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[1] The impact of oceanic observing systems, external radiative forcings due to
greenhouse gas and natural aerosol (GHGNA), and oceanic initial conditions on long
time variability of oceanic heat content and salinity is assessed by the assimilation of
oceanic ‘‘observations’’ in the context of a ‘‘perfect’’ Intergovernmental Panel on Climate
Change Fourth Assessment Report model. According to times and locations at which
observations are available, the 20th century expendable bathythermograph (XBT)
temperature and 21st century Argo temperature and salinity observations are drawn from a
model simulation (set as the ‘‘truth’’) with historical GHGNA radiative forcings. These
model observations are assimilated into another coupled model simulation based on
temporally varying or fixed year GHGNA values and different oceanic initial conditions.
The degree to which the assimilation recovers the truth variability of oceanic heat content
and salinity is an assessment of the impact of each factor on the detection of the oceanic
‘‘climate.’’ Results show that both the 20th century XBT and 21st century Argo
observations adequately capture the basin-scale variability of heat content. The Argo
salinity observations appear to be necessary to reproduce the North Atlantic thermohaline
structure and variability. The addition of historical radiative forcings does not make a
significant contribution to the detection skill. The initial conditions spun up by historical
GHGNA produce better detection skill than the initial conditions spun up by preindustrial
fixed year GHGNA due to reduced assimilation shocks. While the 20th century XBT
temperature observations alone capture some basic features of salinity variations of the
tropical ocean due to the strong T-S relationship from tropical air-sea interactions, the
Argo salinity observations are important for global state estimation, particularly in high
latitudes where haline effects on ocean density are greater.
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1. Introduction

[2] Uncertainty exists in climate modeling which causes a
coupled model to drift away from the real world. The
uncertainty includes inadequate measurements of natural
and/or anthropogenic forcings and incomplete understand-
ing of their radiative effects, as well as inaccurate numerical
implementation for other physical processes [Delworth et
al., 2006; Collins et al., 2006]. Ocean observations such as
temperature and salinity are generally sparse and insuffi-
cient to describe oceanic climate features and variability
[e.g., Carton et al., 2000; Forget and Wunsch, 2007]. A
more accurate assessment for oceanic climate can be
achieved by combining coupled model dynamics with
observational data.

[3] Coupled data assimilation uses the dynamics of a
coupled general circulation model (CGCM) to extract
information from observations to reconstruct a time series
of climate states. The reconstructed time series is an
estimate for how the climate varied in the past. Diagnostics
based on the reconstructed products help further under-
standing for the mechanisms of climate variations, such as
the impact of anthropogenic and natural forcings on climate
change. Also, the estimate for the present climate state may
serve as the initial conditions for a coupled model to predict
how the climate will vary in the future.
[4] The quality of an assimilation product is influenced

by model bias, assimilation methodology and representation
of an observing system. Model bias may create artifacts that
can contaminate the assimilation-generated variability and
thus is a serious obstacle to obtain a reliable representation
of climate variability by combining model and data [Dee
and da Silva, 1998; Dee, 2005; Balmaseda et al., 2007].
This study addresses the impact of observing systems,
external radiative forcings and initial conditions on the
detection of long time variability of oceanic heat content
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and salinity. As a first step, a perfect model study frame-
work, i.e., ‘‘twin’’ experiment in which ‘‘observations’’ are
produced by a model simulation, is used to exclude the
model bias issue. To meet the needs of state estimation and
forecast initialization, taking the probablistic nature of
climate evolution into account, the NOAA’s Geophysical
Fluid Dynamical Laboratory (GFDL) has developed an
ensemble coupled data assimilation (ECDA) system using
its second generation CGCM (CM2) [Delworth et al., 2006]
with an ensemble filter [Anderson, 2003]. Based on the
proof-of-concept study [Zhang et al., 2007] for ECDA, this
study applies the ECDA system to a series of oceanic data
assimilation experiments in the perfect model context to
address the following: (1) Are the 20th century temperature
and 21st century temperature and salinity observations
sufficed to capture the multidecadal variability of oceanic
heat content and salinity? (2) What is the impact of external
radiative forcings on oceanic state estimation? (3) What is
the impact of oceanic initial conditions on decadal time
scales?
[5] After describing the methodology in section 2, section 3

analyzes the impact of the observing systems, radiative
forcings and initial conditions on the detection of heat
content variability. Section 4 discusses the impact of each
factor on the detection of salinity variability. The detect-
ability of the North Atlantic thermohaline structure is
analyzed and discussed in section 5. Finally, conclusions
and discussions are given in section 6.

2. Methodology

2.1. A Fully CGCM

[6] The coupled model used in this study is a B grid
[Wyman, 1996] finite difference atmospheric model (AM2/
LM2) [Geophysical Fluid Dynamics Laboratory Global
Atmospheric Model Development Team, 2004] coupled with
the fourth version of Modular Ocean Model (MOM4)
[Griffies et al., 2005]. This is one of two GFDL Intergov-
ernmental Panel on Climate Change Fourth Assessment
Report (IPCC AR4) models, called CM2.0 [Randall et al.,
2007]. The atmosphere model has 24 vertical levels and
2.5� longitude by 2� latitude horizontal resolution. The
physics package includes a K profile planetary boundary
layer [Lock et al., 2000], relaxed Arakawa-Schubert con-
vection [Moorthi and Suarez, 1992] and a simple local
parameterization of the vertical momentum transport by
cumulus convection. The ocean model is configured with
50 vertical levels, 22 levels having uniform 10 m thickness
in the top 220 m, and 1� � 1� horizontal resolution
telescoping to 1/3� meridional spacing near the equator.
The model has an explicit free surface with a freshwater flux
exchange between the atmosphere and ocean. Parameterized
physical processes include K profile parameterization ver-
tical mixing, neutral physics, a spatially dependent aniso-
tropic viscosity, and a shortwave radiative penetration depth
that depends on a prescribed climatological ocean color.
Insolation varies diurnally and the wind stress at the ocean
surface is computed using the velocity of the wind relative
to the surface currents. An efficient time-stepping scheme
[Griffies, 2005] is employed. More details are given by
Gnanadesikan et al. [2006] and Griffies et al. [2005]. The
Sea Ice Simulator in the coupled model is a dynamical ice

model with three vertical layers (one for snow and two
for ice) and five ice thickness categories. The elastic-
viscous-plastic technique [Hunke and Dukowicz, 1997] is
used to calculate ice internal stress, and the thermodynamics
is a modified Semtner three-layer scheme [Winton, 2000].
The coupled components of this model interact with each
other through exchanged fluxes (Figure 1a).

2.2. Assimilation Scheme: A Coupled Ensemble Filter

[7] A detailed description of the ensemble coupled data
assimilation (ECDA) system using an ensemble filter are
given by Zhang et al. [2007]. Here we only need to
comment on a few aspects of particular relevance to the
climate detection addressed in this study.
[8] In this study we address how well the oceanic climate

variations can be retrieved by combining oceanic observa-
tions with coupled dynamics within the ECDA framework
illustrated in Figure 1a. The ensemble filter solves for a
temporally varying joint probability distribution function
(joint PDF) of coupled state variables in a straight forward
manner, in terms of a discrete representation of PDF by
finite-size ensemble members. Oceanic data assimilation
(ODA) in the coupled framework is carried out by the
filtering (Figure 1b) that combines the PDF of an oceanic
observation and a prior PDF derived from the coupled
model to compute an analysis PDF. The filtering process is
implemented by a multivariate linear regression [Anderson,
2003]. The data-adjusted ensemble members are the real-
izations of the analysis PDF and serve as the initial
conditions for the next ensemble integration. The coupled
ensemble filter has the following advantages over traditional
data assimilation approaches for the particular interests of
this study:
[9] 1. The multivariate data assimilation using cross

covariances evaluated by the ensemble model integrations
helps maintain more consistent physical balance (local T-S
relationship, for instance) as observations are incorporated
into the model.
[10] 2. The temporally varying error covariances evaluated

instantaneously by the ensemble of state variables are fully
flow dependent and anisotropic.
[11] 3. The filtering adjusts the joint PDF only up to the

second-order moment so that the nonlinearity in long time
evolution of oceanic circulations, characterized by higher-
order moments, is sustained as schematically illustrated by
Figure 1b.
[12] 4. The ECDA filter allows for dynamical coupling

among the atmosphere/ocean/land/sea ice components in
the assimilation. Whenever a variable in an individual
model component is adjusted by the assimilation of obser-
vations, instantaneously exchanging fluxes among coupled
model components alter more or less the variables in other
model components. In this case, the ocean observing system
provides constrained sea surface temperatures (SSTs) to the
atmosphere thereby impacting surface heat and moment
flux feedbacks. Estimated covariances between, for in-
stance, wind stress and SST are also used to constrain the
fluxes in a dynamically consistent fashion. Thus, the
generated coupled states may minimize coupling shocks
for the next model integration which help enhance the
signal-to-noise ratio in the assimilation although allowing
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some uncertainty of surface fluxes that are only constrained
by ODA-generated SSTs.

