation structures have the
similar property as the estimates from the time mean of
the temperature correlation at the surface in the EAKF
(Fig. 2c).

While the time mean of prior error variance esti-
mated in the EAKF has a spatial distribution (the SST
standard deviation is shown in Fig. 2d) the background
error variance used in the 3DVAR, �2

b, is uniformly set
to be 0.05[(°C)2]. This value is selected from tuning

FIG. 2. The correlation structures with respect to the reference points (0°N, 140°W, marked by “1”) and (20°N, 160°W, marked by
“2”) in the (a) 3DVAR and (c) EAKF (at the surface), (b) the correlation zonal (solid) and meridional (dashed) scales in the 3DVAR,
and (d) the time mean standard deviation in the EAKF (at the surface). The contour intervals are 0.1 for (a) and (c) and 0.02 for (d).
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experiments to make the analysis reasonably close to
observations without causing a too-large dynamical im-
balance. More discussions on the spatial and temporal
variation of prior error covariance in the ensemble fil-
ter will be made in section 5b.

3. The hybrid coupled model

As mentioned earlier, ocean data assimilation pre-
sents a special challenge for an ensemble filter, because
of small ensemble spread, substantial model biases, and
sparse observations. To enhance the ensemble spread
and better sample the covariance structure of the ocean
model, the ocean model is coupled to a stochastic at-
mosphere model. This additionally provides a proto-
type system for 1) representing the uncertainty of the
atmospheric forcing, and 2) truly coupled ocean–
atmosphere data assimilation, in the limiting case
where no atmospheric data are assimilated.

a. The ocean model

The ocean model is the GFDL MOM4 (Griffies et al.
2003). For this study, the model is configured with 25

fixed depth levels, with 15-m grid spacing above 150 m.
The horizontal grid spacing is 0.5° latitude near the
equator, telescoping to 5° near the poles, and uniform 2
longitude. This gives a total of 180 � 96 � 25 � 432 000
grid points. The model grid configuration over the
tropical Pacific basin is shown in Fig. 3. The model has
an explicit free surface with explicit freshwater surface
fluxes, a quicker advection scheme (Holland et al.
1998), nonlocal K-profile parameterization (KPP) ver-
tical mixing (Large et al. 1994), and Laplacian horizon-
tal diffusion and friction (Griffies and Hallberg 2000).
Penetration of shortwave radiation into the surface lay-
ers is parameterized in terms of ocean color, using a
prescribed climatology of Sea-viewing Wide Field-of-
View Sensor (SeaWiFS)-measured chlorophyll concen-
trations that varies in space and time (Sweeney et al.
2005). The model has a 1-h time step and uses leapfrog
time differencing with a Robert–Asselin time filter.
Consistent with the time differencing, the analysis de-
scribed in section 2a(1) uses a two-time-level adjust-
ment (Zhang et al. 2004). Although the ocean model is
global, a sponge poleward of 45° relaxes temperature
and salinity toward the Levitus and Boyer (1994) cli-
matology with an e-folding time of 30 days.

FIG. 3. The model grid configuration over the tropical Pacific basin. The number in each box is the PE index. Asterisk represents
profiles used in section 4b and the numbers 1–4 denotes the profile index used in that section.
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b. The statistical atmosphere

The statistical atmosphere is similar to those in Har-
rison et al. (2002) and Wittenberg (2002). The model
attempts to capture the observed relationships between
anomalous monthly mean tropical Pacific SST and sur-
face fluxes (vector wind stress, shortwave and longwave
radiation, sensible heat flux, evaporation, and precipi-
tation) during 1979–2002 as represented in the NCEP/
Department of Energy (DOE) Atmospheric Model In-
tercomparison Project (AMIP-II) reanalysis (NCEP2).
The data are averaged onto a 2° latitude by 5° longitude
grid covering the tropical Pacific Ocean (20°S–20°N,
120°E–70°W). A 12-month climatology is then com-
puted and subtracted from the total fields to give
monthly mean SST and flux anomalies. A statistical
model is postulated for each flux anomaly time series:

Y � XW � E, �6�

where Yn�q is a matrix consisting of the n observed
monthly means of the q-element flux anomaly field,
Xn�p is the corresponding matrix for the p-element SST
anomaly (SSTA) field, Wp�q are time-independent
weights multiplying the SSTAs, and En�q are stochastic
shocks. We assume a priori that the flux shocks are
normally and independently distributed in time, with
zero mean and a variance that is stationary in time.

