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ABSTRACT

Nonlinearities weaken westward equatorial jets and cause them to be shallower and broader
than their linear counterparts. Nonlinear eastward equatorial jets, on the other hand, are more intense,
deeper and narrower than linear jets. Since nonlinear effects are important on time scales longer
than about one week, winds that fluctuate on such time scales introduce hysteresis effects and can
generate flow with a complicated vertical structure in the surface layers of the equatorial oceans. Coastal
jets differ from equatorial jets in that they are only weakly influenced by nonlmearltles, this
result could change if alongshore pressure forces are taken into account.

1. Introduction

Winds parallel to the equator or a coast readily
generate intense equatorial or coastal jets. This
happens, for example, in the Indian Ocean when
the eastward winds along the equator intensify
suddenly (Wyrtki, 1973; Knox, 1976). For a descrip-
tion of coastal jets see Mooers et al. (1976). These
various jets accelerate constantly once they are in
geostrophic balance so that they are bound to be-
come nonlinear. This paper concerns the effect of
nonlinearities on the structure of coastal and
equatorial jets. To study the nonlinear problem we
use a two-dimensional numerical model; variations
in a direction parallel to the coast or equator are
neglected. The model ocean has a realistic stratifica-
tion which is chosen such that the equivalent depths
of the first few baroclinic modes are also realistic.
The flat floor of the ocean is at a depth of 3000 m
and the coasts are vertical. This is unrealistic as
far as coastal regions are concerned, but it permits
an investigation of nonlinear effects on a time scale
short compared to that on which dissipation is
dominant. [Allen (1973) shows that a dissipative
steady state is approached on a time scale that de-
pends on the vertical Ekman number.] The model to
be used here is described in detail in Section 2. Sec-
tions 3 and 4 concern zonal equatorial jets generated
by zonal and meridional winds respectively. Section
5 describes coastal jets and Section 6 is a discussion
of the results.

2. The model

Let x, y, z be the eastward, northward (from the
equator) and upward (from the ocean surface)
coordinates. (Alternatively, let x and y denote
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coordinates parallel to and perpendicular to the
coast, respectively.) Let u, v, w be the correspond-
ing velocity components. We assume that the flow
is independent of x so that a streamfunction can be
introduced:

V=14, W=y, 1

If we make the hydrostatic approximation, the
vorticity for motion in the y-z plane is

{ =Y. V)

The equations of motion for a Boussinesq fluid
can now be written

4 —JIW0) + fu, = ;“”— py + V-VD, (a)
- |

= J(Wu) - fi, = V- V), (3b)

— J($,p) = V-(KVp). 3c)

Here f is the Coriolis parameter, which is a constant
for coastal problems and equal to B8y for equatorial
problems, g is the gravitational acceleration, ¢
measures time, J denotes a Jacobian, » and K repre-
sent coefficients of eddy diffusion and p is the
density.

The appropriate boundary conditions are

vu, =7, vi=17, =0, p,=0
at
z=0, (4a)
=0, {=0, ¥y=0, p,=0
at
z=—-H. (4b)

At vertical boundaries that bound the domain we
impose the conditions
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Y=uy=p,=¢{=0. (4c)

These equations are solved numerically by using a
computer program developed by Orlanski and Ross
(1973) and Orlanski et al. (1974). A centered space
and time difference approximation is used to repre-
sent the space and time derivatives. The Jacobians
are treated by the methods of Arakawa (1966) and
Lilly (1965) to minimize nonlinear instability. The
leapfrog method is used for time differencing but
with the diffusive terms lagged one time step. The
solution is time-smoothed every 30 time steps to
minimize mode splitting.

The depth of the ocean is taken to be 3000 m and
the 61 levels in the vertical are spaced nonuni-
formly (see Fig. 1). Initially the ocean is motionless
and the density field p is a function of depth
only. It is assumed that

p = pol — aT),
where « = 0.0002°C-!. Fig. 1 shows the initial
temperature field and the associated Brunt-Viiséla
frequency N. [Below a depth of 500 m, N has a
constant value and the temperature T decreases
linearly, to zero in case a (Fig. 1a) and to 5°C in
case b (Fig. 1b).] For the equatorial ocean the
equivalent depths and associated radii of deforma-
tion for the first few baroclinic modes are (71 cm,
365 km), (27 cm, 286 km) and (14.5 cm, 245 km). For
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the coastal ocean the corresponding scales are (50
cm, 22 km), (16 cm, 12.5 km) and (9 cm, 9.5 km)
at 45°N.

