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ABSTRACT

The Atlantic meridional overturning circulation (AMOC) has an important influence on climate, and yet

adequate observations of this circulation are lacking. Here, the authors assess the adequacy of past and

current widely deployed routine observing systems for monitoring the AMOC and associated North Atlantic

climate. To do so, this study draws on two independent simulations of the twentieth century using an In-

tergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled climate model.

One simulation is treated as ‘‘truth’’ and is sampled according to the observing system being evaluated. The

authors then assimilate these synthetic ‘‘observations’’ into the second simulation within a fully coupled

system that instantaneously exchanges information among all coupled components and produces a nearly

balanced and coherent estimate for global climate states including the North Atlantic climate system. The

degree to which the assimilation recovers the truth is an assessment of the adequacy of the observing system

being evaluated. As the coupled system responds to the constraint of the atmosphere or ocean, the assessment

of the recovery for climate quantities such as Labrador Sea Water (LSW) and the North Atlantic Oscillation

increases the understanding of the factors that determine AMOC variability. For example, the low-frequency

sea surface forcings provided by the atmospheric and sea surface temperature observations are found to excite

a LSW variation that governs the long-time-scale variability of the AMOC. When the most complete modern

observing system, consisting of atmospheric winds and temperature, is used along with Argo ocean tem-

perature and salinity down to 2000 m, a skill estimate of AMOC reconstruction is 90% (out of 100% maxi-

mum). Similarly encouraging results hold for other quantities, such as the LSW. The past XBT observing

system, in which deep-ocean temperature and salinity were not available, has a lesser ability to recover the

truth AMOC (the skill is reduced to 52%). While these results raise concerns about the ability to properly

characterize past variations of the AMOC, they also hold promise for future monitoring of the AMOC and for

initializing prediction models.

1. Introduction

Model studies indicate that the Atlantic meridional

overturning circulation (AMOC) plays an important role

in decadal climate fluctuations in the Northern Hemi-

sphere (Zhang et al. 2006), including Atlantic hurricane

activity (Goldenberg et al. 2001) and flood and drought in

North America (Enfield et al. 2001), Europe (Sutton and

Hodson 2005), and northern Africa (Folland et al. 1986).

Recent advances in observations (Kanzow et al. 2007;

Bryden et al. 2005) and simulations (Delworth et al. 1993;

Delworth 1996; Jungclaus et al. 2005; Eden and Jung

2001; Griffies and Bryan 1997; Delworth and Mann 2000;

Delworth and Greatbatch 2000; Johnson et al. 2007) in

coupled general circulation models (CGCMs) have en-

hanced our understanding of the AMOC. As a central

component of the North Atlantic climate system, the

AMOC is closely associated with climatological features

and low frequency variability of the atmosphere and ocean

in the Atlantic domain (Fig. 1)—notably the atmospheric

North Atlantic Oscillation (NAO), Labrador Sea Water

(LSW), Greenland–Iceland–Norwegian (GIN) seawater

(GSW), and the North Atlantic subpolar–subtropical gyre

system (NAG). The NAO provides a strong driving forc-

ing for LSW and GSW, which in turn affects formation of

North Atlantic Deep Water (NADW) and the AMOC.

The NAG directly influences poleward heat and salt

transport, NADW formation (Hilmer and Jung 2000), and

the meridional overturning (Hátún et al. 2005). How-

ever, neither observations nor modeling has provided a

Corresponding author address: Shaoqing Zhang, GFDL/NOAA,

Princeton University, P.O. Box 308, Princeton, NJ 08542.

E-mail: shaoqing.zhang@noaa.gov

1 OCTOBER 2010 Z H A N G E T A L . 5311

DOI: 10.1175/2010JCLI3677.1



complete picture of the AMOC in time and space, and

our knowledge of the basic features of AMOC and its

mechanism in the real world still remains limited. In

particular, how has the AMOC varied in the past and

how can its future evolution be predicted?

Understanding of historical AMOC variations and

initialization of coupled climate models is critical for the

prediction of the AMOC. Various approaches have been

used to reconstruct the AMOC history by combining

instrumental data with model dynamics. Wunsch and

Heimbach (2006) estimated variability of the AMOC by

correcting surface forcings to obtain ocean states close to

observed data based on an adjoint method defined on a

long time window. Balmaseda et al. (2007b) reconstructed

the ocean states directly using observed ocean data with

a sequential approach in terms of optimal interpolation.

Both have shown some promising results. However, it

remains unclear how adequate the existing observing

system is to represent and monitor the North Atlantic

climate system and whether the estimated ocean states

are optimal for initializing CGCMs for numerical climate

prediction. Also, the infrequency of direct measurements

of the AMOC and the presence of model bias make it

difficult to evaluate the reconstructed AMOC and related

North Atlantic climate system quantitatively. Here we

apply an ensemble-coupled data assimilation (ECDA)

system (Zhang et al. 2007) to perfect model experiments

for studying the adequacy of the temporally varying cli-

mate observing system in monitoring the AMOC and

North Atlantic climate. Based on a certain observing sys-

tem, through sufficiently blending data into coupled model

dynamics, the fully coupled ensemble assimilation here

pursues a balanced and coherent climate estimation in a

probabilistic approach in which the ensemble mean serves

as the best estimate, and all higher-order moments mea-

sure the uncertainty of the estimate.

