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ABSTRACT
Time-stepping schemes in ocean–atmosphere models can involve multiple time levels. Traditional data assimilation
implementation considers only the adjustment of the current state using observations available, i.e. the one time level
adjustment. However, one time level adjustment introduces an inconsistency between the adjusted and unadjusted
states into the model time integration, which can produce extra assimilation errors. For time-dependent assimilation
approaches such as ensemble-based filtering algorithms, the persistent introduction of this inconsistency can give rise
to computational instability and requires extra time filtering to maintain the assimilation.

A multiple time level adjustment assimilation scheme is thus proposed, in which the states at times t and t − 1,
t − 2, . . . , if applicable, are adjusted using observations at time t. Given a leap frog time-stepping scheme, a low-order
(Lorenz-63) model and a simple atmospheric (global barotropic) model are used to demonstrate the impact of the two
time level adjustment on assimilation results in a perfect model framework with observing/assimilation simulation
experiments. The assimilation algorithms include an ensemble-based filter (the ensemble adjustment Kalman filter,
EAKF) and a strong constraint four-dimensional variational (4D-Var) assimilation method. Results show that the two
time level adjustment always reduces the assimilation errors for both filtering and variational algorithms due to the
consistency of the adjusted states at times t and t − 1 that are used to produce the future state in the leap frog time-
stepping. The magnitude of the error reduction made by the two time level adjustment varies according to the availability
of observations, the nonlinearity of the assimilation model and the strength of the time filter used in the model. Generally
the sparser the observations in time, the larger the error reduction. In particular, for the EAKF when the model uses
a weak time filter and for the 4D-Var method when the model is strongly nonlinear, two time level adjustment can
significantly improve the performance of these assimilation algorithms.

1. Introduction

Data assimilation uses model dynamics and observations to re-
construct the structure of a geofluid in time and space, providing
on one hand the best estimate of initial conditions for numeri-
cal prediction, and on the other hand, reconstructed time series
to further understanding of the dynamical and physical mecha-
nisms of the geofluid evolution. Two typical representatives of
modern data assimilation methods are variational approaches,
e.g. four-dimensional variational data assimilation (4D-Var) (Le
Dimet and Talagrand, 1986) and filtering approaches, e.g. the
ensemble Kalman filter (Evensen, 1994) or the ensemble adjust-
ment Kalman filter (EAKF) (Anderson, 2001). The former solves
for an optimal initial input state by minimizing a distance mea-
surement (cost function) between the model and observational
trajectories over a time verification window, while the latter up-
dates a set of ensemble members that represent the product of
the modeled (prior) and observational probability distributions.
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The traditional implementation of both variational and fil-
tering approaches considers only the adjustment of the state at
the most recent time using observations available, i.e. the one
time level adjustment. However, for finite-differencing accuracy
one often chooses a multiple-level time-stepping scheme to ad-
vance the model, using model states at previous time levels to
derive the next model state. The two time level leap frog scheme
is often used; for a simple linear equation such as ∂φ/∂t = κφ,
where φ is a scalar and κ is a constant, this scheme advances φ

for one step, �t, as

φt+1 = φt−1 + κφt 2�t . (1)

Equation (1) shows that the state at the next time step, φ t+1

depends on the present state φ t and the previous state φ t−1. A
traditional one time level adjustment uses the observation at time
t to adjust only φ t, introducing inconsistency between the unad-
justed φ t−1 and the adjusted φ t into the time integration.

In a realistic assimilation system, the resulting analysis error
from the one time level adjustment is much more complicated
than the simple case above. First, a realistic numerical model
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contains nonlinear terms, which may amplify the error intro-
duced by the one time level adjustment. Secondly, it is not clear
how the observational interval affects the analysis error, since
while a large observational interval reduces the frequency of
introducing the inconsistency, it also reduces the constraint of
observations on the analysis. Thirdly, the time filter in the model
used to damp computational modes produced by the multiple
time level differencing scheme may impact the analysis error
since it can help damp the inconsistency introduced by the one
time level adjustment.

In one time level adjustment scheme one may choose to restart
the model for each analysis step using an initial forward (Euler)
step. Yet the one time level forward restart time scheme also
introduces extra errors into assimilation results, since the initial
forward step may change the model trajectory in each obser-
vational interval (for filtering algorithms) or each iteration in
assimilation window (for 4D-Var) due to spin-up.

Also important is the time dependence of the assimilation
scheme itself in which the one/two time level adjustment has a
different impact on the assimilation. Generally a filtering algo-
rithm has a strong time dependence since each step analysis is
based on the prior distribution derived from the previous analysis
through the model integration, while the time dependence of a
variational algorithm is relatively weak since the model forecast
from the previous analysis serves only as a first guess of the next
step analysis.

We shall look at two different methods with quite different
time dependences. We then introduce a multiple time level ad-
justment scheme that is able to reduce the inconsistency between
time levels. Using a low-order (Lorenz-63) model and a simple
atmospheric (barotropic) model, given a leap frog time-stepping
scheme this study examines the impact of the two time level
adjustment on assimilation errors. The assimilation algorithms
examined include an ensemble-based filter, the ensemble ad-
justment Kalman filter (EAKF, Anderson, 2001) and a strong
constraint four-dimensional variational (4D-Var) assimilation
method Le Dimet and (Talagrand, 1986). Section 2 describes
methodology, including the fundamentals of models, the EAKF
and the 4D-Var, as well as the implementation of two time level
adjustment in the EAKF and the 4D-Var. Sections 3 and 4 ex-
amine the impact of the two time level adjustment on the EAKF
and 4D-Var assimilation results, respectively. Section 5 gives
conclusions and discussions.

2. Methodology

2.1. Models, time stepping and time filtering

The notation below follows Ide et al. (1997). The assimilation
models (the Lorenz-63 model, see Appendix A and the global
barotropic spectral model, see Appendix B) in this study have

the matrix form

∂x
∂t

= F(x), (2)

where x represents the model state vector and F(x) is typically a
nonlinear function of x in ocean–atmosphere models. The model
state vector x consists of either the three Lorenz-63 model vari-
ables or the 64 × 54 gridpoints of the barotropic streamfunction.
We may discretize eq. (2) using, for example, a leap frog scheme:

xt+1 = xt−1 + F(xt ) · 2�t, (3)

where xt+1 always depends on the state vectors xt and xt−1.
A disadvantage of the leap frog time stepping is that the com-

putational mode introduced due to the use of two time level
model states in time integration may amplify by nonlinear cou-
pling with physical modes (Durran, 1999). A time filter (Robert,
1969; Asselin, 1972) may be used to damp the computational
modes:

xt = 1

2
εxt−1 + (1 − ε)xt + 1

2
εxt+1, (4)

where ε controls the strength of the time filter. Combining eqs. (3)
and (4) shows that xt+1 is associated with xt, xt−1 and xt−2. Since
xt−2 is only used for the recalculation of xt−1 after the time
integration and does not explicitly appear in the time integration
for obtaining xt+1, the experiment designs in Sections 2.3 and 2.4
only consider the adjustment of xt and xt−1 using the observations
at t.