To obtain a set of predictors, we compute the SSTA/
flux covariance matrix C and perform a singular value
decomposition:

C �
X�Y

n � 1
� ÃDB̃�, �7�

where tildes denote nondimensional matrices; Dr�r is a
diagonal matrix, r � min(p, q), whose diagonal ele-
ments are the singular values of C; and Ãp�r and B̃q�r

are unitary matrices whose columns are the left (SST)
and right (flux) singular vectors of C. The SSTA
weights are estimated by regressing the observed flux
anomalies onto this set of predictors, namely, the SSTA
singular vector expansion coefficients that explain the
greatest fraction of squared covariance between the ob-
served flux anomalies and SSTAs:

ŶN � XŴN, �8�

W̃N � ÃN�A
N


X�XÃN��1A
NX�Y, �9�

ÊN � Y � ŶN, �10�

where ŶN and ÊN are the deterministic and residual
stresses estimated from N predictors. A predictor is
included only if it is an essential part of a group of three
or fewer predictors that, together, significantly improve

the model at more than half the grid points. Improve-
ment at a grid point is deemed significant if a two-tailed
F test on the change in residual sum of squares indicates
less than 1% probability of that change occurring by
chance. Table 1 shows the number of predictors ob-
tained for each flux field, and the percent anomaly vari-
ance captured by each regression model.

For monthly mean stresses inside 20°S–20°N, the re-
gression onto SSTAs explains less than 25% of the
monthly stress anomaly variance, where this variance is
computed over the set of all months and spatial grid
points. The signal-to-noise ratio increases near the
equator: the regression onto SSTAs captures nearly
50% of the variance for zonal wind stress anomalies
averaged over 5°S–5°N. The signal-to-noise ratio also
increases with time scale: the regression model captures
nearly 75% of the variance for zonal stresses averaged
over 5°S–5°N and filtered to retain only periods greater
than a year. To represent the residual fluxes, we first
note that the residuals and their principal components
decorrelate rapidly, typically within 2 months or less
(Wittenberg 2002). Thus rows of ÊN that are more than
a few months apart are effectively independent realiza-
tions of stochastic fluxes. A straightforward way to in-
clude these in the model is to simply replay the time
series of ÊN beginning in a random initial year and
cycling back to the start of the time series whenever it
reaches the end. Unlike the red noise approach of Wit-
tenberg (2002), this provides only 24 (1979–2002) inde-
pendent years of stochastic forcing; however, space–
time correlations, propagating features, seasonal
changes in variance, and cross correlations among vari-
ables are all preserved, making this an attractive option
in an ensemble assimilation where the model’s dynami-
cal memory is constrained by observations.

The atmospheric forcing can thus be viewed as con-
sisting of two parts: a slowly evolving “deterministic”
part that depends on large-scale sea surface tempera-
tures, and a highly chaotic (essentially stochastic) part
that evolves independently of the ocean state.

TABLE 1. Number of SST predictors retained in each statistical
surface flux model, and the percent of observed monthly mean
anomaly variance captured by regression onto these predictors.

Flux field
No. of SST
predictors

Variance %
captured by
regression

Vector wind stress 7 22.3
Shortwave radiative flux 3 20.3
Longwave radiative flux 5 12.4
Sensible heat flux 6 22.6
Evaporation 3 14.7
Precipitation 3 15.8
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c. Flux adjustment and the ensemble spinup

The spinup of the coupled model is illustrated in Fig.
4. First the ocean model is initialized from Levitus and
Boyer (1994) climatological temperature and salinity.
The ocean model is then integrated for 30 yr, forced by
climatological fluxes from the NCEP2 reanalysis, with
additional restoring terms that damp the model SST
and sea surface salinity (SSS) toward the climatological
values with an e-folding time of 10 days over an upper-
ocean cell of 10-m thickness. The monthly climatologies
of these two restoring terms are computed using the last
5 yr of this run. These climatological “flux adjustments”
are then prescribed, the ocean model is coupled to the
statistical flux anomaly model, and the SST and SSS
restoring is weakened to have an e-folding time of 100
days. This approach permits the coupled model to
maintain a realistic climatology without significantly
damping interannual variability.