2.3. Experimental Design

[13] Figure 2 shows the variability of North Atlantic (NA)
temperature and salinity in two model simulations to illus-
trate the nature of the climate variability this study attempts
to address. The variations of monthly mean temperature
versus salinity over the upper (200–1000 m; Figures 2a
and 2c) and lower (1000–5000 m; Figures 2b and 2d) North
Atlantic Ocean (20–70�N) are taken from the GFDL IPCC
AR4 ‘‘control’’ and ‘‘20th century historical’’ (called h1)
simulations [Randall et al., 2007]. Both the control and
historical simulations start from the same initial conditions
(marked by a red star), a 300 year spin-up integration
initialized from the previous integration [Stouffer et al.,
2004]. The control run refers to a 141 year integration with
the 1860 fixed year greenhouse gas and natural aerosol
(GHGNA) value while the historical simulation uses the
temporally varying GHGNA records from 1861 to 2000. It
is shown that after around 40 years (black dots in Figure 2)
the preindustrial fixed year control run begins to drift away
from the historical simulation (each color represents a
quarter of the 20th century, e.g., the first quarter is cyan,
the last quarter is red, and so on) in both upper and lower
portions of the North Atlantic Ocean. In particular, while the
upper ocean temperature and salinity of the historical
simulation exhibits a clear warming and saltier trend,
without the constraint of temporally varying radiative forc-
ings, the control run varys only within a relatively small

range. Here we ask: Do the 20th century expendable
bathythermograph (XBT) or 21st century Argo observing
network provide sufficient information to capture the trends
depicted in Figures 2c and 2d? What follows outlines the
observing system simulation experiments used in this study
for the climate detection.
[14] As with Zhang et al. [2007], the monthly mean data

of 25 year (1976–2000 of the model calendar) oceanic/
atmospheric/land/sea ice state variables produced by the
IPCC h1 integration serve as the ‘‘truth’’ states. The daily
oceanic temperature or temperature and salinity of the truth
are projected onto the locations (longitudes, latitudes and
depths) and times according to the following two oceanic
observing systems:
[15] 1. The 20th century XBT temperature profiles are

taken from the World Ocean Database maintained by
National Oceanographic Data Center. The profile types
are largely the same as used by Levitus et al. [2005] for
the World Ocean Analysis (WOA), mainly from XBT, but
also including CTD (conductivity-temperature-depth), DRB
(drifting buoy), OSD (ocean station data), UOR (Undulating
Oceanographic Recorder), and MRB (moored buoy). XBTs
are the largest single source of oceanic temperature data,
being distributed primarily along commercial shipping
routes, and thus the spatial coverage is inhomogeneous
and particularly sparse in the Arctic and Southern Oceans
[see Zhang et al., 2007, Figure 4]. Following Figure 4 of
Zhang et al. [2007], here we only show the horizontal
locations of the profiles deeper than 500 (Figures 3a and 3c)
and 1000 (Figures 3b and 3d) m for January 1986 (Figures 3a

Figure 1. Cartoon of how (a) the components in the GFDL atmosphere/ocean/land/sea ice coupled
model interact with each other by exchanging fluxes (black arrows) and (b) an ensemble filter updates the
probability distribution for a scalar variable given an observation. The dashed green arrow in Figure 1a
denotes the radiative forcings expressed by the atmospheric greenhouse gas and natural aerosol
(GHGNA) and means that the GHGNA radiative forcings in assimilation may be set as a preindustrial
fixed year (1860). The red arrows in Figure 1a indicate that oceanic observations are allowed to impact all
oceanic state variables, including the wind stresses at the sea surface. The upper left of Figure 1b
represents the prior distribution derived from model ensemble integrations starting from the previous
assimilation results. The upper right of Figure 1b represents an observational distribution (usually
Gaussian). A filtering process (lower left in Figure 1b) combines the observational and prior distributions
to form an analyzed distribution (lower right in Figure 1b) realized by a set of ensemble members, which
are initial conditions for the next ensemble integrations.
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and 3b) and 1991 (Figures 3c and 3d). Compared to Figure 4
of Zhang et al. [2007], there is a dramatic drop in the
number of profiles with depth, for example, only one third
of profiles below 500 m, and less than one thirtieth below
1000 m. Most of the XBT profiles only reach 500 m while
the profiles below 1000 m are mainly provided by CTDs.
Since salinity data (only in CTDs and OSDs) are so sparse,
only temperature data in the 20th century network are used
in this study.
[16] 2. The 21st century Argo profiles include both

temperature and salinity observations, taken from the
WOA data set. Here the 2005 Argo network (see the
January’s temperature and salinity locations in Figure 4) is
repeatedly used to simulate the evolution of the 21st century
Argo observations. Unlike the 20th century XBT, the 21st
century Argo has a nearly uniform spatial coverage, espe-
cially for the Southern Hemisphere where the coverage of

observations is much better than that of the 20th century
XBT. In addition, the number of the profiles provided by the
Argo Network does not decrease by depth significantly
(Figure 4).
[17] The sampling process is basically a trilinear interpo-

lation, added by white noise to simulate random observa-
tional errors [Zhang et al., 2007]. The standard deviation of
the white noise is 0.5�C for temperature and 0.1 psu for
salinity at the sea surface and exponentially decays to zero
by 2000 m. Once the model observations are ready, the
following two types of GHGNA radiative forcings and
oceanic initial conditions are used to conduct a series of
assimilation experiments:
2.3.1. Temporally Varying Versus Preindustrial Fixed
Year GHGNA Radiative Forcings
[18] For a coupled atmosphere/ocean/land/sea ice system,

the GHGNA radiative effect serves as the utmost external

Figure 2. The domain-averaged temperature and salinity over the North Atlantic (20�N–70�N)
(a and c) upper (200–1000 m) and (b and d) lower (1000–5000 m) oceans in T-S space for the control
run using the preindustrial (1860) fixed year radiative forcings (Figures 2a and 2b) and the 20th century
historical run using the temporally varying radiative forcings (Figures 2c and 2d). The first 40 years are
marked by black dots, and each quarter afterward is marked by cyan, blue, green, and red dots,
respectively.
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forcing. Previous studies have shown that GHGNA radia-
tive effects are directly responsible for a global scale
warming trend [e.g., Manabe, 1979; Manabe and Stouffer,
1979]. The question here is: how important are the historical
GHGNA radiative forcings for detecting oceanic variability
by assimilating oceanic observations into a coupled model?
This question can be answered by performing identical
assimilation experiments with the temporally varying or
1860 fixed year GHGNA radiative forcings.
2.3.2. Forced (1861–1975) Versus Control
(Preindustrial) Oceanic Initial Conditions
[19] The ensemble coupled initial conditions (ICs) in this

study are formed by imposing the atmospheric (including
land) states at 00UTC 1 January of consecutive years on the
oceanic (including sea ice) state that is centered on these
years. The control ICs are taken from the IPCC control
simulation described at the beginning of this section (a
141 year model integration using the preindustrial (1860)
fixed year GHGNA value). The forced ICs are taken from
another set of the IPCC historical simulation (called h3)
which uses the same temporally varying GHGNA radiative
forcings as h1 but starts from a different initial state (380 year
spin-up integration rather than the 300 year of h1). Since the
forced and control ICs are taken from the model simulations

driven by different GHGNA radiative forcings beyond
100 years, their oceanic states (especially for deep ocean)
are expected to be different. Then how the different oceanic
initial conditions from which an assimilation starts influence
the assimilation quality?
[20] The assimilation experiments are summarized in

Table 1. It is worth mentioning that to justify the ensemble
size used in the ensemble assimilation, the assimilation
qualities using 6, 12, and 24 member ensembles during a
5 year test period are compared. No significant improve-
ment is found from a 12 member ensemble to a 24 member
ensemble. Based on this result, a 12 member ensemble is
used for all assimilation experiments.