2.2. observing/assimilation simulation experiments

In order to address the issue of the impact of the multiple time
level adjustment on assimilation, here observing/assimilation
simulation experiments are conducted in a “perfect model” con-
text. For both the Lorenz-63 model and the barotropic model,
“observations” are produced by adding a Gaussian random noise
to the “truth”, a single long time integration, independently for
each model variable (gridpoint). The initial conditions used in
the assimilation experiments are the 106-step integration results
starting from (x1, x2, x3) = (0, 1, 0) for the Lorenz-63 model
and the streamfunction at 12 UTC 1 January 1991 derived from
ECMWF (European Centre for Medium-Range Weather Fore-
casts) re-analysis 500-hPa u and v data for the barotropic model.
The standard deviation of the observational errors for the Lorenz-
63 model variables and the barotropic streamfunction is set to
be 2 and 106 m2 s−1, respectively.

Ensemble initial conditions (the ensemble size is 20) are
formed by imposing a Gaussian random noise with the same
standard deviation as the observations on each model variable
independently. Then characteristics of the models such as vari-
ability and error growth rate can be examined by allowing the
ensemble to evolve freely. For the Lorenz-63 model (ε = 0.005,
�t = 0.0001) after 15 000 steps the freely evolving ensemble
members start to separate to the different lobes on the attractor,
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and the barotropic model (ε = 0.02, �t = 30 min) streamfunc-
tion after 30 days attains a “climatological” standard deviation
of around 20 × 106 m2 s−1.

2.3. An ensemble adjustment Kalman filter

Filtering data assimilation approaches emphasize the probabilis-
tic nature of the dynamical/observational system of the atmo-
sphere and ocean (Jazwinski, 1970). An ensemble-based filter,
in particular, computes the probability distribution of the model
state using ensemble error statistics that account for the nonlin-
ear evolution of model error covariance (Evensen, 1994; Miller
et al. 1994, 1999; Houtekamer and Mitchell, 1998, 2001; Burg-
ers et al. 1998; Van Leeuwen, 1999; Anderson and Anderson,
1999; Keppenne, 2000; Mitchell and Houtekamer, 2000; Bishop
et al. 2001; Hamill et al. 2001; Anderson, 2001; Whitaker and
Hamill, 2002). The core of these filtering algorithms solves for
the product of the prior distribution of the system state, which
is governed by the model dynamics, and the observational er-
ror distribution (a function of the observing system, typically
assumed to be Gaussian), to compute a conditional probability
distribution of the system state.

The ensemble adjustment Kalman filter (EAKF, Anderson,
2001) is chosen to examine the impact of two time level ad-
justment on a filtering assimilation algorithm. Ensemble-based
filters like the EAKF can be applied sequentially to the individ-
ual scalar observations (if the observational errors are uncorre-
lated) or to a batch of correlated observations (Houtekamer and
Mitchell, 2001). In addition, the impact of each scalar observa-
tion (uncorrelated) on each component of the state vector can be
computed independently (Anderson, 2003). The EAKF defines
a joint state/observation space z = {x, h(x)}, where h is an op-
erator that gives the expected value of the observation given a
state vector. In this space, a statistically linear relation between
state vectors and observation variables can be computed from
the ensemble sample.

Like other filtering techniques, the EAKF can experience filter
divergence (Jazwinski, 1970) in which the distribution produced
by the filter drifts away from the truth. In order to avoid filter
divergence, the EAKF algorithm is used here in conjunction with
a covariance inflation parameter γ to increase the variance of the
prior distribution, thereby enhancing the impact of the observa-
tions on the assimilated state (Anderson, 2001) as γ (xp

i − xp),
where xp

i and xp represent the ith ensemble member and the en-
semble mean respectively. Here, γ is chosen so that the ratio of
the time-averaged root mean square (Rms) error of the ensemble
mean (RmsEm) to the time-averaged mean Rms error of the indi-
vidual ensemble members (MRms) is close to

√
(M + 1)/2M .

For an ensemble of size M, the expected value of the ratio of
RmsEm to MRms is

√
(M + 1)/2M for an ensemble that has

a variance that is consistent with the truth (Anderson, 1996). A
ratio close to the expected value implies that the ensemble has

a variance that is approximately consistent with the truth. The
use of relatively small ensemble samples can lead to spuriously
large correlations between state variables and observation vari-
ables that are believed to be uncorrelated a priori due to sampling
errors. To avoid the contamination of the assimilation by spurious
correlations, the prior sample correlation between a state vari-
able and observation variables is adjusted by a smoothly varying
distance-dependent weight � (a, d) (see Appendix C for a defi-
nition) (Hamill et al. 2001) in the barotropic model experiments.
Here, d is the Euclidean distance between the model grid point
and the observation location and a is a measurement of the width
of this observation impact window.

The EAKF adjustment consists of three steps. First, the nu-
merical model (2) is advanced to the time of the next observation
for each ensemble member to form a sample of the prior state dis-
tribution. The forward observation operator, h, is applied to each
sample of the prior state to obtain a prior sample of the expected
value of the observations. Next, the prior sample mean and co-
variance of the joint state/observation vector, Σp, are computed.
The updated covariance matrix, Σu and mean zu are computed
by taking the product of the Gaussian with the prior sample mean
and covariance with the Gaussian distribution from the observa-
tions. Finally, a linear operator A is computed (Appendix A in
Anderson, 2001) using Σu and zu and each ensemble member is
updated as

zu
i = AT

(
zp

i − zp
) + zu, i = 1, . . . , M (5)

resulting in an updated sample with the mean and variance of
the state variables exactly equal to the update values computed
in the product.