After the description of the model and assimilation

method used in section 2, section 3 presents a particular

observation system simulation experiment based on ex-

isting observing networks. The numerical results about

the accuracy of existing observing systems to monitor the

AMOC and North Atlantic climate system are presented

and discussed in section 4. Summary and discussions are

given in section 5.

2. Model and assimilation method

a. A fully coupled GCM

The coupled model used in this study is a B-grid (Wyman

1996) finite difference atmospheric model [the second-

generation Geophysical Fluid Dynamics Laboratory

(GFDL) global atmosphere and land model (AM2–LM2),

GFDL Global Atmospheric Model Development Team

(2004)] coupled with the fourth version of the Modular

Ocean Model (MOM4) (Griffies et al. 2005). This is one

of two GFDL Intergovernmental Panel on Climate

Change Fourth Assessment Report (AR4) models, called

the Climate Model version 2.0 (CM2.0) (Randall et al.

2007, chapter 8). The atmosphere model has 24 vertical

levels and 2.58 longitude by 28 latitude horizontal resolu-

tion. The physics package includes a K-profile planetary

boundary layer (Lock et al. 2000), relaxed Arakawa–

Schubert convection (Moorthi and Suarez 1992), and

a simple local parameterization of the vertical momen-

tum transport by cumulus convection. The ocean model

is configured with 50 vertical levels, 22 levels having

uniform 10-m thickness in the top 220 m, and 18 3 18

horizontal resolution telescoping to 1/38 meridional spacing

near the equator. The model has an explicit free surface

with a freshwater flux exchange between the atmo-

sphere and ocean. Parameterized physical processes in-

clude k-profile parameterization vertical mixing, neutral

FIG. 1. Schematic of the North Atlantic climate system, charac-

terized by the Atlantic meridional overturnig circulation (AMOC),

which is a coupled product by the atmospheric North Atlantic

Oscillation, oceanic deep convection in the Labrador Sea and

Greenland–Iceland–Norweigian seas as well as the North Atlantic

subpolar–subtropical gyre system (NAG). Given a certain atmo-

spheric and/or oceanic observing system, the coupled data assimi-

lation system is expected to resolve these circulations to some

extent through instantaneously exchanging information among all

coupled components. The top (bottom) of the box represents the

atmospheric (oceanic) circulation systems over the North Atlantic

(NA) domain. The typical NAO pattern [marked by (1)] shown in

the top is the first mode of EOF of the 30-yr monthly NA surface

pressure anomalies of the model simulation serving as the truth.

The thick dashed black lines marked by (2) and (3) indicate the

position of a vertical section where LSW and GSW are identified

between two isopycnal surfaces. The cyclonic subpolar gyre (green)

and anticyclonic subtropical gyre (red) system in the North At-

lantic Ocean are represented by (4). NAC and EGC stand for the

Norwegian Atlantic Current and the East Greenland Current, re-

spectively.
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physics, a spatially dependent anisotropic viscosity, and

a shortwave radiative penetration depth that depends on

a prescribed climatological ocean color. Insolation var-

ies diurnally and the wind stress at the ocean surface is

computed using the velocity of the wind relative to the

surface currents. An efficient time-stepping scheme

(Griffies 2005) is employed. More details can be found in

Gnanadesikan et al. (2006) and Griffies et al. (2005). The

Sea Ice Simulator in the coupled model is a dynamical ice

model with three vertical layers (one for snow and two for

ice) and five ice thickness categories. The elastic–viscous–

plastic technique (Hunke and Dukowicz 1997) is used to

calculate ice internal stress, and the thermodynamics is

a modified Semtner three-layer scheme (Winton 2000).

The coupled components of this model interact with each

other through exchanged fluxes (Fig. 2a).

b. An ECDA system

Ensemble coupled data assimilation (ECDA) esti-

mates the probability distribution function (PDF) of cli-

mate states by combining the prior PDF derived from

coupled model dynamics and the observational PDF

(schematically illustrated in Fig. 2b) (Jazwinski 1970).

The prior PDF is discretely represented by a set of en-

semble model integrations that run in parallel. Filtering

is implemented by a multivariate linear regression that

projects an observational increment onto all correlated

model variables using the temporally varying error co-

variance computed from the model ensemble (Anderson

2003; Zhang and Anderson 2003). This multivariate data

projection maintains mostly physical balances such as the

geostrophy in the atmosphere and the T–S relationship in

the ocean (Kalnay 2003). The data projection only adjusts

the prior PDF up to the second-order moment, and all

higher-order moments remain (Anderson 2003). Thus,

the filtering is expected to maintain the nonlinearity of

climate evolution such as the bimodal character in the

regime transition of AMOC. Also, the ECDA framework

allows all coupled components to be adjusted by data

through instantaneously exchanging information among

them (see the illustration in Fig. 2a). It is expected to

produce an optimal estimate of the coupled model en-

semble by sufficiently blending data into model dynamics

(Zhang et al. 2007). In this way, the ensemble mean is the

estimate for the state, and all higher-order moments

measure the uncertainty of the estimate. The ensemble

FIG. 2. Cartoon of how (a) data assimilation (red arrows) in the GFDL coupled model

transfers observational information into the coupled atmosphere–ocean–land–sea ice com-

ponent by exchange fluxes (black arrows), and (b) an ensemble filter updates the probability

distribution for a scalar variable. The green arrow in (a) denotes the radiative forcings ex-

pressed by the atmospheric greenhouse gas and natural aerosol (GHGNA), and the dashed line

means that the GHGNA radiative forcings in the assimilation may be set as a fixed year (1860).