3. Detection of Heat Content Variability

3.1. Impact of GHGNA Radiative Forcings

[21] This section examines the impact of external radia-
tive forcings on the detection of heat content variability by
analyzing and comparing the assimilation results from
ODA000 and ODA100. Both assimilations are based on the
20th century XBT observing network and start from the
control ICs but ODA000 uses the 1860 fixed year GHGNA

Figure 3. Samples of vertical variations of the 20th century oceanic observing network. The locations
of observational profiles deeper than (a and c) 500 and (b and d) 1000m in January 1986 (Figures 3a and 3b)
and 1991 (Figures 3c and 3d). The background colors show the individual ocean basins that are examined
in this study, the same as used by Zhang et al. [2007] following Levitus et al. [2000, 2005].
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value while ODA100 uses the historical (temporally varying)
GHGNA records (see Table 1).
[22] Time series of heat content (the averaged potential

temperature anomaly) over the top 700 m produced by
ODA000 and ODA100 are plotted in Figure 5 (dashed red
and solid red lines, respectively). The corresponding time
series of two free model simulations, NOAssim00 and the
truth, are also plotted (dashed green and black lines,
respectively) for the validation of assimilation. The heat
content of the truth shows a warming trend in all basins but
with different rate (the weakest in the Arctic and the
strongest in the Indian Ocean) while no apparent trend is

observed in NOAssim00. The World Ocean heat content in
the truth shows a warming trend of 0.2�C over the two and
half decades with two interuptions corresponding to the
volcanic activities during the early 1980s and 1990s.
[23] After a few years of assimilation spin-up, the decadal

variability and multidecadal trend of heat content in all
basins and the World Ocean are retrieved well by both
ODA000 and ODA100. Except for the Southern Ocean,
Arctic Ocean and North Indian Ocean, the interannual
variability of heat content in all other basins is well
reproduced in both assimilations. The 20 year averaged
root-mean-square (RMS) and mean errors (Table 2) are

Table 1. Four Assimilation Experiments and Three Model Simulations

Acronym of
Experiments

Description of
Experiments GHGNA Records Initial Conditions Observing System

Truth Model simulation Temporally varying Forced from 300 year spin-up –
NOAssim00 Model simulation Preindustrial fixed year Preindustrial control –
NOAssim11 Model simulation Temporally varying Forced from 380 year spin-up –
ODA000 Oceanic data assimilation Preindustrial fixed year Preindustrial control The 20th century XBT
ODA100 Oceanic data assimilation Temporally varying Preindustrail control The 20th century XBT
ODA110 Oceanic data assimilation Temporally varying Forced from 380 year spin-up The 20th century XBT
ODA111 Oceanic data assimilation Temporally varying Forced from 380 year spin-up The 21st century Argo

Figure 4. Samples of vertical variations of the 21st century oceanic observing network (Argo). The
locations of Argo (a and b) temperature and (c and d) salinity profiles deeper than 500 (Figures 4a and 4c)
and 1000 (Figures 4b and 4d) m in January 2005.
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dramatically reduced through both assimilations from
NOAssim00 (compare the ODA000 and ODA100 columns
to the NOAssim00 column). Table 2 also shows that the
assimilation skill (for both ODA000 and ODA100) has a
basin dependence. The best assimilation skill is from the
North Pacific Ocean (the RMS error is reduced by around

70% from NOAssim00) and the worst assimilation skill is
from the North Indian Ocean (the RMS error is reduced by
around 15%). The intermediate assimilation quality is
observed in the Southern Ocean and Arctic Ocean, i.e.,
30–40% RMS error reduction from NOAssim00. The basin
dependence of assimilation quality can basically be

Figure 5. Time series of the domain-averaged oceanic temperature anomalies over the top 700 m for
individual ocean basins and the World Ocean in the three free model simulations and four ODA
experiments (see section 2.3). One of the free model simulations, the GFDL IPCC historical simulation
(plotted by black lines) is sampled by the 20th century or 21st century oceanic observing system to form
‘‘observations’’ for ODA and serves as the ‘‘truth’’ of four assimilations: ODA000 (dashed red line),
ODA100 (solid red line), ODA110 (dashed blue line), and ODA111 (solid blue line; see Table 1 for detailed
descriptions). Other two free model simulations, NOAssim00 and NOAssim11, are plotted by the dashed
and solid green lines, respectively, as the reference of assimilation evaluation.
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explained by the data coverage in each basin [AchutaRao et
al., 2006]. However some interesting points can be drawn
from the assimilation performance in the Southern Ocean,
Arctic Ocean and North Indian Ocean.
[24] The equilibrium of the oceanic state in ODA is a

balance between data adjustment and dynamical constraint.
The dynamical constraint here includes (1) the interaction of
oceanic circulations in different ocean basins, (2) the
structure of local oceanic circulations, and (3) the interac-
tion of coupled components through exchanged fluxes.
Usually, when data adjustment produces a local change in
the temperature and/or salinity field, the dynamical con-
straint spreads out the information by these dynamical
processes. Thus, although there is a sparse data coverage
in the Southern Ocean and Arctic Ocean, the heat content of
these 2 Oceans still gradually approaches toward the truth,
as a dynamical response of the model to the data constraints
of neighboring oceans. In particular, the dynamical con-
straints here include the interaction of the circulations
between the Southern Ocean and the other neighboring
oceans such as the South Pacific and Atlantic Oceans as
well as the ice-water interactions and ice-atmosphere flux
exchanges in the Arctic. Since the ODA’s spin-up time in a
basin is strongly associated with its observation density
[Zhang et al., 2007], the assimilation adjustment in these
two Oceans is the slowest.
[25] Associated with the relatively sparse data coverage in

the Indian Ocean of the 20th century XBT, a noticeable
difference between the assimilation and the truth heat
content can be distinguished in the basin. Due to the
decrease of data by depth (see Figures 3a and 3b) the
assimilation errors increase in the deep ocean, especially
in the regions where data becomes very sparse or nonexis-
tent, for example, the North Indian Ocean (see Figure 6a).
In particular, the rich spectrum of active circulations driven
by the Indian monsoon in the North Indian Ocean and heat
and salt exchanges between the Indian and Pacific Oceans
by the through flows over the Indoniesian archipelagos
make more difficulties for ODA to resolve the subannual
variability in that region. As a contrast, due to relatively
dense data coverage and strong dynamical constraint from
interior circulations in the Pacific and Atlantic Oceans, the

heat content of these Oceans is retrieved by the assimila-
tions well from the interannual variability to multidecadal
trend down to 2000 m (see Figure 7 for examples).
[26] Comparing the assimilation results of ODA000 and

ODA100, we found that the variability of heat content is
almost indistinguishable between ODA000 and ODA100 in
all individual basins and the World Ocean. Quantitative
error statistics (Table 2) show both assimilations reduce the
heat content RMS errors for the World Ocean at the same
rate (56%) from NOAssim00. For all individual basins, the
difference of the RMS error reduction between ODA000 and
ODA100 is very small too. From these results, we can
conclude that the assimilation with the fixed year or
temporally varying GHGNA radiative forcings produces
overall equivalent assimilation quality. Based on the study
of Deser and Phillips [2009] on the relative roles of the
GHGNA radiative forcings and SST in driving the atmo-
spheric circulations, our results here suggest that changes in
ocean heat content driven by the radiative forcing changes
can be efficiently retrieved by assimilating observed ocean
temperature data into the model, which presumably contain
sufficient radiative forcing information from air-sea inter-
action in the past.
[27] The spatial distribution of decadal scale heat content

tendency in ODA000 (Figure 8c) and ODA100 (Figure 8d)
supports the above conclusion. However, ODA100 produces
a colder tendency over the Labrador Sea and a warmer
tendency over the Greenland Sea compared to ODA000. The
phenomenon that ‘‘perfect’’ radiative forcings increase
errors in the Labrador Sea and Greenland Sea demonstrates
the model’s sensitivity in these regions. To understand the
mechanism behind this sensitivity requires further studies
and shall be addressed in follow-up studies.