Owing to the sequential nature of the EAKF, implementing
two time level adjustment in the algorithm is straightforward,
by extending the definition of the state being adjusted to in-
clude both xt and xt−1. When observations become available,
their prior expected value can be computed from xt as before,
but the update impacts the state variables at both time levels.
We compare two time level adjustment of leap frog (LF) time
scheme (denoted by twoLF hereafter) to two one time level ad-
justment implementations: if the model is restarted after each
analysis step from a forward (FR) time step starting from xa

t , the
EAKF is referred to as an oneFR method; if the leap frog time
stepping is continued using the unadjusted xt−1 and the adjusted
xa

t for the next analysis step, the EAKF is referred to as an oneLF

method.
The essence of the multiple time level adjustment is the use of

the temporal structure of the background error covariance of the
model state variables. An example of the temporal correlation of
the model state variables is given in Fig. 1 where the time or/and
space mean of the temporal correlation of x1 (panel a) in the
Lorenz-63 model, the streamfunction (panel b) in the barotropic
model was estimated by the EAKF over the assimilation period
step 9 × 105 ∼ step 10 × 105 (for the Lorenz-63 model) and
day 90 ∼ day 100 (for the barotropic model) using observations

Tellus 56A (2004), 1



tea040 Tellus.cls December 19, 2003 13:48

MULTIPLE TIME LEVEL ADJUSTMENT FOR DATA ASSIMILATION 5

−15 −10 −5 0 5 10 15
lag (half hour)

0

0.5

1

au
to

co
rr

el
at

io
n 

of
 ψ

−50 −40 −30 −20 −10 0 10 20 30 40 50
lag (200 steps)

−0.5

0

0.5

1

au
to

co
rr

el
at

io
n 

of
 x

1

a)

b)

Fig 1. (a) Time-averaged auto-correlation from the EAKF of x1 of the
Lorenz-63 model over the last 105 steps of the 106-step assimilation
period. (b) Global-mean of the time-averaged auto-correlation of the
streamfunction of the barotropic model over the last 10 days of the
100-day assimilation period.

available every 200 steps (for the Lorenz-63 model) and 6 h
(for the barotropic model). An ensemble-based filter provides
estimates of the covariance between the model state variables at
different times (Zhang and Anderson, 2003), so as to be able to
adjust the states at different time levels accordingly given ob-
servations available at a certain time level. This means that it
is possible to create a limited time window ensemble smoother
(Jazwinski, 1970; Fukumori, 2002), which can produce a con-
sistent temporal evolution sequence of assimilation data. The
development of this kind of fixed lag smoother is an on-going
research topic, which is beyond the scope of this study.

2.4. Four-dimensional variational assimilation

For efficient implementation of the 4D-Var algorithm, the adjoint
of the tangent linear version of the numerical model is required.
In the tangent linear model (TLM), all nonlinear terms in eq. (2)
are differentiated, giving a matrix form for the Lorenz-63 model
(A4–A6) and the global barotropic spectral model (B4) of

∂δx
∂t

= F′(x)δx (6)

where a δ(·) represents a perturbation and a (·) represents the
basic state. F′(x) is the first derivative of F(x) with respect to x.
Next, the adjoint of the finite difference of this equation (Sirkes
and Tziperman, 1997) is formulated by transposing all DO loops
and subroutines in the Fortran implementation of the TLM. If
M = Mn· · · M2 M1 represents the propagator of the TLM such
as δxt = Mn· · · M2 M1 δx0, then a transposed version MT =
MT

1 MT
2 · · · MT

n represents its adjoint. An inner product check

on the adjoint formulation, 〈Mδx, Mδx〉 = 〈δx, MT Mδx〉 agreed
to 15 decimal digits using 64-bit arithmetic when the Lorenz-63
model is run for 106 steps and the barotropic model is run at
rhomboidal 21 truncation for 120 h with a 30-min time step.

The cost functions J1 (for one time level adjustment) and J2

(for two time level adjustment) are defined as

J1(x0) = 1

2

(
x0 − xo

t0

)T
w0

(
x0 − xo

t0

)

+ 1

2

tR∑
t=t1

(
xf

t − xo
t

)T
W

(
xf

t − xo
t

)

J2(x−1, x0) = 1

2

(
x−1 − xo

t0

)T
w−1

(
x−1 − xo

t0

)

+ 1

2

(
x0 − xo

t0

)T
w0

(
x0 − xo

t0

)

+ 1

2

tR∑
t=t1

(
xf

t − xo
t

)T
W

(
xf

t − xo
t

)
(7)

where x−1 and x0 represent the analysis of the model variables
at t−1 and t0. xf

t and xo
t represent the modeled and observed

vectors of the model variables at time t. All are column vec-
tors that consist of either three (for the Lorenz-63 model) or 64
× 54 (for the barotropic model) elements. [t0, tR] defines the
time width of an assimilation window. W is a weighting matrix,
usually defined as the inverse of the covariance matrix of the
model state variables (for the background term) or the inverse
of the observational error covariance matrix (for the observa-
tional term). In this study W is either the identity matrix (for the
Lorenz-63 model) or a diagonal constant matrix with the inverse
of the maximum variation of streamfunction in the assimilation
window (for the barotropic model) and w−1 and w0 are the cor-
responding weighting column vectors at times t−1 and t0 (in this
study, they are assumed to be the same). In practical data assimi-
lation implementation, the background covariance matrix can be
estimated by the correlation of time series at different locations
(time-invariate) (Thiebaux, 1985; Hollingsworth and Lönnberg,
1986) or a Monte Carlo approach in ensemble filters (temporally
varying) (Zhang and Anderson, 2003). Once the cost function
is defined, the adjoint model is used to evaluate the gradient
of the cost function with respect to x−1 and x0 by a backward
integration as

−∂δ̂x
∂t

−
[

∂F(x)

∂x

]T

δ̂x = W(x − xo)

∇|x0 J1(or ∇|x0 J2) =
∫ t1

tR

ˆδx0dt + W0

(
x0 − xo

t0

)

∇|x−1 J2 =
∫ t0

tR

δ̂x−1dt + w−1

(
x−1 − xo

t0

)
(8)

where a (̂) represents the adjoint variable and ˆδx0, δ̂x−1 represent
the adjoint variables that are related to x0 and x−1, respectively.
The gradient test (Appendix D) shows that the integrations of
these adjoint models correctly evaluate the gradient of the cost
functions defined on different assimilation windows.
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Once ∇|x0 J1 and ∇|x−1 J2, ∇|x0 J2 are available, a limited
memory quasi-Newton optimization algorithm (Liu and No-
cedal, 1989) is employed to minimize J1 with respect to x0 or J2

with respect to x0 and x−1 so that the optimal x0 (for one time
level adjustment) or the optimal x−1 and x0 (for two time level
adjustment, twoLF) are obtained. In the one time level adjustment
minimization, if the model always is restarted for each iteration
from a forward time stepping at the first integration step using xa

0

produced by previous iteration, the minimization process is im-
plementing an oneFR time level 4D-Var adjustment. If the model
keeps the leap frog stepping using the unadjusted x−1 and the
adjusted xa

0 the minimization process is implementing an oneLF

time level 4D-Var adjustment.

3. Impact of two time level adjustment
on the EAKF

3.1. TwoLF vs. oneLF (oneFR ) in the Lorenz-63 model

Using the ensemble initial conditions and observations described
in Section 2.2, the EAKF assimilations with the oneLF, oneFR

and twoLF adjustments described in Section 2.3 are run with the
Lorenz-63 model for 106 steps. Each experiment produces the
time-averaged root mean square error of the ensemble mean and
the time-averaged mean Rms error from the individual ensemble
members and for each assimilation experiment, the ensemble
filter is tuned by changing the covariance inflation factor (γ )
to obtain a ratio of RmsEm to MRms that is within 1% of the
expected value. Table 1 lists the RmsEm values for different
observational intervals. The assimilation experiments are carried
out for different Robert–Asselin time filters, ε = 0.005 (upper
rows in Table 1) and ε = 0.01 (lower rows in Table 1). The
statistics for Table 1 are computed using all analysis steps over
the whole 106-step period (e.g. 200 analysis steps for the 5000-
step observational interval).