Next, the flux-adjusted hybrid coupled model is inte-
grated for 40 yr without any stochastic forcing to obtain
the initial condition for the ensemble spinup. The
model has self-sustained, irregular oscillations when the
wind stress noise forcing is active. In the absence of
noise forcing, the model is stable, but increasing the
air–sea coupling (by increasing the strength of the sta-
tistical wind stress feedback) renders the model linearly
unstable such that it sustains regular oscillations with a
period of 3.3 yr. Starting from six identical copies of this
initial state, the model is ensemble integrated for 10 yr

with each ensemble member forced by a different real-
ization of the residual fluxes (the integrations are ini-
tialized at midnight 1 January, and each member feels a
stochastic forcing beginning at midnight 1 January of a
different residual year). The different ensemble states
following this spinup compose the initial conditions for
the EAKF experiments in the remaining sections.

4. Parallelization of the EAKF

a. Domain decomposition

In some circumstances, parallelizing the ensemble fil-
ter may be required to reduce computational time and
memory usage. There are several possible algorithms
for parallelizing the filter. First, if many observations
are available at each observation time, the sequential
algorithm can be recasted in a matrix form. The appli-
cation of the forward operator (which is now a vector
function) and the matrix inversion required to compute
the impact of the observations on state vector elements
can then be performed using parallel algorithms. This is
an example of a naturally scaling exact algorithm, but it
might not be particularly efficient on parallel systems
with relatively slow interprocessor communication.

Here, an approximate algorithm of the compute do-
main/data domain strategy of Anderson (2001) is used
to parallelize the sequential filter, making use of the
fact that the impact of observations is localized to a
small set of “nearby” state variables. The model grid is

FIG. 4. Schematic of the model spinup and assimilation. The ocean model is initialized on 1 Jan 1900 from Levitus
and Boyer (1994) climatological temperature and salinity. It is then integrated for 30 yr forced by observed
climatological fluxes, with additional restoring terms that damp the model SST and SSS toward observed clima-
tological values with an e-folding time of 10 days. The monthly climatologies of these two restoring terms are
computed using the last 5 yr of this run. These climatological “flux adjustments” are then prescribed, the ocean
model is coupled to the statistical flux anomaly model, the SST and SSS restoring is weakened, and the model is
integrated in coupled mode for another 40 yr. Starting from six identical copies of the state at 1 Jan 1970, the model
is integrated for another 10 yr with each ensemble member forced by a different realization of the stochastic fluxes.
The ensemble states at 1 Jan 1980 then compose the initial conditions for the EAKF.
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partitioned horizontally into a set of computational do-
mains, each surrounded by a halo of additional grid
points. The compute plus halo regions are referred to as
an analysis domain. When a set of observations be-
comes available, the appropriate parts of the prior state
ensembles are copied to each of the analysis domains.
An observation is assimilated in a particular analysis
domain only if all the state variables required for its
forward operator (given the bilinear interpolation used
here, this is simply a set of four adjacent grid points) are
available in the analysis domain. On each analysis do-
main, all of the appropriate observations are assimi-
lated sequentially and the state in the analysis domain is
updated as appropriate before the next observation is
assimilated. However, no communication between
analysis domains is performed during the assimilation

cycle. Points near the edge of the analysis domain will
not be appropriately impacted by observations that are
just outside of the analysis domain. The net result is
that the prior ensembles used within each analysis do-
main will have an erroneous ensemble spread and may
cause analysis errors. However, appropriate choices of
the computational and halo sizes can minimize the er-
rors associated with this effect. This approach is similar
to the local ensemble filter of Ott et al. (2004).

Figure 5 shows the domain decomposition and com-
munications for a case with 24 processing elements
(PEs) and the six ensemble members used in this study.
There are two types of domain decomposition in the
horizontal: integration domains and the analysis do-
mains described in the last paragraph. Integration do-
mains are used to advance ensemble members in time;

FIG. 5. Domain decomposition of a scalar field in the parallelized ensemble filter. The six ensemble
members are integrated forward in time, in parallel, using four processors each (one for each quarter of
the globe). At analysis time, the members are synchronized and the “prior” ensemble at each observa-
tional point is broadcast to all 24 analysis processors. For each physical field, each analysis processor then
uses the observations to sequentially update the six-element ensemble vectors at each grid point in its
core domain (green) and halo (yellow). Once all nearby observations have been assimilated, the updated
ensemble vectors in the core domains are transmitted back to the integration processors, completing the
cycle.
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each PE works on a part of the globe for one ensemble
member.

b. Choosing a halo size to ensure the sequential
computation in EAKF

In choosing a halo width, there is a trade-off between
parallelism and analysis quality. With no halo, the
EAKF is highly parallel but may suffer from reduced
quality near the edges of analysis domains. With a halo
that encompasses the entire planet, each PE conducts
an identical global sequential analysis with no edge ef-
fects—but then the algorithm is no longer parallel. The
challenge is to choose a halo that provides the optimal
balance of quality and parallelism. This can be done by
choosing a halo large enough to encompass all obser-
vations that affect the core analysis region (which is the
only region communicated back to the integration
PEs).