3.2. Impact of Oceanic Initial Conditions

[28] Holding the setting of ODA100 but starting the
assimilation from the forced ICs, we perform ODA110

(dashed blue lines in Figure 5). The corresponding model
simulation starting from the forced ICs is NOAssim11 (solid
green lines in Figure 5). Almost in all ocean basins (except for
the South Indian Ocean) and theWorld Ocean, NOAssim11 is
much warmer and closer to the truth than NOAssim00

Table 2. RMS Errors of Oceanic Temperature Over the Top 700 m During the Last 20 Years in Two Model Simulations and Four

Assimilation Experimentsa

Basin NOAssim00 NOAssim11 ODA000 ODA100 ODA110 ODA111

SAT 0.62(�41) 0.60(11) 0.22/65(0.1) 0.21/5(�0.1) 0.19/10(0.2) 0.19/0(�0.03)
NAT 0.84(�25) 1.0(10) 0.33/61(�1) 0.34/�3(�0.2) 0.28/18(0.2) 0.34/�26(�2)
AT 0.77(�31) 0.91(10) 0.30/61(�0.6) 0.30/0(�0.2) 0.25/17(0.2) 0.29/�16(�1)
SIN 0.66(9) 0.69(�0.6) 0.38/42(4) 0.38/0(4) 0.26/32(0.6) 0.20/30(�0.9)
NIN 0.69(�41) 0.70(24) 0.58/16(�2) 0.60/�3(�2) 0.38/37(1) 0.28/33(2)
IN 0.68(�4) 0.70(6) 0.45/34(3) 0.45/0(2) 0.30/33(0.8) 0.23/23(�0.1)
SPC 0.55(�10) 0.64(�4) 0.17/69(�0.4) 0.16/6(�0.6) 0.15/6(�0.3) 0.19/�26(2)
NPC 0.90(�8) 0.86(�2) 0.22/76(1) 0.22/0(1) 0.17/23(0.1) 0.25/�47(2)
PC 0.78(�9) 0.78(�3) 0.21/73(0.5) 0.20/5(0.3) 0.16/20(�0.1) 0.23/�44(2)
SO 0.53(�33) 0.64(20) 0.33/38(�7) 0.31/6(�6) 0.28/10(2) 0.18/36(2)
AO 0.53(�17) 0.63(19) 0.33/38(�4) 0.38/�15(�3) 0.29/24(2) 0.25/14(2)
WO 0.71(�19) 0.77(7) 0.31/56(�2) 0.31/0(�1) 0.24/23(0.7) 0.24/0(1)

aRMS error of oceanic temperature is given in �C. The RMS’s reduction (%) of an assimilation from the case to which it is compared (for ODA000 the
RMS’s reduction is from NOAssim00, for ODA100 the reduction is from ODA000, for ODA110 the reduction is from ODA100, and for ODA111 the reduction
is from ODA110). The corresponding mean errors (10�2 �C) are listed in parentheses. SAT, South Atlantic Ocean; NAT, North Atlantic Ocean; AT, Atlantic
Ocean; SIN, South Indian Ocean; NIN, North Indian Ocean; IN, Indian Ocean; SPC, South Pacific Ocean; NPC, North Pacific Ocean; PC, Pacific Ocean;
SO, Southern Ocean; AO, Arctic Ocean; WO, World Ocean.
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(dashed green lines). The different initial shocks in the
forced and control ICs produce a different assimilation
quality for ODA100 and ODA110.
[29] The truth (black) basically lies between NOAssim00

and NOAssim11 for most of the basins and the World
Ocean. Thus, the NOAssim00’s mean error is negative while
the NOAssim11’s mean error is positive (the NOAssim00

and NOAssim11 columns in Table 2). The warmer/colder
bias in the forced/control ICs results in the ODA110/ODA100

assimilation approaching the truth from a different side and
eventually producing a warmer/colder assimilation bias
(compare dashed blue lines to solid red lines in Figure 5;
compare the ODA100 column to the ODA110 column in
Table 2). After the spin-up of a few years, both assimilations
appear to capture the interannual variability and decadal
trend of heat content in all basins and the World Ocean
consistently. However, the quantitative error statistics
(Table 2) show that the use of the forced ICs dramatically
improves the assimilation quality (compare the ODA100 and
ODA110 columns). In fact, from ODA100, ODA110 reduces
15–20% of the temperature RMS errors for the Atlantic and
Pacific Oceans, 40% for the Indian Ocean and 25% for the
World Ocean. The greatest improvement is found in the
North Indian Ocean.
[30] The great improvement of the assimilation quality

from ODA100 to ODA110 can be explained by the small

assimilation shocks in deep ocean produced by the forced
oceanic ICs. To recover the h1 simulation that is driven out
by the temporally varying radiative forcings, the forced
oceanic ICs that have been spun up over a century by the
temporally varying radiative forcings are expected to pro-
duce smaller initial shocks in ODA110 than the control ICs
do in ODA100. Given too few XBT observations available in
deep ocean and the low-frequency nature of deep ocean
circulations, the different deep ocean states in the forecd and
control ICs would make a quite different assimilation
quality in the 25 year assimilation.
[31] The greatest improvement from ODA100 to ODA110

over the North Indian Ocean is interesting. From the
analyses and discussions in section 3.2, we know that the
equilibrium of ODA is a balance of data adjustment and
dynamical constraint. Confined by continents, the North
Indian Ocean lacks large-scale interior circulations like
subtropical and subpolar gyres in the Pacific and Atlantic
Oceans. Instead, the variability of the North Indian Ocean is
mainly driven by the Indian monsoon system and influ-
enced by the adjacent/marginal seas through heat and salt
exchanges. Lacking strong interior dynamical constraint,
the ODA equilibrium in the North Indian Ocean is mainly
determined by the data adjustment and sea surface forcings.
Comparing the surface forcings and SSTs in ODA100 and
ODA110, we found that the errors of both the wind stress

Figure 6. Time series of the domain-averaged oceanic (a and b) temperature and (c and d) salinity
anomalies of the 700–2000 m for the North Indian Ocean (Figure 6a), the Southern Ocean (Figures 6b
and 6d), and the world Ocean (Figure 6c). Otherwise the same as Figure 5.
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and SSTs in ODA110 are much smaller than the ones in
ODA100 in the North Indian region. This perhaps suggests
that the coupled initial conditions forced by long time
GHGNA records make easier for the strong air-sea feed-
backs in the North Indian region, which may improve the
assimilation skill there, but needs further studies.
[32] The big difference of the 2 decade time tendency of

heat content in ODA100 and ODA110 (compare Figure 8e to
Figure 8d) is found in the Southern Ocean and the North
Atlantic Ocean, especially in deep oceans (not shown). In
the Southern Ocean ODA110 has a weaker warming trend
but ODA100 has a stronger warming trend. This is associ-
ated with the warmer/colder initial states from which
ODA110/ODA100 starts (see the solid/dashed green lines in
Figure 6b). The difference of time tendency errors over the
Labrador Sea and Greenland Sea between ODA100 and
ODA110 demonstrates that the decadal variability of the
heat content of the sub-Arctic and North Atlantic Oceans,
especially for the deep oceans, are sensitive to the oceanic
initial conditions. Again, due to the existence of deep
convections in the North Atlantic Ocean which is related
to heat and salt transport, ice-water interactions and other
complex processes, further study is required to assess this
sensitivity. The above analyses show that the oceanic initial

conditions that are sufficiently spun up by the temporally
varying radiative forcings may help ODA improve the
estimate of heat content variability.