Generally, as the observational interval increases the assimi-
lation produces a relatively larger error for both the oneLF and
twoLF adjustments (columns 3 and 5) since fewer data are used
in the assimilation to constrain the ensemble. However, columns
3, 5 in Table 1 also show that for each case the twoLF has sig-
nificantly smaller assimilation errors than the oneLF. When the
observational interval is small, the reduction of the assimilation
error is relatively small while as the observational interval in-
creases, the error reduction increases. For example, for the 200-
step observational interval the assimilation errors are reduced
by around 38% for the twoLF compared to the oneLF while for
the 5000-step observational interval the assimilation errors are
reduced by approximately 66%. Note that the assimilation re-
sults for the twoLF with the 5000-step observational interval are
better than those of the oneLF using the 1000-step observational
interval.

Table 1. Comparisons of assimilation results by the ensemble
adjustment Kalman filter (EAKF) implemented by the oneLF, oneFR or
twoLF adjustment over a 106-step period for different observational
intervals, using the Lorenz-63 model with different time filters

Time Obs RmsEm
filtering interval
coef (ε) (steps) oneLF oneFR twoLF

100 0.17 0.38 0.12
200 0.27 0.34 0.17
500 0.45 0.58 0.28

0.005 1000 1.24 1.18 0.57
2000 2.35 1.95 0.87
5000 3.20 3.30 1.16

free ens – – 6.73

100 0.15 0.21 0.12
200 0.23 0.25 0.16
500 0.52 0.49 0.29

0.01 1000 1.07 1.03 0.44
2000 1.65 1.98 0.83
5000 3.98 3.98 1.35

free ens – – 6.68

RmsEm – the time-averaged Rms error of the ensemble mean.
Free ens – all ensemble members are allowed freely evolving without
any observation constraint.

Figure 2 presents time series of the first ten ensemble mem-
bers (dotted), and the ensemble mean (long-dashed) of x1 for
the oneLF (panel a) and twoLF (panel b) assimilations using ob-
servations available every 5000 steps, between step 1.2 × 105

and step 1.6 × 105, for the ε = 0.005 case. Panel (a) shows that
at each analysis step, the inconsistency between the unadjusted
xt−1 and the adjusted xa

t in the oneLF creates high-frequency os-
cillations (the black cones). During the period shown, although
the high-frequency oscillations are damped by the time filter
within the 1000-step model integration following each analysis,
they prevent the assimilation from efficiently extracting the ob-
servational information and drive the ensemble away from the
truth (thick-solid). This problem is especially severe when the
model trajectory is experiencing a transition from one lobe of the
attractor to the other, between step 1.3 × 105 and step 1.4 × 105,
for instance. If the observational interval is large enough that the
ensemble members migrate to the lobe not occupied by the truth,
the assimilation errors caused by the inconsistency between xt−1

and xa
t are quite large. In the twoLF in which both xt−1 and xt are

adjusted using the observations xo
t accordingly, the consistently

adjusted xa
t−1 and xa

t does not create extra computational mode
and the assimilated model trajectory remains close to the truth
(Fig. 2b, step 1.3 × 105 to step 1.4 × 105, for instance) after
the introduction of a new observation. When observations are
available more frequently, the amplitude of the high-frequency
oscillations introduced by the oneLF is smaller due to smaller
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Fig 2. Time series of the first 10 ensemble
members (dotted), the ensemble mean
(dashed) and the truth (solid) of x1 of the
Lorenz-63 model (ε = 0.005) in the EAKF
assimilation using the observations available
every 5000 steps (asterisk) by (a) the oneLF

adjustment and (b) the twoLF adjustment,
over the period between step 1.2× 105 and
step 1.6× 105. The black cones reflect the
high-frequency oscillations introduced by
one time level adjustment in the leap frog
time scheme.

shock between xt−1 and xa
t , and the ensemble members are less

likely to diverge from the true trajectory.
When a relatively strong time filter (ε = 0.01) is used in the

Lorenz-63 model, for observational intervals greater than 500
steps, the magnitude of the assimilation error reduction by the
twoLF from the oneLF stays around the same as ε = 0.005. Al-
though the high-frequency computational mode oscillations in
the oneLF are more rapidly damped by a stronger time filter, these
oscillations can still produce large errors by causing systematic
errors soon after an assimilation step that lead to large errors
after further integration. However, with a small observational
interval (100 or 200 steps in Table 1), since observations con-
strain the model state more frequently the use of a stronger time
filter that rapidly damps the introduced high-frequency oscilla-
tions by the oneLF reduces the difference between the oneLF and
twoLF assimilations.

The comparison of the percentage of the RmsEm reduction
by the twoLF from the oneFR and the oneLF (columns 3–5 in
Table 1) shows that like the oneLF, the oneFR also introduces
additional errors into the assimilation. When observations are
available more frequently the assimilation errors of the oneFR

are larger than those of the oneLF. Time series of the assimilation
results (Fig. 3) indicate that the high-frequency oscillations in-
duced by the oneFR are stronger than those from the oneLF (panels
a and b). When these oscillations are introduced more frequently
(for small observational intervals) the assimilation error of the
oneFR is larger than that of the oneLF. Again, Fig. 3c shows
the smallest assimilation error is produced by the twoLF due to
the consistency of xa

t−1 and xa
t .

In addition, if a fourth-order Runge Kutta time differencing is
used to produce the control run (observations), similar relative
assimilation quality from the twoLF, the oneLF and the oneFR is
obtained.

3.2. Barotropic model

The ensemble initial conditions and observations (different con-
trol runs for different time filters used in the model) described in
Section 2.2 are used to start the ensemble filtering assimilation
experiments for the barotropic model. Here a in the distance de-
pendent correlation envelope �(a, d) (Appendix C) is set to be
1000 km so that the observation impact radius is 2000 km, which
means �(a, 106m) = 0.5 while �(a, 2 × 106m) = 0. Assimilation
experiments are carried out using 6-, 12- and 24-h observational
intervals for the oneLF, oneFR and twoLF adjustments. Different
time filters (ε = 0.02–0.08) are tested for each observational
interval.