The red arrows in (a) indicate that the oceanic observations are allowed to impact all oceanic-

state variables including the wind stresses at the sea surface, and the reanalysis atmospheric

temperature and wind are allowed to make a cross adjustment among the temperature and

wind. (top) Here, (b) represents (left) the prior distribution derived from model ensemble

integrations starting from the previous assimilation results and (right) an observational dis-

tribution (usually Gaussian). (bottom) In (b), (left) an ensemble-filtering process combines the

observational and prior distributions to form (right) an updated so-called analyzed distribution

realized by the states of a set of ensemble members, which are initial conditions for the next

ensemble integrations.
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data assimilation is tested using 6, 12, and 24 members,

and no significant improvement is found from 12 to 24

members. Based on the test results, all ECDA experi-

ments are performed with a 12-member ensemble that is

used to compute the state estimation (ensemble mean)

and spread of the estimate. It is worth mentioning that test

results show that the reconstruction has a small sensitivity

on the initial states at the differing point of the control

(CTL), from which the assimilation starts, as well as ex-

ternal radiative forcings used in the assimilation model.

3. Simulation of temporally evolving ocean
observing system

a. Temporal evolution of ocean observations

The ocean observing system has been built up over

time, but historically the subsurface ocean has been ob-

served very sparsely. The recent deployment of a global

array of profiling floats by the Argo (Array for Real-Time

Geostrophic Oceanography) program (available online

at http://www.argo.ucsd.edu) provides potentially an ad-

vance in our ability to monitor ocean heat content (see

e.g., Ivchenko et al. 2006) and density variability. It is

important to understand how this nonstationary system

impacts the detection of decadal variability. For example,

the temporally evolving nature of the ocean observing

system, particularly due to the paucity of salinity data in

XBT as well as XBT data only going to 500-m depth, may

give rise to spurious decadal variability, making difficul-

ties in the assessment of the monitoring. One simplified

way to study this issue is by observing system simulation

experiments within a perfect model framework for each

period. In particular, we want to contrast the twentieth-

century XBT network with the twenty-first-century Argo

network. The twentieth-century XBT profiles are largely

the same as used by Levitus et al. (2005) for the World

Ocean Analysis (WOA), mainly from XBT, but also

including CTD, drifting buoy (DRB), Ocean Weather

Station data (OSD), undulating oceanographic recorder

(UOR), and moored buoy (MRB), hereafter briefly called

XBT. Throughout this paper we will use the notation O

with a subscript (superscript) representing the oceanic

(atmospheric) observing network, so OAtm
XBT is the XBT

network with atmospheric variables and OAtm
Argo is the Argo

network with atmospheric variables. Beside OAtm
XBT and

OAtm
Argo three additional observing systems (see Table 1) are

also used to simulate the evolution of climate observations

from preindustrial to present: OAtm
SSTt—atmospheric winds

and temperature plus tropical sea surface temperature

(SSTt); OXBT—the twentieth-century ocean alone tem-

perature observations; and OArgo—the twenty-first-century

temperature and salinity network (Argo). While the OAtm
SSTt

system provides only the sea surface forcings for the ocean,

which consists of constraints of the atmospheric wind and

temperature and tropical SSTs, the other four observing

systems directly constrain the subsurface ocean to some

extent. The older twentieth-century OXBT system has data

primarily along commercial shipping routes (Fig. 3a), with

ocean temperatures sampled only down to a depth of

500 m (except for a small amount of CTDs and OSDs that

go deeper; Fig. 3d). The more recent twenty-first-century

OArgo system deploys a more regular network (Figs. 3b,c)

that samples both temperature and salinity down to 2000 m

TABLE 1. Five typical climate observing systems from the twentieth century to the twenty-first century. Note the following: early (E);

middle (M); later (L); and for simplicity only 308S–308N SST is used here without destroying the high latitude’s water property by

excluding direct SST insertion there (SSTt).