3.3. Impact of Oceanic Observing Systems

[33] The 21st century Argo network shows the following
two substantial differences from the 20th century XBT:
(1) The Argo has almost the same number of salinity
profiles as temperature (see Figures 4a and 4b). (2) Argo
floats are initially deployed on a 3� � 3� mesh system
globally down to 2000 m. Thus, the 21st century Argo
provides a much more regularly distributed network than
the 20th century XBT.
[34] Replacing the XBT network in ODA110 by the Argo

network, we perform assimilation experiment ODA111 (solid
blue lines in Figures 5, 6a, and 6b, the ODA111 column in
Table 2). From ODA110 to ODA111, the systematic improve-
ment for the assimilation skill of heat content appears in the
whole upper 2000 m. For the top 700 m, a noticeable
improvement is found in the Southern Ocean (the RMS
error is reduced by 36%), the Indian Ocean (23%) and the
Arctic Ocean (14%), while the assimilation skills in the
Atlantic and Pacific Oceans appear to drop marginally. As
pointed out by AchutaRao et al. [2006], the sampling

Figure 7. Time series of the domain-averaged oceanic temperature anomalies of the 700–2000 m for
(a) the North Atlantic Ocean and (b) the World Ocean. Otherwise the same as Figure 5.
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coverage has a large impact on the inferred temperature
variability. Relative to the XBT network, the Argo network
improves the coverage of temperature observations at high
latitudes (especially for the Southern Hemisphere) and deep

oceans greatly. For the top (say, top 500 m) Pacific and
Atlantic Oceans (especially for the North Pacific and
Atlantic) the XBT [Zhang et al., 2007, Figure 4] is better
than the Argo (Figure 4). The greatest improvement of the

Figure 8. (a) Time tendency of the 1980s to the 1990s of the top 700 m ocean temperature in the truth,
and the assimilation errors of the time tendency in (c) ODA000, (d) ODA100, (e) ODA110, and (f) ODA111.
(b) The error of a control case, NOAssim11, is also exhibited as a reference for assimilation evaluation.
The contour interval is 0.1�C, the zero line is omitted, and the dashed contours are negative.
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heat content over the top 2000 m is found in the Southern
Ocean (the RMS error is reduced by 44%) and the next is in
the Indian Ocean (30%) and the Arctic Ocean (17%). Again,
these regions are better sampled by Argo. Consequently, the
World Ocean’s RMS and mean errors of the top 2000 m are
improved by 20% and 60%, respectively, by using the 21st
century Argo network.
[35] The improvement of the assimilation quality on heat

content from ODA110 to ODA111 is partly from the Argo
salinity observations applied to T-S covariance. Also, in
ODA111, since better physical balance between temperature
and salinity is maintained, the assimilation is expected to
extract the observational information more efficiently. Due
to a substantial increase of data in the Southern Ocean and
Indian Ocean from XBT to Argo, the estimated time
tendency of heat content is improved greatly by ODA111

(compare Figure 8f to Figure 8e). Particularly, ODA111

eliminates the large errors at the entrance of the Labrador
Sea in ODA110. Given the same reasonable coverage of
temperature observations over the Northwest Atlantic re-
gion in both the 20th century XBT and 21st century Argo,
the improvement of the temperature assimilation near the
Labrador Sea should be attributed to the use of direct
salinity observations in ODA111. The improved thermoha-
line structure must better the estimate of North Atlantic deep
convection. In addition, it is noticed that owing to the Argo
float’s drift by the ocean currents (Figure 4), the Argo
deploy contains relatively sparse observations over the
eastern part of the North Atlantic subtropical gyre. This
also creates errors for the time tendency of the North
Atlantic temperature in ODA111. The sensitivity of the
estimated time tendency of the North Atlantic temperature
to the density of observations in this area may be associated
with the strong temperature gradient across the North
Atlantic subtropical gyre (e.g., see Figure 8b). This also
needs to be further explored in the future studies.

4. Detection of Salinity Variability

[36] Given that the 20th century XBT provides tempera-
ture observations only, this section attempts to answer:
(1) How much of salinity variability can be rebuilt by
applying temperature observations to the model-provided
T-S covariance? (2) With the direct salinity observation in
the 21st century Argo network, how much does the assim-
ilation improve the estimate of the interannual variability
and decadal trend of salinity?

4.1. Temperature Observations With a T-S
Relationship

[37] This section analyzes and compares the assimilation
results of salinity in ODA000 and ODA100 (Figure 9 and
Table 3). Compared to the control simulation, NOAssim00,
except for the North Atlantic, the salinity anomalies of both
assimilations have a trend to approach the truth, but the
convergent rate is much slower than the temperature
anomalies (compare Figure 9 to Figure 5). Both assimila-
tions reduce the salinity errors over the upper ocean greatly
from NOAssim00 for most of the basins and the World
Ocean (46% for the Pacific and 23% for the World Ocean,
for instance) (Table 3). There is almost no difference in
salinity RMS errors between ODA000 and ODA100 except

for the Arctic Ocean where the error of ODA000 is larger
than ODA100 (compare the ODA100 column to the ODA000

column). Although the salinity assimilation applying a T-S
relationship to temperature observations appears a little
more sensitive to the different setting of radiative forcings
than temperature assimilation, consistent with the heat
content results, in general, the use of the temporally varying
GHGNA records does not make significant improvement on
the estimate of the salinity variability within a 25 year
assimilation period. The following analysis will show that
applying the model-provided T-S covariance to temperature
observations only makes the upper ocean salinity conver-
gent mostly in the tropical ocean.
[38] In this coupled system, the salinity adjustment in

ODA000 and ODA100 comes from two parts. One part is the
direct projection from oceanic temperature observations by
T-S covariance, and the other part is the response of the
coupled model to the ODA-generated SSTs. For example,
when the atmosphere is driven by the ODA-generated SSTs,
the precipitation and surface wind stress alter the salinity
distribution near the surface ocean. Eventually, the adjust-
ment of the top ocean salinity is a combination of these two
contributions while the changes of the salinity in deep ocean
mainly rely on the response of oceanic circulations to the
adjustment of the upper ocean. Generally, the significant
salinity adjustment produced by the temperature observa-
tions through T-S covariance mainly occurs in the tropical
ocean. In the tropics, the strong T-S relationship from active
air-sea interactions (convective precipitation linked with
warm SSTs) and the isopycnal nature of thermocline
oscillations [Zhang et al., 2007] are able to retrieve the
variability of the top ocean salinity anomalies to some
degree (Figure 10). In the extratropics and deep oceans,
probably due to fresh water forcings and the impact of
large-scale transport processes as well as the reduced XBT
coverage, the adjustment based on local T-S covariance and
temperature observations is insufficient to constrain the
salinity. For example, the salinity assimilation in ODA000

and ODA100 produces a negative salinity time tendency
(oceans continue to be freshened) in the top 2000 m in most
of the basins and the World Ocean (Figure 11). However,
clear attributions of these factors to salinity constraint
requires further research work.
[39] A noticeable phenomenon in ODA000 and ODA100 is

that negative anomalies of the World Ocean salinity over-
shoot the truth in the deep ocean (see Figure 6c). The ocean
in these assimilations is too fresh and the Southern Ocean is
the main contributor for the overshooting (Figure 6d). Here
we can use the lines of temperature and salinity anomalies
in NOAssim00 and NOAssim11 (dashed and solid green
lines in Figures 5, 6b, 6d, and 9) as 2 ensemble members of
the model ocean to roughly estimate how the assimilation
model responds to upper ocean temperature observations to
form the deep ocean’s salinity anomalies. In the top 700 m
of the Southern Ocean, the NOAssim00 water is colder and
saltier than NOAssim11 (see dashed/solid green lines in
Figures 5 and 9), while in the deep ocean, the NOAssim00

water is colder and fresher than the NOAssim11 (see dashed/
solid green lines in Figures 6b and 6d). This indicates a
negative correlation between the deep ocean’s salinity and
the upper ocean’s temperature observations. It says that the
assimilation model responds to the warming of the top
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ocean of the Southern Ocean by making the water fresher.
During the last 10 years of the assimilation, the averaged
T-S covariance in ODA000 (estimated by the Southern
Ocean domain-averaged temperature and salinity over the
top 2000 m) is �5 � 10�5 psu �C. Given a warming of
0.25�C and a temperature standard deviation of 0.087�C,
regression produces a freshening of �1.5 � 10�4 psu, The
freshening rate is seriously underestimated by a domain
average, but it does indicate a freshening trend. However,
understanding the mechanism of the Southern Ocean’s
freshening trend induced by a warming trend of the upper
ocean requires further research work on the Southern

Ocean’s circulations (the Antarctic circumpolar circulation,
for instance).