3.2.1. TwoLF vs. oneLF. Results of the oneLF and twoLF ad-
justments are listed in Table 2. When a relatively weaker time
filter is used in the barotropic model, the twoLF greatly reduces
the assimilation error from the oneLF. For three different obser-
vational intervals (6, 12 and 24 h), using the weakest time filter
(ε = 0.02) by which the control run is stable, the assimilation of
the oneLF blows up after only a few days, while the twoLF works
well. Figure 4 shows time series of the streamfunction at (113◦E,
38◦N) for ε = 0.03 (left-hand column, panels a, b) and ε = 0.02
(right-hand column, panels c, d) using the oneLF (top row, panels
a, c) and the twoLF (bottom row, panels b, d) with observations
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Fig 3. Time series of the first 10 ensemble
members (dotted), the ensemble mean
(dashed) and the truth (thick-solid) of x1 of
the Lorenz-63 model (ε = 0.005 and �t =
0.0001) in the EAKF assimilation using
observations available every 100 steps by (a)
the oneFR, (b) the oneLF and (c) the twoLF.

available every 6 h. The inconsistency between ψ t−1 and ψa
t

in the oneLF always induces high-frequency oscillations (panels
a, c) while the twoLF produces a much more consistent assim-
ilation with the observations (panels b, d). The Robert–Asselin
time filter in the model, which is used to damp the computational
modes produced by the leap frog time stepping, is not sufficient
to control the additional computational oscillations induced by
the shock in the oneLF. Unlike the assimilation experiments in the
Lorenz-63 model, here a relatively stronger time filter can always
reduce the difference between the oneLF and the twoLF. Owing to
the weak nonlinearity of the barotropic model, a stronger time fil-
ter adequately damps the high-frequency oscillations introduced
in the oneLF and thereby reduces the assimilation errors. For
a large observational interval in which the unbalance between
ψ t−1 and ψa

t induced by previous observations has changed the
model trajectory away from the truth, increasing the strength of
time filtering cannot much improve the oneLF assimilation.

For a given filter strength, the improvement of the twoLF over
the oneLF increases as the observational data become sparse in
time. When the model prior trajectory is far from the observa-
tions, the oneLF has trouble constraining the assimilation back to
the truth. In addition, Table 2 also shows that for a given obser-
vational interval, the strength of time filtering used in the model
does not have a substantial impact on the twoLF adjustment which
does not induce any extra computational oscillations.

3.2.2. OneLF vs. oneFR. Experiments using the oneFR EAKF
assimilation show that the time filter used in the model has less
impact on assimilation results than for the oneLF. For example,
with ε = 0.02 for a 6-h observational interval the oneFR EAKF
assimilation gives small assimilation errors (close to those of
the twoLF) while the oneLF does not work. The oneLF introduces
inconsistency between the unadjusted xt−1 and the adjusted xa

t

into the initial integration step at each analysis step, while the

oneFR introduces a spin-up error for each analysis step by only
using xa

t to restart the model. This is consistent with the fact that
a forward restart scheme is an alternative way to deal with the
slow growth of the computational model in the leap frog time
scheme (Kalnay, 2002).

Unlike in the low-order model cases presented in Section 3.1,
when observations are sparse in time the assimilation errors of the
oneFR become much larger than those for the oneLF. An example
(ε = 0.03) is shown in Fig. 5 which presents the time series of
the streamfunction for the oneLF and oneFR with ε = 0.03 and
a 24-h observational interval. Figure 5 shows that with a large
observational interval, the model trajectories in the ensemble of
the oneFR have large departures from the truth (panel a) while
the oneLF does not.

We have found that these conclusions are robust when chang-
ing the observation impact radius and/or the ensemble size, for
example, doubling the value of a in � (a, d) and/or doubling the
ensemble size.

4. Impact of two time level adjustment
on 4D-Var

4.1. TwoLF vs. oneLF (oneFR) in the Lorenz-63 model

The same “observations” used in EAKF (Section 3.1) are used
to carry out the 4D-Var oneLF, oneFR and twoLF assimilations
as described in Section 2.4. The experiments are conducted for
different size assimilation windows and different Robert–Asselin
time filters. The minimizations for all experiments converge to
the point at which the norm of the gradient of the cost function
decreases by 10−8 from its initial value. This typically requires
10–20 iterations, but depending on the properties of the cost
function and the first guess state, some extreme cases may require
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Table 2. Comparisons of assimilation results by the ensemble
adjustment Kalman filter (EAKF) implemented by the oneLF or twoLF

adjustment over a 100-day assimilation period for different
observational intervals, using the barotropic model with different time
filters

oneLF/twoLF adjustments
Obs Time
interval filtering RmsEm (105 m2 s−1) MRms (105 m2 s−1)
(h) coef (ε) (reduction %) (reduction %)

0.02 +/3.16 +/4.00
0.03 3.95/2.94 (26) 5.17/3.76 (27)

6 0.04 3.36/3.06 (9) 4.55/3.89 (15)
0.05 3.15/2.97 (6) 4.33/3.79 (12)
0.06 3.09/2.97 (4) 4.25/3.78 (11)
0.08 2.62/2.67 (−2) 3.61/3.51 (3)

0.02 −/3.43 −/4.35
0.03 4.06/3.20 (21) 5.45/4.12 (24)

12 0.04 3.80/3.34 (12) 5.13/4.24 (17)
0.05 3.58/3.23 (10) 4.90/4.14 (16)
0.06 3.52/3.22 (9) 4.82/4.11 (14)
0.08 3.16/2.93 (7) 4.35/3.84 (12)

0.02 ∗/3.92 ∗/4.96
0.03 6.36/3.67 (42) 8.75/4.72 (46)

24 0.04 5.81/3.77 (35) 7.94/4.80 (39)
0.05 5.77/3.69 (36) 7.78/4.71 (39)
0.06 5.54/3.67 (34) 7.50/4.68 (38)
0.08 5.03/3.36 (33) 5.94/4.39 (26)

RmsEm – the time-averaged Rms error of ensemble mean.
MRms – the time averaged Rms error from individual ensemble
members.
“+” – the assimilation blows up at step-468.
“−” – the assimilation blows up at step-624.
“∗” – the assimilation blows up at step-480.

up to 100 iterations for the convergence. Once the minimization
for a certain analysis step is done, the assimilation time window
is shifted forward by one observational step until the assimilation
procedure goes through the whole time period.

Since each iteration in minimization involves a line search
that requires evaluating the cost function (via a nonlinear model
run) and its gradient (via an adjoint model run), 4D-Var is much
more expensive than the EAKF given the same frequency of ob-
servations available and the relatively small ensemble sizes used
here. Obviously, the ratio of the computational costs strongly de-
pends on the width of the 4D-Var assimilation time window and
the EAKF ensemble size. For this Lorenz-63 model case, 4D-
Var with a 10 000-step assimilation window is approximately 10
times more expensive than the EAKF with 20 ensemble mem-
bers. All 4D-Var experiments span a 105-step period for the error
statistics to compare the assimilation results for the oneLF, oneFR

and twoLF adjustments. Except for the first analysis step which
uses the observed state as the first guess, the first guess is chosen
as the optimized forecast state from the previous analysis step.