Obs

system

Atmosphere Ocean Historical

period

Data

constraintsData* Format Data Format

OAtm
SSTt u, y, T Reanalysis

gridded

SSTt Gridded Twentieth–twenty-first

century

Surface forcings

driving deep oceans

OXBT — — SSTt, XBT, CTD

MBT, OSD MRB

Gridded or in situ ML Twentieth century Twentieth century

ocean-only

observing system

OAtm
XBT u, y, T Reanalysis

gridded

SSTt, XBT, CTD

MBT, and OSD

MRB

Gridded or in situ ML Twentieth century Twentieth century

climate observing

system

OArgo — — SSTt Argo Gridded or in situ Twenty-first century Twenty-first century

ocean-only

observing system

OAtm
Argo u, y, T Reanalysis

gridded

SSTt Argo Gridded or in situ Twenty-first century Twenty-first

century climate

observing system

* Atmospheric data include only reanalysized temperature and wind to simulate the present atmospheric observing system that lacks

sufficient and reliable moisture observations, reflecting the fact that cloud in the atmosphere modeling is the largest uncertainty.
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(Figs. 3e,f), in which a roughly global coverage began with

2003 and the full deployment finished in 2007. It is worth

noting that MRB, an important array to monitor the trop-

ical ocean in the twentieth-century ocean observing net-

work, began in the early 1980s.

b. Experimental design in perfect model framework

Model bias has been recognized as a serious obstacle to

reliable representation of climate variability by combin-

ing models and data (Dee and Sliva 1998; Dee 2005;

Balmaseda et al. 2007a). As a first step, we use a perfect

model twin-experiment framework to avoid the com-

plexity associated with model bias. We employ a state-of-

the-art global climate model (GFDL CM2.0) and make

use of multiple simulations of the twentieth century with

that model. These simulations start from differing points

in a long control integration and are forced with the same

sets of radiative forcing changes over the twentieth and

early twenty-first centuries, including changes in green-

house gases and aerosols. The model reproduces many

FIG. 3. The coverage of observed profiles of (a) 1995 including XBT, CTD, MBT, OSD, and MRB; (b) 2005 Argo temperature; and

(c) 2005 Argo salinity in the North Atlantic domain and distribution of observed profile numbers in the North Atlantic channel for (d)

XBT, CTD, MBT, OSD, and MRB; (e) Argo temperature; and (f) Argo salinity. Each number in a y–z model gridbox represents the sum

of profiles in all grid boxes with the same latitude and depth bounds over the period of 1976–2000. The 2005 Argo network is repeatedly

used to simulate a temporally evolving Argo network. Note the discontinuities in both XBT and Argo reflect the synthetic effect of the

difference of model and observation resolutions, as well as the observation quality control. Also note that while this figure shows an

example of the distribution of subsampling locations in the North Atlantic domain, global observational data are used in all assimilation

experiments in this study.
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aspects of the observed climate system (see Delworth

et al. 2006; Gnanadesikan et al. 2006). One simulation

with that model is taken as ‘‘truth.’’ Synthetic observa-

tions (Sobs) are then created by sampling from the truth

simulation using locations and times when observations

were available in various observing systems. These Sobs

are then assimilated into the second simulation. The de-

gree to which the assimilation of Sobs is able to constrain

the second simulation, such that it reproduces the truth

simulation, is then taken as a measure of the adequacy of

the observing system through the use of error statistics

such as correlation and rms error (RMSE). We take the

atmospheric reanalysis as the atmospheric observations,

making the most use of great efforts having been done for

the atmosphere data assimilation in the community (e.g.,

Kalnay et al. 1996). To simulate the availability of MRBs

and the second version of the National Centers for En-

vironmental Prediction (NCEP)–National Center for

Atmospheric Research (NCAR) atmospheric reanalysis

and to leave a few years as a spinup time for ocean data

assimilation, we set the 1976–2005 truth simulation as the

target that the assimilations using various observing sys-

tems try to recover.

In this perfect model study, the standard IPCC historical

simulation that starts from a 300-yr spinup integration

initialized from the previous integration (h1) (Stouffer

et al. 2004) is set as truth, whereas another historical sim-

ulation that starts from a 380-yr spinup integration ini-

tialized from the previous integration (h3) is set as the

Control. Specifically, the daily ocean temperature or tem-

perature and salinity are extracted from the truth simula-

tion over the period 1976–2005 so that the truth is sampled

by a particular observing system according to times and

locations where observations were available. The sam-

pling process is basically a trilinear interpolation, added

by white noise to simulate random observational errors

(Zhang et al. 2007; 2009). The standard deviation of the

white noise is 0.58C for temperature and 0.1 psu for sa-

linity at the sea surface and exponentially decays to zero

by 2000 m. The atmospheric Sobs are the ‘‘reanalysis’’

daily model-gridded atmospheric temperature and wind

fields with added white noise, which have a standard de-

viation of 18C for temperature and 1 m s21 for velocities.

Starting from 1 January 1976 we assimilate the Sobs into

the second CM2.0 simulation of the twentieth century (we

call this second simulation the Control), and evaluate the

degree to which the observations constrain the second

simulation to reproduce the truth simulation by conduct-

ing error statistics referred to as the truth. Note that, while

the temporally evolving twentieth-century XBT observ-

ing network (1976–2005) is used in this study, the Argo

network in 2005, which has moderate coverage of the

Argo deployment, is repeatedly used to simulate the

evolution of the twenty-first-century Argo observing sys-

tem. It is worth mentioning that use of the 2005 network

may underestimate the monitoring skill of the Argo

system compared to the case with the full deployment,

which is unavailable for the assimilation over a few de-

cades required for error statistics to evaluate the moni-

toring adequency. However, given the scope of this study,

it will not change the conclusions we drawn from the these

experiments.