4.2. Forced Oceanic ICs Versus Control Oceanic ICs

[40] The salinity assimilation errors of ODA110 which
uses the forced ICs are much smaller than the errors of
ODA100 (compare the ODA110 column to the ODA100

column in Table 3, also compare dashed blue lines to red
lines in Figures 9, 6c, and 6d). The biggest improvement
from ODA100 to ODA110 is found in the Indian Ocean
where the RMS error is reduced by 40% for the top 700 m
and 50% for the top 2000 m. Generally, the improvement in

Figure 9. Same as Figure 5 but for the salinity.
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deep ocean is greater than in upper ocean (43% and 30%
error reduction for the top 2000 m and top 700 m in the
World Ocean, respectively). The improvement of salinity
assimilation quality generated by the forced ICs is more
than the improvement of temperature assimilation quality
(for the top 700 m World Ocean, the error reduction is 30%
for salinity and 23% for temperature, for instance). In
addition, comparing the errors of the 2 decade salinity time
tendency in ODA110 (Figure 11e) and ODA100 (Figure 11d),
we found that the salinity tendency error of ODA110 is
smaller in the Atlantic and Indian Oceans.
[41] The analyses of heat content assimilation in

section 3.2 have shown that due to the low-frequency nature
of oceanic circulations the initial shocks have a serious
impact on oceanic assimilation skill. Applying the model T-
S relationship to temperature observations is a weak con-
straint for salinity, and the salinity assimilation therefore
relies on the initial conditions more than the temperature
assimilation. Thus, the use of the oceanic initial conditions
that have the knowledge of long time temporally varying

radiative forcings is very important to obtain a relatively
small assimilation error for salinity.

4.3. Assimilation of Direct Salinity Observations

[42] When the direct salinity observations provided by the
21st century Argo are used, ODA111 greatly reduces the
mean and RMS errors of the salinity (solid blue lines in
Figures 9, 6c, and 6d, the ODA111 column in Table 3) for
most of the basins and the World Ocean from ODA110. In
the North Atlantic Ocean, while the mean error is improved
considerably, the domain-averaged RMS error increases.
The salinity anomalies of the top 700 m in ODA111 capture
the truth variability very well after the spin-up of a few
years. The assimilation also tends to reconstruct the truth
variability of salinity anomalies in the top 2000 m ocean but
with a much longer time scale. However, a noticeable
separation between the salinity anomalies of ODA111 and
the truth still exist in the Indian and Arctic Oceans. It is also
noticed that after 20 years the variability of the Arctic
Ocean’s salinity anomaly begins to follow the truth. This,

Figure 10. Time series of salinity anomalies averaged at the tropical Pacific (5�S–5�N) over the top
200 m in the truth (black line), two control free model simulations (dashed green line for NOAssim00 and
solid green line for NOAssim11), and four ODA experiments: ODA000 (dashed red line), ODA100 (solid
red line), ODA110 (dashed blue line), and ODA111 (solid blue line).

Table 3. RMS Errors of Salinity Over the Top 700 m During the Last 20 Years in Two Model Simulations and Four Assimilation

Experimentsa

Basin NOAssim00 NOAssim11 ODA000 ODA100 ODA110 ODA111

SAT 0.10(�1) 0.15(0.2) 0.08/20(�0.4) 0.08/0(�0.1) 0.06/25(0.5) 0.05/17(�0.4)
NAT 0.14(�1) 0.24(1) 0.11/21(�3) 0.11/0(�2) 0.08/27(2) 0.09/�13(�0.5)
AT 0.13(�1) 0.22(0.6) 0.10/23(�2) 0.10/0(�1) 0.07/30(1) 0.07/0(�0.5)
SIN 0.15(8) 0.15(2) 0.14/7(2) 0.13/7(3) 0.08/38(3) 0.05/38(0.1)
NIN 0.19(�8) 0.22(9) 0.26/�37(�4) 0.26/0(�2) 0.17/35(4) 0.09/47(2)
IN 0.17(4) 0.18(3) 0.18/�6(0.7) 0.18/0(2) 0.11/39(3) 0.06/46(0.7)
SPC 0.10(2) 0.14(�3) 0.06/40(0.2) 0.06/0(2) 0.05/17(�1) 0.04/20(�0.3)
NPC 0.14(5) 0.16(�0.7) 0.08/43(4) 0.08/0(4) 0.05/38(�0.8) 0.04/20(0.05)
PC 0.13(4) 0.15(�2) 0.07/46(2) 0.07/0(3) 0.05/29(�1) 0.04/20(�0.1)
SO 0.08(3) 0.10(�0.8) 0.07/13(3) 0.07/0(3) 0.05/29(1) 0.03/40(0.1)
AO 0.12(3) 0.17(�0.6) 0.09/25(4) 0.06/33(3) 0.07/42(2) 0.06/14(�1)
WO 0.13(3) 0.16(�0.4) 0.10/23(1) 0.10/0(2) 0.07/30(0.5) 0.05/29(�0.1)

aRMS errors of salinity is given in psu. The RMS’s reduction (%) of assimilation from the case to which it is compared (for ODA000 the RMS’s reduction
is from NOAssim00, for ODA100 the reduction is from ODA000, for ODA110 the reduction is from ODA100, and for ODA111 the reduction is from ODA110).
The corresponding mean errors (10�2 psu) are listed in parentheses.
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again, can be explained by the slow response of the Arctic
Ocean to the data constraints in the neighboring oceans as
well as coupling effects in the system. Relatively large
assimilation errors of salinity in the North Indian Ocean,
again, is related to its sensitivity to the Indian monsoon
system and the influence of through flows on the salt budget
of the basin. In addition, the larger salinity RMS errors in

the North Atlantic Ocean in ODA111 may be associated with
the enriched spectrum of the overturning there, which will
be discussed more in section 5.
[43] Oceanic assimilation results constrained by both the

temperature and salinity observations can be viewed as an
equilibrium of the oceanic state in which the oceanic data
constraint is balanced by the surface forcings such as the

Figure 11. Same as Figure 8 but for the salinity of the top 2000 m and the contour interval is 0.01 psu.
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wind stress, heat and water fluxes from the atmosphere. By
improving surface forcings of the ocean, preliminary results
of a new coupled data assimilation experiment that includes
both atmospheric and oceanic data assimilation components
have shown an improved estimate of oceanic states [Zhang
et al., 2008]. This may be particularly true for such Oceans
as the North Indian and Atlantic where oceanic circulations
are more sensitive to the atmospheric forcings. However the
complete examination of the impact of atmospheric data
constraint on ocean state estimation needs to be done for
further understanding.

5. Thermohaline Structure of the North Atlantic
Ocean

[44] The North Atlantic (NA) thermohaline circulation
(THC) has been recognized as one of the most important
oceanic circulations to impact the global climate [e.g., Latif
et al., 2004; Zhang et al., 2006]. The detection of the NA
thermohaline structure by an oceanic observing system
could serve as the first step for the NA THC estimation
using real instrumental data (including oceanic and atmo-

spheric measurements). Also, initialization using the esti-
mated oceanic conditions might be beneficial for the
prediction of the NA THC. This section expands the
analysis of the assimilation quality of ODA000, ODA100,
ODA110 and ODA111 for the North Atlantic Ocean and
highlights the impact of an oceanic observing system on the
estimate of the NA thermohaline structure.
[45] First, we check the convergence of the assimilation

temperature and salinity. Figure 12 presents the time series
of RMS errors of the temperature and salinity in the upper
2000 m NA domain. Compared to the NOAssim00 and
NOAssim11, the assimilation errors for both temperature
and salinity in all assimilations are substantially reduced
during the first 15 years, but only ODA111 shows a stable
convergence after that. Further diagnoses reveal that the
deep convection in the North Atlantic Ocean encounters a
weak-to-strong regime transition during the last 10 years.
Due to the existence of the deep convection, the T-S
relationship governed by the oscillations of isopycnal sur-
faces could play an important role in salinity assimilation,
which could somewhat help reconstruct the NA thermoha-
line structure. This conveys some hope for estimating the