Designing a simple analysis domain layout is rela-
tively straightforward since observations are only being
assimilated within Tropics in the current experiments.
A global assimilation would be presented with more
difficult problems as the model grid became more
dense away from the equator. The parallelization is also
assisted in the present study by the tightly localized
regions of significant correlations between observations
and state variables that result from the use of a very
small ensemble (see Fig. 9 and associated discussion).

The meaningful impact of observations is confined to a
very few neighboring grid points in the horizontal and
so is ideally suited to the parallelization method chosen.
The use of large ensembles that are able to extract
weaker observations to state correlations could also
lead to a much more difficult implementation, where
more strategy (e.g., Fukumori 2002, the partitioning
technique) can be considered.

To demonstrate the impact of the halo size on the
EAKF, an assimilation of four profiles during 1–5 Janu-
ary 1980, shown by asterisks in Fig. 3 (22.5°S, 171°E),
(22.3°S, 173°E), (22.1°S, 175°E), and (22°S, 177°E), is
performed. The four profiles are located near the do-
main corners of PE2, PE3, PE8, and PE9, in a fairly
inactive region of the southwestern tropical Pacific.

Figure 6 presents the adjustments of the model pro-
file at (22°S, 175°E), in which the thin-dotted line (day
0) and the thin-solid line (day 5) show the change of the
model profile in 5 days. One-step global sequential
analysis (thick-dotted line) adjusts the model profile
close to the observations, and after four more analysis
steps, the adjusted model profile (thick-solid line) is
refined to fit the observations (marked by 1, 2, 3, and 4
in Fig. 6 corresponding to the profile indexes in Fig. 3)
very well. On the other hand, in the parallelized analy-
sis, to show the importance of sequentially updating the
ensemble estimate of observations, we first check how
the assimilation performs if only the first guess of the

FIG. 6. The adjustments of the model profile at (22°S, 175°E) (dotted for day 0 and solid for
day 5) by four observational temperature profiles located at (22.5°S, 171°E) (denoted by 1),
(22.3°S, 173°E) (denoted by 2), (22.1°S, 175°E) (denoted by 3), and (22°S, 177°E) (denoted by
4), through one-step (thick dotted) and five-step (thick solid) global sequential analysis,
five-step parallelized analysis with the halo size as two- (dashed) and five-step nonsequential
analysis (long dashed).
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ensemble estimates for all observations is used. The
long-dashed line represents the 5-day adjusted model
profile, using only the first-guess ensemble estimates
for observations and background covariance without
sequential update. This shows that without updating
the ensemble estimates, the observational constraint is
greatly overestimated since the computation violates
Bayes’ rule. This overestimate causes the adjusted
model profile to have a departure from observations to
the other side. With no halo each observation gives a
positive analysis increment that does not take into ac-
count that another observation may have already re-
duced the background/observation mismatch. If the
halo size is set as 2, PE2 and PE8 can update the en-
semble estimates for all observations but PE3 and PE9
can only update the ensemble estimates for profiles 3
and 4. Under this circumstance, the 5-day adjusted
model profile (dash) is still a little overestimated. As
the halo size increases to 4, the adjusted model profile
is very close to the global sequential analysis, and in-
creasing the halo size to 6, the model profile adjusted by
the parallelized analysis is bitwise-identical to the glob-
al analysis.

The analysis above on four-profile assimilation re-
sults shows that choosing an appropriate halo size can
ensure that observations strongly impacting a given
point will know each other when an ensemble-based
filter is parallelized. Typically, the halo size scale can be
determined by the covariance localization described in
section 5a.