4. Adequacy of monitoring the AMOC and North
Atlantic climate in various observing systems

Applying each observing system into ECDA, we assess

how well a given observing system can recover the vari-

ability and strength of the AMOC and related aspects of

the North Atlantic climate system (Fig. 1). We define the

AMOC index as the maximum value of the overturning

streamfunction between 408–708N in the North Atlantic

section. The LSW (GSW) index is defined as the averaged

thickness between two isopycnal surfaces s1.5 5 34.62 and

34.56 (34.96 and 34.86) in the vertical section denoted by

(2) LSW [(3) GSW)] in Fig. 1, which corresponds to the

model-simulated deep mode water in the Labrador Sea

(Fram Strait). This mode water index is also referred to as

an index of deep convection in the Labrador (Greenland–

Iceland–Norwegian) Sea. Note that owing to the model

bias of the rather intermittent and shallow convection in

the North Atlantic Ocean (Gnanadesikan et al. 2006), the

model mode water is lighter than the observed annual

mean (a density range for the observed annual-mean LSW

is 34.62–34.72, for instance). The NAO (NAG) index is

defined as the linear regression coefficient of the North

Atlantic (208–658N) 30-yr surface pressure anomaly (SPA)

[sea surface height anomaly (SSHA)] onto the first mode

of the empirical orthogonal function of SPA (Thompson

and Wallace 2000) (SSHA) (Häkkinen and Rhines 2004)

of the truth simulation.

The time series of the defined NAO, NAG, LSW, GSW,

and AMOC indices produced by two model simulations

(the truth and the Control) and the estimates from five

observing systems (OAtm
SSTt, OXBT, OArgo, OAtm

XBT and OAtm
Argo;

see Table 1) are shown in Figs. 4 and 5. The anomaly cor-

relation coefficient (ACC) and RMSE of the circulation

estimate (ensemble mean) generated from the control

simulation and the assimilations based on these observing

systems are listed in Table 2. In particular, to analyze the

meridional transport in different data constraint schemes

the vertical structure of the time-mean errors of the esti-

mated AMOC streamfunction from the Control simula-

tion and the five assimilations is shown in Fig. 6. Finally,

we define a score of monitoring skill to measure the ad-

equacy of each observing system to monitor each aspect of
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FIG. 4. Time series of (a) the atmospheric NAO, (b) NAG, (c) GSW, and (d) LSW estimated

by five typical climate observing systems to simulate the evolution of the climate observing

system from preindustrial to present: OAtm
SSTt (blue), OXBT (dashed green), OArgo (dashed red),

OAtm
XBT (green), and OAtm

Argo (red). The light-green and light-red shaded areas represent the cor-

responding ensemble spread measured by the ensemble standard deviation (see section 2b) of

the assimilations using OAtm
XBT and OAtm

Argo. Except for the NAO index shown as a 5-yr running

mean, all others are shown as 1-yr running means.
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the North Atlantic climate system quantitatively. The

score is defined as the normalized RMSE of an estimate

by the RMSE of the Control as [1 2 min(1, RMSEAssim/

RMSEControl)] 3 100%, so a 100% score attributes an

observing system a perfect monitoring skill for a particular

aspect of the North Atlantic climate system whereas a 0%

score represents that the observing system has no moni-

toring skill at all for this aspect. The scores of all observing

systems in monitoring the NAO, NAG, GSW, LSW, and

AMOC are summarized in Fig. 7. The standard deviation

(sdv) of each score evaluated from individual ensemble

members, as shown in parentheses, is a measure of the

uncertainty of the estimated monitoring skill.

a. NAO, NAG, LSW, and GSW

Generally, only the constraint of atmospheric observa-

tions can produce a correct phase of the NAO variations

(Fig. 4a), corresponding to a nearly perfect ACC (column 3

of Table 2). Otherwise, the NAO signal constrained by

an oceanic observing system (OXBT or OArgo) is very weak,

and the corresponding ACC is very low. While the con-

straint of an ocean observing system produces a good es-

timate for the NAG strength and phase (a small RMSE

and high ACC, see columns 4 and 5), only the surface

forcings (OAtm
SSTt) cannot drive out a correct strength for the

NAG (the RMSE is large) in the 30-yr assimilation period,

although a roughly correct variation phase (a high ACC) is

obtained for this wind-driven oceanic circulation (Fig. 4b).

On the other hand, only the direct oceanic constraint from

an ocean observing system can produce a high ACC for

LSW, while obtaining a high ACC for GSW (.0.6, for

instance) requires the constraints of both the atmosphere

and ocean. Also, only the Argo observing system (OArgo),

which provides both temperature and salinity observations

FIG. 5. Time series of the monitored AMOC by five typical climate observing systems from

preindustrial to present. The observing systems (see Table 1) being evaluated are OAtm
SSTt OXBT,

OArgo, OAtm
XBT and OAtm

Argo The light-green and light-red shaded areas represent the corresponding

ensemble spread measured by the ensemble standard deviation (see section 2b) of the assimilations

using OAtm
XBT and OAtm

Argo. All statistics are based on monthly-mean data with a 1-yr running mean.