The equatorial ocean is bounded by walls 1500 km
from the equator and has a latitudinal resolution
of 30 km. The coastal ocean is bounded by a wall
300 km from the coast of interest, and has a resolu-
tion- of 6 km. Errors due to finite differencing
are minimized by using a staggered grid.

The coefficient of vertical eddy viscosity v, has a
value equal to 20 cm? s™! at the first 5 grid points
(i.e., in a 35 m deep mixed layer) and has a value
equal to 1 cm? s™! at greater depths. The coefficient
of horizontal eddy viscosity v, has a value equal
to 1000 »,. We assume that K, = », and Ky = vy.
In some experiments (not described here) we as-
sumed v, = 20 cm? s™! everywhere or we assumed a
more complicated function of depth for v, but such
changes appeared to have little effect on the results
for the first three weeks of integration.

Because the fluid is diffusive, the initial tempera-
ture field changes even in the absence of any forcing.
(Temperatures decrease uniformly above the
thermocline and increase uniformly below the
thermocline.) Calculations for different values of K,
show that the velocity field and the latitudinal
structure of the density field are relatively insensi-
tive to K,,.
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Fi1G. 1. The initial temperature and initial Brunt-Viisild frequency, in the
upper 500 m of the model equatorial (a) and coastal (b) ocean. The black dots

show the grid points.
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3. The response of an equatorial ocean to zonal winds

In an ocean initially at rest, winds parallel to the
equator generate an intense equatorial jet, but only
after a certain time has elapsed, because there is
nothing distinguishing about the equator while the
effects of rotation are secondary. Fig. 2 clearly
shows that 1.5 days after the sudden onset of the
winds, the scale of the motion is simply determined
by the distance between the boundaries of the do-
main. (The equator acts as a wall because it is a
line of symmetry.) By day 4.5 an equatorial jet
has developed and after a week the displacement of
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the isotherms indicate that the jet is in geostrophic
balance. Fig. 3 shows the evolution of the latitudinal
structure of the jet. Note that the half-width of the
distinctly equatorial jet is 250 km. Which param-
eters determine these time and space scales?

In a constant-density ocean of depth % the jet is
in geostrophic balance after an adjustment period
equal to 1/(B%gh)V*, by which time it has a half-
width equal to (gh/B%)Y* (Yoshida, 1959; O’Brien
and Hurlburt, 1974; Moore and Philander, 1977).
These results are thought to be relevant to baroclinic
motion in the ocean provided the depth 4 is the
equivalent depth of a dominant baroclinic mode.

NORTH ~——
500km
=

1000km 1500k

9 ~100m - —100m 100m
E & g
& Y &
< 200m - - 200m L ~200m
-l J 1. 1 1 A
NORTH —— NORTH —— NORTH ——
0 500km 1000km 1500km 0 500km 1000km 1500km 500km 1000km 1500km
- 100m O 100m - 100m
= g =
5 o ]
- 200m 200m N 200m
l ~l —l t 1 A i
. " 1000m L 1000m V 1000m
= =3 =
& B &
L 2000m l - ~42000m 1 - ~2000m l
- L 3000m L L 3000m L 3000m
DAY 1.5 DAY 45 DAY 7.5

F1G. 2. The zonal velocity (upper row of plates) and streamfunction (two lower rows of plates) 1.5, 4.5 and 7.5 days after
the sudden onset of winds of intensity 1 dyn cm™2 over a Jinear equatorial ocean. Contours are at intervals of 10 cm s—* and

10° m? s, respectively.
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Fi1G. 3. The evolution of the latitudinal structure of the equatorial
jet at the surface.

The first baroclinic mode usually is assumed to be
dominant. It is evident from Fig. 2 and the middle
panel of Fig. 4 that the vertical structure of the jet
does not coincide with that of any single vertical
mode. It therefore seems that the above expressions
for the adjustment time and half-width are inap-
propriate. Consider, furthermore, an infinitely deep
ocean with constant Brunt-Viisdla frequency N.
In this ocean vertically standing modes are im-
possible, and a discrete set of equivalent depths
are not available. However, zonal winds will still
generate an equatorial jet. What determines its
spatial and temporal scales in this case?

The main problem is to decide what the vertical
scale of the motion is because once such a scale is
known, a horizontal scale, namely, the radius of de-
formation, can immediately be calculated.