5. Assimilation results for 1980–2002

a. Data, impact domain, and halo size

Considering the difference of zonal and meridional
grid structure a 6-point longitude � 10-point latitude
halo is chosen in the parallel EAKF described in sec-
tion 4. Observations used include profiles maintained
by the National Oceanographic Data Center Global
Temperature and Salinity Pilot Program (NODC/
GTSPP), Tropical Atmosphere and Ocean (TAO) ar-
ray, and Reynolds SST. No observations are assimilated
outside of 30° latitude. For each grid point, the impact-
ing observations are limited within a 	� � 	�sec� win-
dow, where 	� and 	� are the latitudinal and longitu-
dinal widths (20° in this study) and sec� is the latitudi-
nal adjustment factor of the longitudinal width. The
analysis domain with 6 � 10 halo structure covers most
of the impacting observations [limited within 10° south–
north (east–west) of a grid point]. First, the massively
parallel processing EAKF (MPPEAKF) assimilation
and the global sequential ensemble filtering assimila-
tion (identical on each PE) are run from 1996 to 1999 to

check the quality of the parallel analysis. Results (not
shown here) show there is no qualitative difference be-
tween the parallel analysis and the global sequential
analysis and both assimilated SSTs are nearly identical
to the Reynolds. The MPPEAKF tremendously re-
duces both computational cost and storage for assimi-
lation comparing to the global sequential EAKF
(around one-tenth as a factor for both in this case).

b. Examination of assimilation results

Both the MPPEAKF and the 3DVAR is run from 1
January 1980 to 1 December 2002 with a daily analysis
interval, and the 3DVAR is relaxed to “observed”
(Reynolds) SSTs and the MPPEAKF assimilates the
SSTs. Figure 7 shows that the filtered ensemble of
SSTs, ocean heat contents (averaged temperature over
top 300 m), and thermal structures converge well
through the constraint of observations, despite the im-
posed noise forcings. As with the equatorial Pacific
(e.g., averaged over 2°S–2°N) SST anomalies in the
3DVAR (restoring SSTs), again the ones in the
MPPEAKF analysis (ensemble mean; not shown here)
are nearly identical to the Reynolds for the whole 23-yr
period.

Figure 8 evaluates the MPPEAKF (ensemble mean)
and 3DVAR temperatures at 140°W on the equator,
which shows that the 3DVAR (a standard 3DVAR ex-
periment uses “observed” NCEP products for fluxes,
marked by “3DVARO”) subsurface structure notice-
ably departs from the observations (e.g., weaker 1986/
87, 1991/92, and 1997/98 warm events, weaker 1987/88
and stronger 1998 cold events) while the MPPEAKF
follows them much more closely. To examine the role
played by the estimated fluxes from the coupled
MPPEAKF assimilation, the 3DVAR is run using the
fluxes from the coupled assimilation and corresponding
results are shown as “3DVARE” in Fig. 8. Overall, the
3DVARE looks like a smooth version of the 3DVARO,
which is not able to improve the assimilation, and in
fact degrades the 3DVAR solution. The same conclu-
sion can be made while the ocean-only simulation using
the fluxes from the coupled assimilation (marked by
“modelE” in Fig. 8) is compared to the simulation using
the observational fluxes (marked by “modelO” in Fig.
8); that is, generally the modelE is a smooth version of
modelO. These experiment results show that despite the
errors in the EAKF simulated fluxes, the ensemble fil-
ter is able to perform better than the 3DVAR, which
uses the “observed” fluxes.

The difference of the (top) 3DVAR and (middle)
MPPEAKF assimilated temperature at (0°, 140°W) can
be more clearly shown by the climatological seasonal
cycle (subtracting the annual mean from the climatol-
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FIG. 8. The time series of the anomalies of the temperature profile at (0°, 140°W) of the ocean-only simulation using the observational
fluxes (modelO) and the MPPEAKF coupled assimilation fluxes (modelE), the 3DVAR assimilation using the observational fluxes
(3DVARO), and the MPPEAKF coupled assimilation fluxes (3DVARE), parallelized EAKF assimilation (MPPEAKF, ensemble
mean), and TAO. The contour interval is 1°C.
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ogy) shown in Fig. 9. The MPPEAKF follows the ob-
servational seasonal cycle much better than the
3DVAR. The causes of the differences between the
3DVAR and the ensemble filter are complex and can-
not be completely isolated by this study: It is possible
that the spatially and temporally varying aspect of the
covariance provided by the ensemble filter is an impor-
tant factor in data assimilation (Zhang and Anderson
2003), but this study cannot categorically confirm this
hypothesis, which requires further research work. In
addition, using the full multivariate aspects of the
EAKF would have further obscured this comparison.