TABLE 2. The anomaly correlation coefficient (ACC) and rms error (RMSE) produced by the assimilation of various climate observing

systems for the NAO, NAG, GSW, LSW, and AMOC. The case of a free model Control without any data constraint is also listed as

a reference.

Obs system

NAO NAG GSW LSW AMOC

RMSE ACC RMSE ACC RMSE ACC RMSE ACC RMSE ACC

Control 0.39 0.2 0.93 20.3 544 20.36 338 20.7 2.65 20.17

OAtm
SSTt 0.08 1 0.63 0.95 769 0 207 0.57 1.03 0.85

OXBT 0.34 0.03 0.38 0.86 461 0.41 205 0.81 1.25 0.91

OArgo 0.29 0.34 0.26 0.96 352 0 55 1 0.75 0.93

OAtm
XBT 0.08 1 0.42 0.96 315 0.68 335 0.91 1.28 0.98

OAtm
Argo 0.06 1 0.16 1 119 0.83 44 1 0.27 0.98
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for the ocean, can significantly constrain the strength of

LSW. However, without the atmospheric constraint, even

the use of OArgo cannot significantly recover the strength

of GSW (see columns 6–9 of Table 2 and Figs. 4c,d). Next,

we will analyze the response of the atmosphere and ocean

to the data constraint(s) in a coupled system and try to get

more understanding on these phenomena.

In the North Atlantic climate system, if we assume cou-

pling feedbacks are not crucial (Delworth and Greatbatch

2000), the assimilation using OAtm
SSTt is largely equivalent to

an ocean-only model simulation driven by surface fluxes

(mostly defined by the surface air temperature and wind in

this case) initialized from an ocean state in the control.

This experiment helps us understand how the North At-

lantic deep ocean responds to the signals in surface

forcings. Comparing the blue line to the black line in Figs.

4a and 4d, respectively, it is seen that while the assimilation

of the atmosphere and tropical SST observations (OAtm
SSTt)

recovers the atmospheric NAO with a high accuracy and

a small uncertainty (Fig. 4a and column 1 of Fig. 7), the

established low-frequency NAO signals drive out a lagged

LSW variation (Fig. 4d) as a free response of the ocean to

the surface forcings. (Note in the targeted period of the

assimilation the LSW’s variations of the control happen to

be out of the phase of the truth and show an ACC of 20.7.)

This result shows an example that the NADW is not

only the result of a barotropic adjustment of the ocean

to wind forcings, and it could be associated with large-scale

transport processes and sea ice activities driven by the

low-frequency atmospheric forcings. However, the lagged

FIG. 6. Vertical distribution of the time-mean errors of the AMOC streamfunction for (a) the Control (CTL) and assimilations of (b) OAtm
SSTt

(c) OXBT, (d) OArgo, (e) OAtm
XBT and (f) OAtm

Argo. Contour interval is 0.5 Sv (Sv [ 106 m3 s21).
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phase of LSW derived from OAtm
SSTt produces a large RMSE

for LSW and therefore renders a very low monitoring skill

(39%) as there is no subsurface observational constraint.

The assimilations using only ocean observations (OXBT

and OArgo) solve an inverse problem of ocean modeling in

a coupled system in which the ocean states are directly

adjusted by projecting data-sampled signals onto the

model space, and the sea surface maintains a balance with

the feedbacks of the atmosphere to the adjusted ocean

states. Compared to the case of only surface forcings

(OAtm
SSTt), the direct subsurface constraints in OXBT and

OArgo significantly change the phase of LSW. While the

assimilation of temperature and salinity in OArgo im-

proves the phase of LSW dramatically, the assimilation of

temperature only in OXBT produces a phase error of LSW

almost equally large as in the assimilation of OAtm
SSTt but

with the opposite sign. This leads to a systematic error in

the mean-state strength of the Labrador Sea deep con-

vection derived from OXBT, rendering a much lower

LSW monitoring skill (39%) with a bigger uncertainty

(1.5% sdv) than using OArgo (84% with 0.4% sdv; see

columns 2 and 3 of Fig. 7). In the assimilation of OXBT,

salinity is adjusted using the temperature observations

applied to the model background T–S relationship to

construct a thermohaline structure. From the large LSW

error produced by OXBT, we may have a reasoning that the

salinity adjustment based on a model T–S relationship is

perhaps insufficient, and the Argo’s direct salinity obser-

vation is therefore particularly important for reconstructing

the North Atlantic climate system. This point will be

expanded more in section 4b when we analyze the ac-

curacy of the mean state of the estimated AMOC

streamfunction.