We consider the linear, longitude-independent re-
sponse of the ocean to a zonal wind stress 7* which
acts as a body force in a surface layer of depth D.
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Since the flow is symmetrical about the equator the
zonal momentum equation at the equator is

u, = 7*/D. &)
(The ocean is assumed to be nondiffusive; ¢ de-
notes time.) At the equator there is zonal motion
only in the surface layer of depth D where the flow
accelerates uniformly. Should this ocean have a
discrete (and complete) set of vertical modes then
the relatively simple vertical structure of the flow
at the equator, as inferred from (5), can be described
in terms of these modes. But it is not clear (for
arbitrary stratification) that any one of these modes
is dominant, and that its equivalent depth is the
appropriate vertical scale from which to calculate
the width of the current. Instead, the depth D is a
much more obvious vertical scale. The equatorial
radius of deformation for constant stratification N is
then (ND/B)!? (which is the scale of the half-width
of the jet), and the appropriate temporal scale is
(ND ﬂ)—1/2.

Instead of having the flow driven by a body
force in a layer of depth D, one can assume a wind
stress on a diffusive ocean so that (5) is replaced by

(6)

[The middle panel of Fig. 4 is essentially the solu-
tion to Eq. (6)]. Moore (1979) has studied the linear °
response of such a diffusive, infinitely deep ocean,
with constant stratification N, to the sudden onset
of zonal winds. Just outside the equatorial zone
there is an Ekman layer of depth 4, = Vv/f and
below that is a stratified layer of depth h, = fL/N,
where L is a horizontal length scale imposed by the
Ekman suction. At the equator momentum diffuses
downward according to (6) so that the depth scale
there depends on the coefficient ». Once this depth
scale is determined from a scale analysis, it replaces
D in our earlier expression for the equatorial
radius of deformation. This is the half-width of the

Uy = VU ,,.
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FIG. 4. The zonal velocity component at the equator as a function of time and depth. Contours are at intervals
of 20 cm s™!. Flow is in the wind direction.



JuLy 1979 S. G. H. PHILANDER 743
+—— NORTH +—— NORTH +«—— NORTH
1500km 1000km 500km 0 1500km 1000km 500km _1oookm 500km 0

100m

o DEPTH

200m}

7" 2-1 Non-Linear

i 1 A

7" =21 Lineor

Fi1G. S. The zonal velocity compénent, as a function of latitude and depth, 7.5 days after the sudden onset of zonal winds of
intensity 1 dyn cm~2. Contours are at intervals at 20 cm s~!; regions of eastward flow are shaded.

accelerating equatorial jet in Moore’s solution. The
main point is that the wind-generated jet is a surface
phenomenon and is not affected by the stratifica-
tion of the deep ocean. It is therefore inappropriate
to use as a depth scale the equivalent depth of a
vertically standing mode whose structure depends
on the stratification of the entire water column.

For the jet in our model the appropriate length
scale is the radius of deformation (N,D/B)!2, where
from Fig. 1, D = 100 m is the depth of the thermo-
cline and N, = 2.1072 s7! is a representative value
of N in the thermocline. This gives a numerical
value for the half-width of the jet of about 250 km.
(The radius of deformation associated with the first
baroclinic mode is 365 km.) The adjustment time
(NoDB)~'2 is about a week.

According to linear theory, the flow at the equator
is governed by the diffusion equation (6) so that
vertical diffusion will ultimately be important at all
depths down to the ocean floor. This need not hap-
pen if nonlinearities are permitted a role and if the

+—— NORTH
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motion is driven by westward winds; such winds
cause divergent flow and hence upwelling. The
downward diffusion of momentum can therefore be
balanced by the upward advection of water with
little zonal momentum. One would therefore expect
a nonlinear westward jet to be shallower and less
intense than its linear counterpart. Since the pole-
ward advection of momentum in the surface layers
is important in a nonlinear model, we also expect a
nonlinear westward jet to be broader than a linear
one. These inferences are confirmed by the numeri-
cal calculations as can be seen in Figs. 4 and 5.

In the case of eastward winds the downward dif-
fusion of momentum is enhanced by the convergent
flow in the surface layers, and the associated down-
welling. Nonlinear eastward jets should therefore
be narrower, deeper and more intense than their
linear counterparts. Fig. 5 shows that this is indeed
the case. In Fig. 4 we see how the downward
diffusion of momentum at the equator is affected
by nonlinear advection. Fig. 6 shows the effect of
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Fi1G. 6. The temperature field, in a meridional plane, associated with the nonlinear
flow patterns in Fig. S.
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Fi1G. 7. The vertically integrated zonal transport at the equator in response to
the wind-stress given in (5) according to (i) Eq.. (6) with 7, = +1, (ii) the
nonlinear model with 7, = +1 and (iii) the nonlinear model with 7, = —1.

the convergent and divergent motion on the thermal
structure.