An example of the anisotropic and temporally vary-
ing nature of the background covariance used in the
MPPEAKF is shown in Figs. 10 and 11. Figure 10 pre-
sents the variation of (a), (b) time mean standard de-
viation and (c), (d) correlation scales (the symbol “*”
marks the reference points) of the EAKF in zonal ver-
tical at the (a), (c) equator and (b), (d) meridional ver-
tical at 140°W. Figure 11 presents the time series of the
120-m temperature standard deviation and the surface
temperature autocorrelation about a point (0°N,
123°W) over the east equatorial Pacific (160°–80°W).
The maximum standard deviation in the second half of
1997 may reflect the 1997/98 warm event. The differ-
ence of the west–east bound autocorrelation of the sur-
face temperature about the reference point may reflect,
to some degree, the wind stress direction that organizes
the warm/cold phase of the surface water. A complete
understanding of the estimated background error co-
variance of ocean state variables evaluated by an en-
semble-based filter is very important to understanding
the model dynamics, but this topic is beyond the scope
of this study. Figure 11 also highlights the limitations of
the extremely small, six-member ensembles used here.
Two random samples drawn from a normal distribution
have an expected correlation of nearly 0.4 due to sam-
pling noise. This is reflected in Fig. 11 (right) where the
minimum time mean values of correlation to a given
longitude are bounded below by about 0.4. Sampling
error also impacts larger correlations so that only time
mean values close to 0.8 in Fig. 11 indicate that signal is
dominating noise. As can be seen, the meaningful im-
pact of observations is localized to only a few grid
points surrounding the observation. Future work will
examine the impacts of increasing the ensemble size in
order to improve the signal-to-noise ratio of extracted
information from observations.

To better evaluate the MPPEAKF assimilation, we
compare the Equatorial Undercurrent (EUC) (Fig. 12)
and upwelling (Fig. 13) of the equatorial Pacific of
MPPEAKF (left, ensemble mean) and 3DVAR (right)
assimilation, on the onset (upper) and mature (lower)

phases for the 1997/98 warm event. For the onset phase
(July 1997), the MPPEAKF shows a strong westerly
burst in the top layer and dominant easterlies below 80
m, while the 3DVAR has some localized westerly or
easterly centers throughout top 300 m. For the mature
phase, the central Pacific westerly at the top layer of the
MPPEAKF weakens and transfers toward easterly
while the EUC of the 3DVAR keeps stronger localized
westerly and easterly centers throughout the whole
layer of top 300 m. Comparing to the MPPEAKF up-
welling magnitude of a couple of meters per day (Fig.
13, left), the upwelling of the 3DVAR (Fig. 13, right) is
far too strong, in some localized centers exceeding 10 m
per day.

The stronger EUC and upwelling in 3DVAR may be
due to the prior specified background covariance be-
tween the model/observational temperature profiles,
which may overestimate the observational constraint,
as shown in Fig. 14 where the temperature correction in
both MPPEAKF and 3DVAR assimilations are pre-
sented. From both (a)–(d) time mean and (e) time se-
ries, some stronger localized analysis correction in
3DVAR than MPPEAKF are observed in Fig. 14. Al-
though some instantaneous flow signal may be consid-
ered in minimizing a defined cost function, the
3DVAR, due to the homogeneous and flow-
independent nature of the prior specified background
covariance, may produce some localized temperature
gradients, so that the EUC and upwelling derived from
the analyzed temperature gradient may not be consis-
tent with the dynamics. This analysis is consistent with
the comparison of the EUC climatology at (0°, 140°W)
of the 3DVAR (top) and MPPEAKF (middle) assimi-
lations shown in Fig. 15, in which the climatology of the
TAO current profiles (bottom) also is plotted for ref-
erence. Figure 15 shows that the 3DVAR produces a
stronger EUC, which loses the seasonal cycle phase at
the top layer, while the MPPEAKF produces a much
weaker EUC with consistent seasonal cycle phases.

c. Examination on time series of analyzed ensemble

One of the key advantages of an ensemble filter is the
estimation of the analysis uncertainty (PDF). Through
the examination of the time series of the analyzed en-
semble versus observations, one can evaluate the per-
formance of the assimilation. As an example, here we
conduct a verification-assimilation experiment in which
some observational profile is excluded and then we
check the consistency of the guessed profile by the as-
similation process with the observed profile. For ex-
ample, withholding the profiles at (0°, 140°W) we can
make an assimilation guess for profiles at this point.
Experiment results show (not shown here) that gener-
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ally the MPPEAKF assimilation guesses are qualita-
tively equivalent to the full assimilation and both are
tracking the TAO observations above the thermocline
very well, while free ensemble forecasts diverge from
the observations. This phenomenon means that the
MPPEAKF assimilation procedure can correct the
model bias and coherently fill the data gap according to
the model dynamics in a reasonably dense observa-
tional network [around (0°, 140°W); basically only
TAO profiles are available during this period]. How to
use this kind of assimilation-guess experiment to vali-
date an assimilation scheme is under investigation in a
follow-up study that requires a large number of experi-
ments to make significant statistics.