Through adding the atmospheric data constraint, the

assimilations of OAtm
XBT and OAtm

Argo produce very high NAO

monitoring skills with small uncertainties—that is, 80%

with 1.3% sdv and 85% with 0.4% sdv, respectively (see

columns 4 and 5 of Fig. 7). The monitoring skill for the

NAO in OAtm
Argo is slightly higher than in OAtm

XBT which may

reflect a positive impact of improved ocean conditions

resolved from the Argo observations on atmospheric

circulations even in the presence of a strong atmospheric

data constraint. However, combining with the deficit of

the oceanic temperature-only constraint, the improved

surface forcings in the assimilation of OAtm
XBT overestimate

the strong deep convection between year 18 and 25,

leading to the loss of the LSW monitoring skill of OAtm
XBT.

In contrast, combined with the well-resolved North

Atlantic thermohaline structure by OArgo, the OAtm
Argo at-

mospheric constraint further enhances the LSW’s moni-

toring skill up to 87%.

Compared to LSW, GSW variability has more influence

from the atmospheric data constraint. On the one hand,

this is probably associated with the complex mechanism

of GIN Sea Mode Water formation as will be discussed

more in the next section. On the other hand, the fact that

the Nordic seas are the most poorly ocean-sampled areas

makes it difficult to clearly understand the contribution

of an oceanic constraint to GSW variability. This area has

only a weak oceanic constraint, mostly from the oceanic

FIG. 7. Monitoring skills of AMOC, LSW, GSW, NAG, and the atmospheric NAO for the

five typical climate observing systems from preindustrial to present. In the parentheses is the

corresponding error bar evaluated by the 12-member ensemble (see section 2b). All statistics

are based on monthly-mean data with a 1-yr running mean.
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transport when other ocean areas (middle–low latitudes,

for instance) are strongly constrained by ocean observa-

tions. For the NAG, due to its wind-driven nature, a full

atmospheric (wind and temperature) constraint mostly

determines its seasonal–interannual variability (Fig. 4b),

and a coherent combination of atmospheric and oceanic

constraints is able to produce a quite high monitoring skill

(Fig. 7).

b. AMOC

As a consequence of reproducing the key components

of the North Atlantic climate system, all 5 examined ob-

serving systems are able to reproduce the variability of the

AMOC to some degree, evidenced by the high ACCs

(..8) (column 11 of Table 2) and the overall truth-like

variations of the time series of the estimated AMOC in-

dices (Fig. 5). However, the accuracy of the reconstructed

AMOC mean state and the time scale of the best-estimated

variability are different for each observing system.

Comparing the time series of the AMOC produced by

ocean-only observing systems OXBT (dashed green) and

OArgo (dashed red) to their counterpart with the addition

of atmospheric observations (solid green and solid red),

referred to the time series produced by OAtm
SSTt (blue), we

found that the sea surface forcings provided by the at-

mosphere and SST observations contribute mainly to the

interannual variability of the AMOC. While the subsur-

face temperature observations provided by OXBT tend to

constrain the decadal-scale tendency of the AMOC, the

addition of the salinity and deep-ocean observations in

OArgo improves the intradecadal variability and refines

the decadal regime transition greatly (Fig. 5). However,

although forced by the generated SSTs from the oceanic

constraint, the internally free atmosphere in the assimi-

lations of OXBT and OArgo cannot provide a significantly

corrected NAO signal owing to strong atmospheric inter-

nal variability. This explains the incorrect interannual var-

iability of the AMOC estimated by OXBT and OArgo. Thus,

a coherent combination of the atmosphere and ocean ob-

servations within a coupled system is necessary to recon-

struct the variability of the AMOC accurately. As shown in

Fig. 5 and columns 10 and 11 of Table 2, only when the

atmospheric wind and temperature data are incorporated

into the coupled system do both the XBT and Argo ob-

servations (OAtm
XBT and OAtm

Argo) resolve the phase of the

AMOC variation very well and produce a much higher

ACC with the truth. In particular, as a coupled product of

the reconstructed NAO, LSW, GSW, and NAG as shown

in Fig. 4, while the twenty-first-century climate observing

system reconstructs the AMOC by 90%, without direct

salinity and deep ocean observations the twentieth-century

climate observing system only reconstructs the AMOC

by 52%, both including a small uncertainty (0.5% sdv)

(columns 4 and 5 of Fig. 7).

Given the importance of the heat/salt transport car-

ried by the AMOC to global climate (e.g., Latif et al.