Figure 12. Time series of the RMS errors of oceanic (a) temperature and (b) salinity, computed in the
top 2000 m North Atlantic Ocean (20�–70�N) in ODA000 (dashed red line), ODA100 (solid red line),
ODA110 (dashed blue line), and ODA111 (solid blue line). The RMS errors of NOAssim00 and
NOAssim11 are plotted by dashed and solid green lines, respectively, as the reference for assimilation
evaluation.
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NA THC using the 20th century XBT, as evidenced by the
time series of the NA 200–1000 m temperature and salinity
(red lines in Figures 13a and 13b), i.e., the assimilation
using the 20th century XBT is able to rebuild the NA THC
to some extent. However, all three assimilations that use the
XBT observations show a sharp increase of temperature and
salinity errors during the period of the THC regime transi-
tion (Figure 12). Corresponding jumps are also found in the
time series of the estimated temperature and salinity of the
NA deep ocean (Figures 13c and 13d). Considering rela-
tively dense CTD and OSD temperature profiles available in
the NA deep ocean, which are included in the 20th century
network (Figure 3), results here suggest that the 20th
century ‘‘XBT’’ fails to resolve the regime transition due
to the lack of direct salinity observations. It is also observed
that even in ODA111 that uses the Argo temperature and
salinity observations the deep ocean salinity (solid blue line)
remains a separation from the truth although both share a
multidecadal trend (Figure 13d).
[46] Reconstructing the NA thermohaline structure with a

high accuracy is essential for estimating the variability of
the NA THC. This is a complex and challenging task since

the NA THC is associated with multiple factors such as
large-scale heat and salt transport in the NA domain, low-
frequency NAO (North Atlantic oscillation) forcings from
the atmosphere, fresh water forcings from sea ice and land
runoff as well as their interaction with the local topographic
features. The ODA experiments in this study have very
weak constraints on the sea surface forcings from the
atmosphere that freely responds to the ODA-generated
SSTs. Given the strong linkage between the low-frequency
NAO and the NA THC [Delworth and Greatbatch, 2000;
Delworth and Dixon, 2000], a strong constraint on the sea
surface forcings may improve the estimate of the NA THC.
Preliminary results from a fully coupled assimilation exper-
iment that adds an atmospheric data constraint into the
coupled model has shown a considerable improvement on
the estimate of the NA THC structure, which will be
thoroughly examined in the extended studies.

6. Conclusions and Discussions

[47] Employing the ensemble coupled data assimilation
system [Zhang et al., 2007] to conduct oceanic data

Figure 13. Time series of the domain-averaged oceanic (a and c) temperature and (b and d) salinity in
the North Atlantic (20�–70�N) over the upper (200–1000 m, Figures 13a and 13b) and lower (1000–
5000 m, Figures 13c and 13d) portions of the North Atlantic thermohaline circulation.
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assimilation (ODA) experiments, this study addresses the
detection of oceanic variability. A perfect twin experiment
framework is designed to assimilate the model-produced
observations based on an existing oceanic observing sys-
tem. The observations are produced by projecting an IPCC
AR4 historical simulation [Randall et al., 2007] onto the
20th century temperature and 21st century temperature and
salinity observing system, superimposed by a white noise.
These model-produced observations are assimilated into the
same IPCC AR4 coupled model to examine the impact of
temporally varying radiative forcings, oceanic initial con-
ditions and oceanic observing systems.
[48] A series of ODA experiments have been done using

the temporally varying or preindustrial fixed year green
house gas and natural aerosol radiative forcings, initial
conditions spun up by historical or fixed year radiative
forcings based on the 20th century ocean temperature or
21st century temperature and salinity network. Results
established the following findings:
[49] 1. Within an assimilation period of a few decades,

the adjustment of oceanic states is dominated by the data
constraint imposed by the assimilated observations, while
explicit knowledge of temporally varying GHGNA radia-
tive forcings added to the model integration does not
significantly impact on assimilation skill. This should not
be surprising since the observations of the ocean already
implicitly contain the information of temporally varying
radiative forcings.
[50] 2. The initial conditions spun up by the temporally

varying GHGNA radiative forcings reduce initial shocks for
assimilation, especially in deep oceans. The small initial
shock helps increase the effects of data constraint and the
forced initial conditions produce therefore better assimila-
tion skill than the control initial conditions spun up by the
preindustrial fixed year (1860) GHGNA value. Given that
both the 20th and 21st century in situ measurements do not
provide observations below 2000 m (except for some deeper
high-resolution CTD profiles), when numerical climate
predictions are made, a long time assimilation spin-up for
initialization may be necessary.
[51] 3. Both the 20th century XBT and 21st century Argo

observing systems provide adequate sampling to capture the
decadal/multidecadal trend and interannual variability of
heat content. However, the salinity observations provided
by the Argo system produce a significant improvement on
the reconstruction of the thermohaline structure, indicating
that the Argo system is very important for global oceanic
climate studies.
[52] 4. In tropical oceans, the coupling mechanism pro-

duces a strong T-S correlation (e.g., the convective precip-
itation induced by a warmer SST freshens the surface near
ocean). Thus, the salinity assimilation using temperature
observations applied to T-S covariance captures the basic
features of salinity variability. This conveys some hope that,
when we use the 20th century instrumental XBT data to
estimate the historical climate states, aided by the atmo-
spheric data constraint, the use of T-S covariance may be
able to capture some basic features of salinity variability in
the tropics.
[53] As the first step of efforts to estimate the multi-

decadal variability of oceanic climate, the obtained results
from this perfect model study may be overly optimistic. The

ODA-generated variability resulting from data constraints
in the presence of model bias contains both the data-
sampled signal and bias-induced computational artifact
[Segschneider et al., 2000; Balmaseda, 2004; Vialard et al.,
2005; Balmaseda et al., 2007]. To identify the computational
artifact from the ODA-generated variability, in follow-up
studies, we plan to perform imperfect twin experiments
based on two CGCMs that are biased with respect to each
other. In that way, we can explicitly define model bias,
examine its impact on ODA, and seek potential solutions for
the bias issue. On the other hand, the sea surface forcings in
this study remain as free modes responding to the ODA-
generated sea surface temperatures. This can restrict the
efficacy of the oceanic data constraint. A fully coupled data
assimilation experiment that includes both oceanic and
atmospheric data constraints has shown an improvement
on the estimate of oceanic states [Zhang et al., 2007]. The
correction of the surface forcings produced by the atmo-
spheric data constraint in the fully coupled assimilation is
expected to relax the oceanic model bias and thus improve
the estimate of oceanic states. Primary estimates of coupled
oceanic/atmospheric/sea ice/land states from 1980 to pres-
ent have been done [Zhang et al., 2008] by assimilating
the instrumental data in the ocean and the NCEP/NCAR
reanalysis of the atmosphere [Kalnay et al., 1996] into the
coupledmodel. Preliminary results from a set of retrospective
one year ENSO (El Nino-Southern Oscillation) forecasts
show a significantly improved skill over the old 3D-Var
assimilation system. Refined versions of ECDA, which, for
example, takes model bias correction into account, are
expected to improve the estimates of the coupled states
and enhance the accuracy of numerical climate predictions
further. In order to widen the prior PDF and reduce model
bias, a multimodel ensemble assimilation system which uses
the GFDL’s B grid (CM2.0) and finite volume (CM2.1)
coupled models to compute error statistics for filtering
analysis is under testing.
[54] In addition, in this study, we only use the in situ

oceanic measurements. As an important part of the
21st century oceanic observing system, the satellite altimet-
ric data contain integrated information of the vertical
thermohaline structure and therefore the use of altimetric
data is also expected to help relax the impact of model bias.
How to use altimetric data to build the correlation structure
to improve oceanic state estimation shall be an important
aspect that will be explored in our next efforts.