Steady-state x-independent flow requires a drag
on the ocean floor to balance the imposed surface
stress. Before such a state is reached the surface
jet will become unstable, and the effects of merid-
ional coasts will become important. (Numerical
simulations show that after being forced for a month,
the x-independent jet is still accelerating.) Instead of
attempting to simulate steady-state conditions, we
proceed to study the effect of variable winds.

A linear jet generated by winds that blow in one
direction for a certain period of time will be de-
stroyed if the winds reverse direction and blow in
the opposite direction for an equal length of time.

+— NORTH
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1500km

100m:
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FiG. 8. A meridional section of the zonal velocity component
25.5 days after the onset of the surface winds given by (5) with
7¢ = +1. The shaded flow is westward, contours are at 10
cm s~! intervals.

This will not happen if the flow is nonlinear and if
the winds blow in one direction sufficiently long
for the jets to be in geostrophic balance. (Geostrophic
flow will persist in the absence of any forcing.)
This is so because eastward winds generate a jet
of greater intensity and greater depth than do
westward winds of the same strength. Consider the
response to the wind stress

T = To Sin(o't),
where
29

g = ——.
18 days

Such a wind blows eastward for nine days, then
westward for nine days, and has a maximum in-
tensity of 1 dyn if 7, = 1. We have chosen nine
days for the time scale because it is sufficiently
long for nonlinear processes to become important .
and because it is sufficiently long for a geostrophic
zonal equatorial current to become established.
According to the linear equation (6) the vertically
integrated zonal transport at the equator in response
to the oscillatory wind stress (7) is

™

=10 (1 - cosor). @®)
o

After a full cycle this transport is zero. Fig. 7 shows
that nonlinearities can introduce a hysteresis be-
cause of the difference between nonlinear eastward
and westward jets. After 25.5 days, at which time
the surface winds are blowing westward, the cur-
rents have the vertical structure shown in Fig. 8.
Fluctuating winds with a time scale longer than a
week clearly can produce equatorial currents with a
complicated vertical structure.

4. Coastal jets

Near coasts, Ekman layers are well-behaved and
do not have singularities, as they do near the equator.
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In coastal regions, however, the Ekman suction has
a discontinuity right at the coast. For example, a
steady wind stress that is parallel to a coast on an
f plane drives a nondivergent Ekman layer, with a
transport 7*/f perpendicular to the coast. This trans-
port must vanish at the coast so that a narrow diffu-
sive boundary layer is necessary there. This
boundary layer is so narrow compared to the radius
of deformation that, on the latter scale, there is
effectively a point source (or sink) of fluid at the
coast. (In our numerical model the width of this
boundary layer is effectively the distance of the first
grid point from the coast.) The motion below the
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Ekman layer can be considered driven by this
corner sink. In an ocean initially at rest, the time
it takes to establish an Ekman layer is an inertial
period. Our numerical calculations show that on
longer time scales a coastal jet which was first
studied by Charney (1955) is the most prominent
feature of the flow. Fig. 9 shows this zonal jet,
the associated meridional circulation, and the
temperature field 4.5 days after the onset of along-
shore winds of intensity 0.5 dyn. If the winds
continue to blow, the flow pattern will in due course
change when a bottom Ekman layer is formed and a
steady state is approached (Allen, 1973). In our
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FIG. 9. Structure of a coastal jet 4.5 days after the onset of winds of intensity 0.5 dyn parallel to the coast.
Contours for the streamfunction (in the two right-hand panels) are in units of 10° m? s-1.
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model this happens after several weeks. We there-
fore address the question whether nonlinearities
could alter the oceanic response before a steady
state is approached. Surprisingly, nonlinear calcula-
tions of the responses to wind stresses of intensity
0.5 dyn, that cause upwelling in one case and down-
welling in another, do not show substantial de-
partures from the linear solutions. After 10 days, by
which time the linear jet attains a maximum speed
of 70 cm s~! and the nonlinear jets attain maximum
speeds of 62 cm s~!, the flow patterns look the
same; at that stage all the jets have essentially the
same width and depth. The details of the flow pat-
tern in the corner that acts as sink (or source)
will be strongly affected by nonlinearities but for our
purposes we are only interested in the role of this
corner as a source (or sink).

Pedlosky’s (1978a,b) recent study of the non-
linear structure of coastal jets differs from this one
in that his model ocean is not initially at rest but is
forced by a geostrophic coastward flow. Because the
initially imposed motion is in geostrophic balance
there exists an alongshore pressure force which,
on an f plane, implies the existence of a second
coast perpendicular to the first one. Qur two-di-
mensional model cannot be used to simulate flow
patterns such as those described by Pedlosky. A
further difference is the presence of dissipative
processes in this model but not Pedlosky’s. A
study with a three-dimensional model (which per-
mits alongshore pressure gradients) will be valuable.
Meanwhile, we conclude that nonlinearities affect
coastal and equatorial jets differently.