Table 3 lists the time mean of the Rms errors of the analyzed
state of the oneLF and the twoLF using 10 000- and 20 000-step
assimilation windows for different observational intervals and
Robert–Asselin time filters. For all cases, the time mean Rms
error is reduced by the twoLF compared to the oneLF. Generally,
the improvement increases with the width of the assimilation
window and decreases with the strength of the time filter. For
example, when a weaker time filter (ε = 0.005) is used, for a
10 000-step assimilation window, the analysis errors are only
reduced by 5–13%. For a 20 000-step assimilation window the
analysis errors are reduced by up to 70%. Moreover, when a
stronger time filter (ε = 0.01) is used in the model, for both
10 000- and 20 000-step assimilation windows, the Rms error
reduction in all five cases is less than 10%.

These differences can be explained by examining the per-
formance of the minimization at individual analysis steps.
Figure 6 presents the modeled trajectories on the (x1, x2) phase-
plane over the assimilation window in the oneLF (panel a) and the
twoLF (panel b) at the 10th analysis step using the 1000-step ob-
servational interval for the ε = 0.005 case using a 20 000-step as-
similation window. These trajectories are displayed for selected
iterations during the minimization including the initial (iteration
0) and the converged (iteration 23 for panel a, iteration 20 for
panel b). Panel a shows that the inconsistency of the unadjusted
xt−1 and the adjusted xa

t produces high-frequency computational
oscillations (the black cone in panel a and zoomed-in in panel c)
and as a result, the optimized model trajectory (dotted-dash, it-
eration 23) only converges to one lobe of the attractor rather than
the truth (thick-dashed) that covers both lobes. This is illustrated
in Fig. 7 which plots the cost function as a function of x1 for fixed
values of x2 and x3 taken from the 10th analysis step for the 20
000-step (solid) 10 000-step (dashed) assimilation windows. The
observational interval is 1000 steps and the time filter coefficient
ε = 0.005. Figure 7 shows that the lobes of the attractor define
some local stationary points (minima) of the cost function, which
implies that the model has a strong nonlinearity. The solid curve
(20 000-step assimilation window case) in Fig. 7 shows that near
the global minimum (x1 ≈ −3.5) the cost function has a local
minimum at x1 ≈ −5.5. The extra error produced by the oneLF

during the minimization makes it easier for the cost function to
converge to the local minimum instead of the global one. On the
other hand, in the twoLF since both xt−1 and xt are consistently
adjusted by xo

t , the observations better constrain the model tra-
jectory toward the truth and the chance that the minimization
converges to the local minima is reduced greatly. In contrast to
panel a, panel b of Fig. 6 shows that after five iterations, the
model trajectory (dotted-dash) in the twoLF starts to cover both
lobes of the attractor and the optimized trajectory (iteration 20,
solid) is able to approach to the truth (thick-dashed).

With ε = 0.005, a 20 000-step assimilation window, and a
2000-step observational interval, the oneLF converges to both
lobes of the attractor. However, for all other observational in-
tervals, the optimized model trajectories remain in one lobe of
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Fig 5. Time series of the first 10 ensemble
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(dashed) and the truth (solid) of the
streamfunction at (113◦E, 38◦N) of the
barotropic model in the EAKF assimilation
using observations available every 24 h by
(a) the oneLF and (b) the oneFR.

the attractor instead of approaching the truth. The twoLF con-
verge to the truth in all cases tested except for a single analysis
step with a 5000-step observational interval. Not surprisingly, for
ε = 0.005 with a 20 000-step assimilation window, the Rms er-
rors for twoLF are nearly always much smaller than those for
oneLF.

For the cases with ε = 0.005 and the 10 000-step assimilation
window, since the model trajectory resides in one lobe of the
attractor, the cost function has a unique minimum as shown by
the dashed curve in Fig. 7. The optimized model trajectory in
both oneLF and twoLF is able to converge toward the truth and
the error reduction of the Rms error of the twoLF is small. For
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Table 3. 4D-Var assimilation results in the Lorenz-63 model,
implemented by the oneLF or twoLF adjustment over a 105-step period,
for different time filters, assimilation windows and observation intervals

Rms errors of the oneLF/twoLF adjustment
Time Obs
filtering interval 10k-step window 20k-step window
coef (ε) (steps) (reduction %) (reduction %)

200 0.85/0.81 (5) 2.60/0.78 (70)
500 1.20/1.10 (8) 3.11/1.05 (66)

0.005 1000 1.28/1.18 (8) 3.30/1.12 (66)
2000 1.44/1.34 (13) 1.37/1.26 (8)
5000 1.42/1.25 (12) 2.87/2.02 (30)

200 0.89/0.84 (7) 0.84/0.80 (5)
500 1.18/1.08 (8) 1.10/1.02 (7)

0.01 1000 1.30/1.21 (6) 1.18/1.12 (5)
2000 1.38/1.29 (7) 1.23/1.13 (8)
5000 1.86/1.70 (9) 1.59/1.52 (5)

ε = 0.01 cases, since the computational high-frequency oscilla-
tions are efficiently controlled by the stronger time filter, the opti-
mized model trajectories in both oneLF and twoLF are able to con-
verge toward the truth and therefore the error reduction is small
too.

The Rms error of the oneFR is intermediate between the twoLF

and the oneLF. When the time stepsize is small and the model
trajectory in the assimilation window only covers one lobe of
the attractor, the assimilation errors of the oneFR are very close
to those of the twoLF. When the assimilation window is large
and the model trajectory in the window covers both lobes of
the attractor, as for the oneLF, the spin-up error introduced by
the oneFR increases the chance that the model trajectory con-
verges to one lobe of attractor; this increase the assimilation
errors of the oneFR. This also explains that when the time step-
size is doubled, the difference of assimilation errors between the
oneFR and the twoLF increases. However, the frequency of these
events in the oneFR is much smaller than in the oneLF. Therefore
the mean assimilation errors of the oneFR are smaller than the
oneLF.

4.2. TwoLF vs. oneFR in the barotropic model

The same “observations” as used for the EAKF assimilation in
Section 3.2 are used to carry out the one or two time level adjust-
ment 4D-Var experiments described in Section 2.4. Experiments
are conducted for different size assimilation windows and differ-
ent observational intervals. Owing to the weak nonlinearity of
the barotropic model within the assimilation windows (less than
24 h), different time filters in the model do not make a large dif-
ference in the assimilation results and the analysis and discussion
in this section concentrates on the results of experiments with ε

= 0.02. For a chosen assimilation window, the maximum vari-
ation of the streamfunction in the window is used to rescale the
control variable (the streamfunction) and its gradient in order to
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Fig 6. Projection on the (x1, x3) plane of the model trajectories at
different iterations within the 20 000-step assimilation window in the
4D-Var minimization by (a) the oneLF and (b) the twoLF, for the 10th
analysis step, using observations available every 1000 steps (asterisk).
The number beside each asterisk is the observation index in the
assimilation window. The black cone in (a) reflects the high-frequency
oscillations introduced by one time level adjustment in the leap frog
time scheme.

improve the minimization (Zupanski, 1993). After each analysis
step is done, the time window is shifted forward to next time at
which observations are available for the next analysis step until
the whole 10-day analysis period is completed.