The equivalence of the assimilation-guessed and ana-
lyzed temperature allows us to examine the time series
of analyzed ensemble versus observations for the whole
period of 1980–2002, as shown in Fig. 16. Figure 16
shows that during this period the assimilated tempera-
ture ensemble members (blue-dotted) are again track-
ing the TAO observations very well above the ther-
mocline, while the free ensemble forecasts (red-
dashed) only oscillate with an annual cycle, having a big
spread above the thermocline and a small spread in
deep water. The performance of the assimilation in

deep water (lower-right panel) is more interesting: al-
though the model spread is small the filter is, to some
extent, still able to correct the model bias according to
observations. During 1996–98 since both expendable
bathythermographs (XBTs) and TAO data are fre-
quently gapped (especially TAO observations for this
particular region) in deep water (below 200 m) the ana-
lyzed temperature at 500 m (lower-right panel) stays
close to the free ensemble forecasts. After that period
when TAO observations in deep water are available the
analyzed temperature is adjusted back. This phenom-
enon means the observational data in deep water are
important for the estimation of the three-dimensional
ocean states that are, perhaps, of central importance for
ocean climate prediction. However, when the model
spread becomes increasingly small in deeper water,
how to efficiently extract the observational information
to reduce the model bias is another research issue.

6. Impact on coupled forecasts

We next examine the usefulness of the MPPEAKF
for initializing ENSO forecasts. We focus on the fore-
casts of initialized from the ensemble mean solution,
and without stochastic forcing during the actual fore-

FIG. 10. The (a), (c) zonal-vertical (at the equator) and (b), (d) meridional-vertical (at 140°W) variation of the (a), (b) time mean
standard deviation and (c), (d) correlation scales (the symbol “*” marks the reference points) in the EAKF, averaged over 23-yr
assimilation period.

3192 M O N T H L Y W E A T H E R R E V I E W VOLUME 133



FIG. 11. The time series of the (left) 120-m temperature ensemble std dev and (right) the surface temperature ensemble
autocorrelation about (0°N, 123°W) over the east equatorial Pacific (160°–80°W) during 1996–99.
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FIG. 14. (a)–(d) Time mean and (e) time series of temperature correction in the 1980–2002 assimilation period. The x–y plane is the
average over the top ocean 300 m in (a) MPPEAKF and (b) 3DVAR; the x–z plane is the average of 5°S–5°N in (c) MPPEAKF and
(d) 3DVAR; (e) the time series is for Niño-3.4 averaged over the top ocean 300 m. The contour interval is 0.01°C for (a) and (b) and
0.02°C for (c) and (d).
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cast. Under the assumptions of the filter the ensemble
mean provides the best linear unbiased estimate of the
ocean state at each time. This single state is used to
initialize a set of hybrid coupled forecasts, including the
deterministic fluxes by modeled SSTs without residual
parts (noise forcings), starting at midnight on 1 January
of each year from 1991 to 2002 (12 forecast cases), and
at midnight 1 July of each year from 1991 to 2001 (11
forecast cases). Complementary sets of forecasts are
launched from the 3DVAR assimilation. Summary sta-
tistics for SST anomalies averaged over the equatorial
central Pacific are shown in Fig. 17.

For January starts, the MPPEAKF initializations
give a smaller forecast bias, slightly lower rms error,
and a higher correlation with observed anomalies than
the 3DVAR initializations, over the first few months of
the forecasts. The MPPEAKF forecast bias is slightly
worse by May–August, but otherwise the skill of the
forecasts from the MPPEAKF is comparable to those
from the 3DVAR. For July starts, the MPPEAKF fore-
casts have a slightly larger bias than the 3DVAR fore-
casts, but for the MPPEAKF the rms error is reduced
and the anomaly correlation is improved for all lead
times up to 11 months.