5. Discussion

Knox’s (1976) weekly profiles near Gan describe
the evolution of a wind-driven eastward equatorial
jet. His estimates of the magnitudes of the linear
terms in the zonal momentum equation indicate an
imbalance. Our study shows that the nonlinear
terms need to be taken into account within a week
after the winds start to blow. A simulation of the
Indian Ocean jet, which uses the 3 h winds meas-
ured at Gan to drive the model described in Sec-
tion 2, is reasonably successful for the first 40 days
after the onset of the intense eastward winds.
Thereafter the jet in the two-dimensional model
continues to accelerate but the observed jet does
not. It can be shown that the effect of meridional
coasts and the zonal pressure gradients they sup-
port are important everywhere along the equator
within a month (Cane, 1979). A further attempt to
simulate the eastward equatorial jet will therefore be
made with a three-dimensional model.

The winds at Gan are highly variable and in the
early spring are westward for prolonged periods,
before intense eastward winds prevail. The same is
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presumably true of the winds further west. If the
winds persist in any one direction for more than a
week, a geostrophic jet will be generated. This will
give the ocean a ‘‘memory’’ because the jet will
continue even when the winds relax. A reversal in
the direction of the wind could destroy this jet, but
this is unlikely if the flow is nonlinear. As shown
in Section 3 and in Fig. 8, the nonlinear response to
winds that reverse their direction can have a compli-
cated vertical structure near the equator. In a three-
dimensional ocean, the finite zonal extent of the
basin will result in the decay of these jets into
equatorial (primarily Rossby) waves. The small
vertical scales of the jets imply that the waves
they radiate will have short vertical wavelengths.
Such waves have small group velocities so that the
jets will persist for a considerable time.

Luyten and Swallow (1976) observed that the
flow near the equator along 55°E in the Indian Ocean
had a complicated vertical structure in May and
June 1976. The results described here suggest that
the alternating jets they observed in the surface
layers could have been wind-generated geostrophic
currents. It is improbable that this mechanism can
account for reversals in the direction of the zonal
flow below a depth of a few hundred meters.

The meridional section shown in Fig. 8 is similar
to cross-equatorial sections in the Atlantic and
Pacific Oceans in that an eastward subsurface jet
is imbedded in a westward current. This clearly is
not a model of the Equatorial Undercurrent, how-
ever, because the Undercurrent observed in the
Pacific and Atlantic Oceans is not generated by
winds that reverse direction. (An eastward pres-
sure force plays a central role in the momentum
balance of the observed Undercurrent.) But there is
one respect in which the dynamics of this model is
similar to that of the observed Undercurrent. Gill
(1975) pointed out that the meridional circulation
(with which is associated convergent equatorward
flow in the thermocline at the depth of the core
of the Undercurrent) is such that the Reynolds
stresses provide eastward momentum to the Under-
current. For this mechanism to be important the
flow must be nonlinear. It follows from a scale
analysis that the width of the current is (U/B)'2,
where U is a measure of the speed of the current.
This length scale is 220 km (if U = 1 m s™!) which
is substantially larger than 120 km, the half-width
of the observed Undercurrent. A scale analysis
yields the same results for eastward and westward
jets. Our model shows that nonlinearities make east-
ward jets narrower than westward jets and there-
fore could provide an explanation for the narrow-
ness of the Equatorial Undercurrent.

Upwelling in the Gulf of Guinea has recently at-
tracted much attention [see Philander (1979) for a
discussion of the various models]. Apparently
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local winds cause both equatorial upwelling and
coastal upwelling along the nearly east-west coast
at about 5°N. The question is whether the two up-
welling regions overlap. The radius of deformation
for the first baroclinic mode has such a large value
in this Gulf that it would appear that even in a simple
longitude-independent model, coastal upwelling
cannot be isolated from equatorial upwelling. The
discussion in Section 3, however, indicates that the
radius of deformation associated with the first
baroclinic mode is not the appropriate length scale.
The correct length scale will be shorter since the
vertical scale of the surface phenomena is smaller
than that of the first baroclinic mode. Calcula-
tions, with the model of Section 2, for the Guif of
Guinea confirm that the scales of the coastal and
equatorial upwelling regions are sufficiently small
for these upwelling regions not to overlap.
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