With this strong constraint 4D-Var using oneLF, the imbalance
between the adjusted xa

0 and the unadjusted x−1 generated by the
line search process becomes so severe that forward integrations
of the model eventually blows up.

Table 4 shows that the assimilation errors of the twoLF are
always smaller than for the oneFR. The error reduction made
by the twoLF from the oneFR is not above 16% since in this
weakly nonlinear (quasi-linear) situation the minimum (station-
ary point) of the cost function is unique and the extra spin-up
assimilation errors never lead the model trajectory to approach
a different regime. However, for the same observational inter-
val, the extra assimilation errors made by the oneFR over a small
assimilation window are larger than over a large one. These re-
sults are consistent with the results of the previous sections, i.e.,
when more observational data are used, the model trajectory is
constrained by the observations promptly so that the introduced
inconsistency cannot cause the model trajectory to depart too far
from the truth. The error reduction of the twoLF from the oneFR

therefore is relatively small. These results imply that in a realistic
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Table 4. 4D-Var assimilation results from the oneFR or twoLF

adjustment using the barotropic model, over a 10-day assimilation
period (480 analysis steps) for different assimilation windows and
observational intervals

Rms errors (105 m2 s−1) of oneFR/twoLF adjustment
Assim (reduction by the twoLF adjustment %)
window
size 0.5-h obs interval 3-h obs interval 6-h obs interval

0.5 h 10.93/10.12 (7) – –
1 h 10.00/9.33 (7) – –
3 h 9.29/8.97 (4) 10.10/9.48 (6) –
6 h 9.11/8.78 (4) 10.13/9.23 (9) 10.98/9.51 (13)
9 h 9.09/8.73 (4) 9.90/9.19 (7) –
12 h 9.06/8.69 (4) 9.75/9.11 (7) 10.51/9.32 (11)
15 h 9.04/8.67 (4) 9.66/9.06 (6) –
18 h 9.03/8.65 (4) 9.58/9.03 (6) 10.26/9.20 (10)

4D-Var assimilation with the temporally dense observations, if
each iteration restarts from a forward stepping scheme, the dif-
ference of assimilation results between the twoLF and the oneFR

may become less important.
In addition, for the same convergence criterion (the norm of

the gradient of the cost function decreases by eight orders in
magnitude, from 102–103 to 10−6–10−5), when the width of the
assimilation window increases the minimization convergence in
both oneFR and twoLF becomes slow. This occurs because the
nonlinearity increases as the width of the assimilation window
increases and the hypersurface of the cost function becomes com-
plex. However, for the same assimilation window and observa-
tional interval, the minimization of the oneFR always converges
more slowly than the twoLF. This implies that the hypersurface
of the cost function with respect to the control variables in the
oneFR is more complex than in the twoLF. The character of the

hypersurface of the cost function may be examined using the
eigenvalues of the Hessian matrix, which is beyond the scope of
this study.

5. Summary and conclusions

For differencing accuracy, numerical ocean–atmosphere mod-
els usually choose a leap frog or an implicit time-differencing
scheme to discretize the time tendency of state variables. In this
type of time differencing scheme, the derivation of a future state
requires multiple time levels, e.g. the present and the previous.
Traditional data assimilation implementations only consider the
adjustment of the present state using available observations. This
one time level adjustment creates extra assimilation error by in-
troducing inconsistency between the adjusted and unadjusted
states into the time integration of the assimilation model. For
time-dependent assimilation approaches such as ensemble-based
filtering, the persistent introduction of this inconsistency may
cause computational instability and require extra time filtering
to maintain the assimilation.

To prevent this problem, a multiple time level adjustment as-
similation scheme was proposed in which the states at times t
and t − 1, t − 2, . . . , if applicable, are adjusted using obser-
vations at time t. Given a leap frog time differencing scheme,
a low-order (Lorenz-63) model and a global barotropic atmo-
spheric model were used to examine the impact of two time level
adjustment on assimilation in a perfect model framework with
observing/assimilation simulation experiments. Assimilation al-
gorithms examined include an ensemble adjustment Kalman fil-
ter (EAKF, Anderson, 2001) and a four-dimensional variational
(4D-Var) method (Le Dimet and Talagrand, 1986).

Results show that the two time level adjustment always re-
duces the assimilation errors for both filtering and variational
algorithms by producing consistent adjusted states at times t and
t − 1 that are used to produce the future state in the leap frog time-
stepping scheme. The magnitude of the error reduction of the two
time level adjustment relative to the one time level adjustment
varies according to the sparseness of observations, the nonlin-
earity of the assimilation model and the strength of the model
Robert–Asselin time filter. Generally, for sparse observations in
time the error reduction by the two time level adjustment is rel-
atively larger than for more frequent observations. Furthermore,
when the EAKF is applied in a model with a weak time filter and
when 4D-Var is applied with a strongly nonlinear model, the two
time level adjustment can significantly improve the assimilation
performance.

The 4D-Var implementation of the two time level adjustment
described in Section 2.4 assumes a strong correlation between
model state variables at adjacent time levels. This is true when
the time step used in the model is reasonably small. In addition,
Zhang et al. (2001) pointed out that as an implementation of the
chain rule, the adjoint integration correctly computes the gradient
when the model response is one-sided differentiable (caused by
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discontinuities in model parametrizations). The examination of
the gradients of cost functions using different width assimilation
windows in this study further confirms that the same conclusion
holds when the model response is strongly nonlinear (governed
by the nonlinearity of the assimilation model, increasing the as-
similation window width, for instance). Under this circumstance,
the minimization may encounter difficulties (Pires et al. 1996).

In filtering algorithms, two time level adjustment is expected
to nearly double the assimilation computational cost since the
size of analysed state variables are doubled. In practical imple-
mentation, the cost of an assimilation system is usually domi-
nated by the model integration. Therefore, a two time level ad-
justment may not significantly increase the cost of the entire
assimilation procedure. In 4D-Var, the major cost comes from
the iteration procedure for minimization and increasing the size
of analysed state variables may not significantly increase the
assimilation cost either.

It is worth mentioning that although the assimilation al-
gorithms that were examined in this study only include an
ensemble-based filter and a 4D-Var method, the conclusions may
be used for other assimilation methods such as nudging and op-
timal interpolation etc. when a leap frog time scheme is used in
the assimilation model.