FIG. 17. Skill evaluation of 12-month hybrid coupled model forecasts initialized from the MPPEAKF
ensemble-mean (green) and the 3DVAR assimilation (red), for SST anomalies averaged over the
Niño-3.4 region (5°S–5°N, 170°–120°W). (top) Results for 12 forecasts initialized at midnight on 1 Jan
1991–2002. (bottom) Results for 11 forecasts initialized at midnight on 1 Jul 1991–2001. (left) The
evolution of the forecast bias (forecast minus observations) for each month after initialization. (middle)
Rmsefor forecasts after bias correction; for reference, the dotted line shows the observed std dev of
Niño-3.4 SST anomalies for each month. (right) Correlations between forecast and observed anomalies
for each month. As a benchmark, solid black curves indicate forecasts made by simply persisting lead-
zero SST anomalies unchanged into the future.
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While there is room for improvement in the forecasts
initialized from the MPPEAKF, it appears that for this
forecast model the MPPEAKF ensemble mean pro-
duces forecasts with slightly better skill than those ini-
tialized from the 3DVAR analysis. Further improve-
ments may be possible by 1) launching forecasts from
the individual MPPEAKF ensemble members (instead
of only the ensemble mean), and evaluating the PDF of
those ensemble forecasts, or 2) turning on the stochas-
tic forcing during the forecasts, and launching “stochas-
tic ensembles” of forecasts for each initial condition.
The ultimate goal is a combination of these, that is,
probabilistic forecasts launched from probabilistic ini-
tial conditions.

7. Summary and future directions

A parallel ensemble filter has been implemented in a
GFDL hybrid coupled model, which serves both as a
prototype for representing uncertainties in the surface
forcing and as a test bed for truly coupled data assimi-
lation. A parallel scheme is designed and applied to a
modified ensemble adjustment Kalman filter (EAKF)
algorithm under a local least squares framework
(Anderson 2003). The parallel scheme requires an
analysis domain consisting of a core domain plus a halo
for each processor element (PE). The analyzed en-
semble (arranged in core domains) is transposed into
the model integration domains of the individual en-
semble members, so that the system can synchronously
advance the ensemble and conduct a parallel analysis.
A halo is used to retrieve the updated information on
background covariances, for those observations outside
the core domain that impact grid points within the core
domain. When the halo is sufficiently large, the mas-
sively parallel processing EAKF (MPPEAKF) pro-
duces a solution with the same quality as a global se-
quential analysis.

The MPPEAKF is used to assimilate observed tem-
perature profiles from 1980 to 2002, using six ensemble
members that are forced by independent realizations of
the stochastic (weatherlike) part of the surface fluxes.
Despite the independent forcings and the crude param-
eterization of the atmospheric response to SSTs, the
filter converges very well to the observed thermal struc-
ture of the ocean. All warm and cold events during
1980–2002, and the corresponding subsurface thermal
and current structures, are reconstructed by the assimi-
lation. Compared to the 3DVAR analysis, the en-
semble filter produces a smoother solution that is more
consistent with the observations, presumably due to the
filter’s incorporation of temporally and spatially vary-
ing background covariances (Zhang and Anderson

2003). The MPPEAKF solution also provides a better
initialization than the 3DVAR, judging from the im-
provement in forecast skill. Moreover, the ensemble
filter has a potential to provide an estimate of the
analysis uncertainty, which is not available through
other approaches.

Because of the requirement of evaluating the prior
distribution (ensemble model integration), typically an
ensemble filter is much more expensive than 3DVAR.
In this six-member case, the computational cost of the
MPPEAKF is however roughly 4 times more than
3DVAR owing to the cost of minimization (three itera-
tions in this case).

An improved model and a better estimate of the forc-
ing uncertainties will likely improve the filter perfor-
mance. Currently the observed temperatures directly
impact only the model temperature—yet since the cross
covariances among state variables are available through
the ensemble (Zhang and Anderson 2003), it is worth
asking whether a multivariate assimilation (including
salinity, surface height, and currents) could improve the
ocean state estimate. We may also ask whether an
anisotropic covariance structure (e.g., as estimated by
the ensemble filter) or the state dependence back-
ground error covariance structure (Behringer et al.
1998) could help improve the less expensive 3DVAR
assimilation in cases where the temporal variation of
the error covariance is not important. Other interesting
issues are how to incorporate the vertical correlation
structure of the observations (Wu and Purser 2002) and
how the ensemble size affects the assimilation. Looking
beyond the simple hybrid model test bed described
here, we plan to apply the MPPEAKF to an ocean
GCM forced by all available observational flux prod-
ucts, and also a fully coupled ocean–atmosphere GCM,
to provide improved initializations for coupled ENSO
forecasts.
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