[55] Acknowledgments. The authors would like to thank C. T.
Gordon and Qian (Scott) Song, for their comments on earlier versions of
this manuscript. Thanks go to Guijun Han for her suggestions in processing
observation data during her visit at GFDL. Thanks also go to F. Zeng, Mike
Spelman, Z. Liang, and H. Lee for their help on model configuration issue.
The authors wish to express their special appreciation to Paul Nutkowitz in
Princeton University who frequently provided suggestions on the presen-
tation. The authors thank two anonymous reviewers for their thorough
examination and comments that were very useful in improving the
manuscript.

References
AchutaRao, K. M., B. D. Santer, P. J. Gleckler, K. E. Taylor, D. W. Pierce,
T. P. Barnett, and T. M. L. Wigley (2006), Variability of ocean heat
uptake: Reconciling observations and models, J. Geophys. Res., 111,
C05019, doi:10.1029/2005JC003136.

Anderson, J. L. (2003), A local least squares framework for ensemble
filtering, Mon. Weather Rev., 131, 634–642.

C12018 ZHANG ET AL.: DETECTION OF OCEANIC VARIABILITY BY CDA

18 of 19

C12018



Balmaseda, M. A. (2004), Ocean data assimilation for seasonal forecasts,
paper presented at Seminar on Recent Developments in Data Assimila-
tion for Atmosphere and Ocean, Eur. Cent. for Medium-Range Weather
Forecasts, 8–12 Sept.

Balmaseda, M. A., D. Dee, A. Vidard, and D. T. Anderson (2007), A
multivariate treatment of bias for sequential data assimilation: Applica-
tion to the tropical oceans, Q. J. R. Meteorol. Soc., 133, 167–179.

Carton, J. A., G. C. Chepurin, and X. Cao (2000), A simple ocean data
assimilation analysis of the global upper ocean 1950–95. Part I: Metho-
dology, J. Phys. Oceanogr., 30, 294–309.

Collins, W. D., M. L. Blackman, G. B. Bonan, J. J. Hack, T. B. Henderson,
J. T. Kiehl, W. G. Large, and D. S. Mckenna (2006), The community
climate system model version 3 (CCSM3), J. Clim., 19, 2122–2143.

Delworth, T. L., and K. Dixon (2000), Implications of the recent trend in
the Arctic/North Atlantic oscillation for the North Atlantic thermohaline
circulation, J. Clim., 13, 3721–3727.

Delworth, T. L., and R. J. Greatbatch (2000), Multidecadal thermohaline
circulation variability driven by atmospheric surface flux forcing, J. Clim.,
13, 1481–1495.

Delworth, T. L., et al. (2006), GFDL CM2 global coupled climate models,
part I: Fornulation and simulation characteristics, J. Clim., 19(5), 643–
674.

Dee, J. (2005), Bias and data assimilation, Q. J. R. Meteorol. Soc., 131,
3323–3343.

Dee, J., and A. M. da Silva (1998), Data assimilation in the presence of
forecast bias, Q. J. R. Meteorol. Soc., 124, 269–295.

Deser, C., and A. S. Phillips (2009), Atmospheric circulation trends, 1950–
2000: The relative roles of sea surface temperature forcings and direct
atmospheric radiative forcings, J. Clim., 22, 396–413.

Forget, G., and C. Wunsch (2007), Estimated global hydrographic varia-
bility, J. Phys. Oceanogr., 37, 1997–2008.

Geophysical Fluid Dynamics Laboratory Global Atmospheric Model
Development Team (2004), The new GFDL global atmosphere and land
model AM2/LM2: Evaluation with prescribed SST simulations, J. Clim.,
17, 4641–4673.

Gnanadesikan, A., et al. (2006), GFDL CM2 global coupled climate
models, part II: The baseline ocean simulation, J. Clim., 19(5), 675–697.

Griffies, S. M. (2005), Some ocean model fundamentals, in Ocean Weather
Forecasting: An Integrated View of Oceanography, edited by E. P.
Chassignet and J. Verron, pp. 19–74, Springer, Berlin.

Griffies, S. M., et al. (2005), Formulation of an ocean model for global
climate simulations, Ocean Sci., 1, 45–79.

Hunke, E. C., and J. K. Dukowicz (1997), An elastic-viscous-plastic model
for sea ice dynamics, J. Phys. Oceanogr., 27, 1849–1867.

Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull.
Am. Meteorol. Soc., 77, 437–471.

Latif, M., et al. (2004), Reconstructing, monitoring, and predicting
multidecadal-scale changes in the North Atlantic thermohaline circulation
with sea surface temperature, J. Clim., 17, 1605–1614.

Levitus, S., J. I. Antonov, T. P. Boyer, and C. Stephens (2000), Warming of
the World Ocean, Science, 287, 2225–2229.

Levitus, S., J. I. Antonov, and T. P. Boyer (2005), Warming of the World
Ocean, 1955–2003, Geophys. Res. Lett., 32, L02604, doi:10.1029/
2004GL021592.

Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith
(2000), A new boundary layer mixing scheme. Part I: Scheme description
and single-column model tests, Mon. Weather Rev., 128, 3187–3199.

Manabe, S. (1979), Effect of increasing the CO2 concentration on the
climate of a general circulation model, in Carbon Dioxide Effects
Research and Assessment Program: Workshop on the Global Effects of
Carbon Dioxide from Fossil Fuels, pp. 100–101, U.S. Dep. of Energy,
Washington, D. C.

Manabe, S., and R. J. Stouffer (1979), A CO2-climate sensitivity study with
a mathematical model of the global climate, Nature, 282(5738), 491–
493.

Moorthi, S., and M. J. Suarez (1992), Relaxed Arakawa-Schubert: A para-
meterization of moist convection for general circulation models, Mon.
Weather Rev., 120, 978–1002.

Randall, D. A., et al. (2007), Climate models and their evaluation, in
Climate Change 2007: The Physical Science Basis. Contribution of
Working Group I to the Fourth Assessment Report of the Intergovern-
mental Panel on Climate Change, edited by S. Solomon et al., chap. 8,
pp. 589–662, Cambridge Univ. Press, Cambridge, U. K.

Segschneider, J., M. Balmaseda, and D. L. T. Anderson (2000), Anomalous
temperature and salinity variations in the tropical Atlantic: Possible
causes and implications for the use of altimeter data, Geophys. Res. Lett.,
27(15), 2281–2284.

Stouffer, R. J., A. J. Weaver, and M. Eby (2004), A method for obtaining
pre-twentieth century initial conditions for use in climate change studies,
Clim. Dyn., 23, 327–339.

Vidard, J., F. Vitart, M. A. Balmaseda, T. N. Stockdale, and D. L. T.
Anderson (2005), An ensemble generation method for seasonal forecast-
ing with an ocean-atmosphere coupled model, Mon. Weather Rev., 131,
1379–1395.

Winton, M. (2000), A reformulated three-layer sea ice model, J. Atmos.
Oceanic Technol., 17, 525–531.

Wyman, B. L. (1996), A step-mountain coordinate general circulationmodel:
Description and validation of medium-range forecasts, Mon. Weather
Rev., 124, 102–121.

Zhang, R., T. L. Delworth, and I. M. Held (2006), Can the Atlantic Ocean
drive the observed multidecadal variability in Northern Hemisphere mean
temperature?, Geophys. Res. Lett., 34, L02709, doi:10.1029/
2006GL028683.

Zhang, S., M. J. Harrison, A. Rosati, and A. T. Wittenberg (2007), System
design and evaluation of coupled ensemble data assimilation for global
oceanic climate studies, Mon. Weather Rev., 135, 3541–3564.

Zhang, S., A. Rosati, M. Harrison, R. Gudgel, and W. Stern (2008), GFDL’s
coupled ensemble data assimilation system, 1980–2006 coupled reanaly-
sis and its impact on ENSO forecasts, paper presented at 3rd Interna-
tional Conference on Reanalysis, World Clim. Res. Prog., Tokyo, 28 Jan.
to 1 Feb.

�����������������������
M. J. Harrison, A. Rosati, and S. Zhang, Geophysical Fluid Dynamics

Laboratory, Princeton University, PO Box 308, Princeton, NJ 08542,
USA. (shaoqing.zhang@noaa.gov)

C12018 ZHANG ET AL.: DETECTION OF OCEANIC VARIABILITY BY CDA

19 of 19

C12018



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