In addition, throughout this study, the assimilation errors pro-
duced by the EAKF (Table 1, for instance) are smaller than
the errors produced by 4D-Var (Table 3, for instance), which
is consistent with a previous study (Anderson, 2001). Generally,
a major advantage of the ensemble-based filtering algorithms is
the use of temporally varying information about error statistics
such as error covariance. Therefore, the relative superiority of
the ensemble-based filtering algorithm or four-dimensional vari-
ational algorithm may depend on the internal variability of the
system (model). Additional research on the relative capabilities
of the two algorithm families, including both theoretical founda-
tions and implementation technique, is needed to provide more
insight on this issue.
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7. Appendix A. Lorenz-63 model

The Lorenz-63 model (Lorenz, 1963) was derived from the con-
vection equations of (Saltzman, 1962). Owing to the nonperiodic
nature of its solutions, the model has become one of the main-
stays for the study of the properties of nonlinear systems. The

three equations defining the model are

ẋ1 = −σ x1 + σ x2 (A1)

ẋ2 = −x1x3 + κx1 − x2 (A2)

ẋ3 = x1x2 − bx3 (A3)

where x1, x2 and x3 are the model state variables and a dot repre-
sents the time derivative. The tangent linear version of the model
is

δ ẋ1 = −σδx1 + σδx2 (A4)

δ ẋ2 = −δx1x3 − x1δx3 + κδx1 − δx2 (A5)

δ ẋ3 = δx1x2 + x1δx2 − bδx3. (A6)

In this study, the standard values 10, 8/3 and 28 for the parameters
σ , b and κ are used. The time filter coefficient (ε) and the dimen-
sionless time step (�t) are tuned to ε = 5 × 10−3 and �t = 10−4,
for which the numerical model has the chaotic characteristics.

8. Appendix B. A global barotropic
spectral model

The barotropic model used here is based on the equation of
conservation of potential vorticity (Haltiner and Williams, 1980)

d

dt

(
f + ζ

H

)
= 0 (B1)

where ζ is the relative vorticity, f is the planetary vorticity (Cori-
olis parameter) and H is the depth of the atmospheric layer.

Introducing the geostrophic streamfunction ψ = g
f0

h and the

Cressman parameter λ2 = f 2
0

gH0
, the conservation of potential vor-

ticity (B1) becomes

∂

∂t
(∇2 − λ2)ψ + J (ψ, ∇2ψ) + β

∂ψ

∂x
+ J (ψ, h′) = 0 (B3)

where h′ = f0
H0

hterrain, representing the effect of topography.
To code the adjoint of this model, first all nonlinear terms

in (B3) are differentiated to develop the tangent linear model
(TLM). The tangent linear model governs the evolution of a
perturbed streamfunction along the trajectory of the basic state,
which can be written as

∂

∂t
(∇2 − λ2)δψ + J (δψ, ∇2ψ) + J (ψ, ∇2δψ)

+ β
∂δψ

∂x
+ J (δψ, h′) = 0. (B4)

In this study, the state variables for the time stepping are spectral
coefficients in which a rhomboidal 21 truncation is applied for
the transformation between spectral coefficients and grid values.
For the assimilation, the state variables are redefined as the 54
(latitude) × 64 (longitude) Gaussian gridpoints. Except for an
initial forward (Euler) step (�t = 30 min), a leap frog time step
is used to advance the model and a Robert–Asselin time filter
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(Robert, 1969; Asselin, 1972) is applied for damping spurious
computational modes. The model is tuned to give a stable solu-
tion of the streamfunction with ε ≥ 0.02.

9. Appendix C. Function Ω(a, d)

�(a, d) =




−1

4

(
d

a

)5

+ 1

2

(
d

a

)4

+ 5

8

(
d

a

)3

− 5

3

(
d

a

)2

,

0 ≤ d ≤ a;

1

12

(
d

a

)5

− 1

2

(
d

a

)4

+ 5

8

(
d

a

)3

+ 5

3

(
d

a

)2

−5

(
d

a

)
+ 4 − 2

3

(
d

a

)−1

, a < d ≤ 2a;

0, d > 2a.

10. Appendix D. Gradient test

A gradient test was performed to ensure the correctness of the
gradient calculated from the adjoint. From the first order approx-
imation of the Taylor expansion of the cost function, one defines
a ratio to measure the consistency between the linear increment
along the gradient direction of the cost function and a perturbed
cost function (Navon et al. 1992) as

�1(α) = J1(x0 + αe0) − J1(x0)

αeT
0 ∇|x0 J1

�2(α) = J2(x−1 + αe−1, x0 + αe0) − J2(x−1, x0)

αeT
−1∇|x−1 J2 + αeT

0 ∇|x0 J2




= 1 + O(α)

where α is a small scalar governing the magnitude of pertur-
bations and e0 and e−1 are unit vectors along the gradient.
For the barotropic model case, the perturbation vector is set
to be e0 = ∇|x0 J1(J2)‖∇|x0 J1(J2)‖−1 × 106 m2 s−1 and e−1 =
∇|x−1 J2‖∇|x−1 J2‖−1 × 106 m2 s−1. (C1) shows that for the cor-
rect gradient vectors ∇|x0 J1(∇|x0 J2) and ∇|x−1 J2, �1(α) and
�2(α) go to 1 as α is small but not a machine zero. Figure D1
exhibits the curves of the logarithm of �1(α) − 1 and �2(α) −
1 with respect to log10α using the Lorenz-63 model (panel a)
and the barotropic model (panel b) for the assimilation windows
with different width, in which the observations described in Sec-
tion 2.2 are used to compute the cost functions. From Fig. D1, it is
found that the values of �1(α) and �2(α) are close to a unity for a
small but non-machine-zero α. Particularly, when the values of α

fall between 10−7 and 10−1, the curves of the logarithm of �1(α)
−1 and�2(α)−1 versus log10α are nearly straight lines for 104-,
2 × 104-step assimilation windows for the Lorenz-63 model
(panel a) and 6- and 12-h assimilation windows for the barotropic
model (panel b). The long-dashed line in Fig. D1a (the curve of
log10[�2(α) − 1] versus log10α for the Lorenz-63 model using
a 105-step assimilation window) shows that when the width of
the assimilation window increases, the log10[�2(α) − 1] curve
still has a straight line section but the values of α falling in
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a)

b)

Lorenz−63

Barotropic model

Fig D1. The variation of the logarithm of �1(α) − 1 and �2(α) − 1
with respect to the logarithm of α for the gradient test for (a) the
Lorenz-63 model and (b) the barotropic model for different
assimilation windows.

this section become smaller (10−11 to 10−5 in this case). Figure
D1 shows that the integrations of these adjoint models correctly
evaluates the gradient of the cost functions defined on different
assimilation windows since in a certain range of small α values
a linear increment along the direction of the gradient evaluated
from the adjoint always exactly represents the perturbed cost
function.
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