2004; Zhang et al. 2006), here we analyze the vertical

structure of the AMOC mean state constrained by var-

ious observing systems. Although Figs. 5 and 6 show that

the capability of an observing system to reconstruct the

AMOC mean state and variability is basically consistent,

some points about the accuracy of the estimated AMOC

mean state are still worthy of being addressed. First,

compared to the constraint of an ocean observing system

(OXBT or OArgo), the constraint of surface forcings

(OAtm
SSTt) produces a more consistent AMOC mean state

(Fig. 6b), although the accuracy of the estimated decadal

variability and regime transition is lower. Second, Figs. 6c

and 6d clearly show that, consistent with the variability

estimate for the AMOC, the time-mean transport con-

strained by OArgo is much better than the one constrained

by OXBT. A question could be asked whether it is the

Argo’s direct salinity observation, the Argo’s temperature

observation at depth, or their combination that is re-

sponsible for the improvement of the OArgo estimate for

the North Atlantic climate system. The fact that the XBT

coverage in the upper ocean is much denser than the Argo,

especially in the western boundary area (see Figs. 3a,b),

indicates that increasing the temperature coverage for

upper ocean observations does not help, even in the crucial

area for estimating the AMOC. A reasonable speculation

is that the Argo’s direct salinity observation may play a

critical role because it improves the density structure so as

to improve the estimate of buoyancy. However, a clear-cut

mechanism requires further research work to clarify, in-

cluding an experiment in which only Argo temperatures

are assimilated. This shall be further investigated in follow-

up studies. Third, while the addition of the surface forcing

constraint to OXBT increases the AMOC error over the

middle–upper ocean but reduces the error at the bottom

ocean (Fig. 6e), the combination of the atmospheric and

Argo constraints consistently reduces the AMOC error

dramatically, except for the subtropical bottom ocean

(Fig. 6f). The too strong southward transport at the sub-

tropical bottom ocean in OAtm
Argo suggests an imbalance

between the direct ocean data adjustment from the Argo

observations and the ocean’s response to the surface

forcing constraint. The reason for the too strong south-

ward transport also shall be further investigated in follow-

up studies to improve the physical balance and vertical

coherence of ECDA’s data adjustments.

Analyzing the variability of the NAG, LSW, and GSW

indices and comparing it to that of the AMOC in different

time scales may provide a preliminary understanding for

the contributions of NAG, LSW, and GSW to the AMOC
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variability. Comparing the time series of LSW produced

by 2 model simulations and 5 assimilations in Fig. 4d to the

corresponding AMOC time series in Fig. 5, we found that

LSW generally exhibits the low-frequency (decadal) var-

iability as in the AMOC. A bandpass analysis shows that,

while the 1–2-yr fluctuations in the AMOC are correlated

well with the variability of NAG, only a weak correlation

was found between the 5–6-yr AMOC fluctuations and

the GSW variability (see also Figs. 4b,c and 5). These re-

sults suggest that, while the NAG impacts the interannual

variability of the AMOC, GSW may only have some weak

impact on the subdecadal variability. Interestingly, when

both the atmospheric and subsurface oceanic observations

are used, the GSW monitoring skill increases significantly

compared to the case that uses either atmospheric or

oceanic observations alone (Fig. 7)—for example, the

GSW monitoring skill of OAtm
Argo increasing by 78% from

35% of OArgo. This may be related to sea ice activities that

freely respond to the atmospheric and oceanic observa-

tional constraints in the present ECDA. The GSW index

here represents the water property of the intermediate

and deep layer of the Fram Strait, which links sea ice

export from the Arctic to the North Atlantic (Hu et al.

2009; Hopkins 1991). The variability of sea ice is de-

termined by both the atmospheric (dynamic) and oceanic

(thermodynamic) conditions. In an assimilation over a few

decades, the surface forcings only (OAtm
SSTt) cannot con-

strain the variability of GSW skillfully (Figs. 4c and 7),

suggesting that reconstructing GSW requires both the

atmospheric and subsurface oceanic constraints to work

together more coherently. In contrast to GSW, again, the

NAG as a wind-driven oceanic circulation system can be

recovered to some degree by every observing system, ei-

ther atmospheric, oceanic, or a combination (Figs. 4b and

7). In particular, it is recovered up to 83% with 0.5% sdv

by OAtm
Argo, which combines the atmospheric and oceanic

constraints very well. These results explain that each of

the examined observing systems has its own capability to

recover the AMOC variability in some time scales as well

as the time-mean state to some degree as shown in Figs. 5

and 6.

5. Summary and discussions

We assess the adequacy of various routine observing

networks for monitoring the Atlantic meridional over-

turning circulation and related North Atlantic climate

quantities. Our approach is to use the synthetic ‘‘observa-

tions’’ (Sobs) derived by sampling from the GFDL CM2.0

climate model according to the spatial and temporal

coverage of various observing systems. It is shown that

the twentieth-century XBT and twenty-first-century Argo

networks, when combined with atmospheric temperature

and winds through a coupled data assimilation system, are

able to recover the phase of the temporal variation of the

AMOC—as indicated by a 0.98 linear correlation between

the AMOC derived from the Sobs and the truth AMOC.

However, while the OAtm
Argo Sobs successfully reconstructs

90% of the AMOC as a whole measurement of the mon-

itoring by normalized root-mean-squared error, the OAtm
XBT

network reconstructs only 52%, suggesting an important

role of salinity and deeper-ocean observations present in

the Argo network.

An important goal of this work is to develop a system

for AMOC monitoring and prediction. An accompany-

ing study (S. Zhang et al. 2010, unpublished manuscript)

will further show that, using these observing networks

combined with a coupled assimilation system, a decadal-

scale predictability of the AMOC within the context of

a perfect model framework does exist.

Considerable work remains before models can be used

in conjunction with modern observing systems to estimate

and predict the AMOC. As one important example, the

current work does not take model bias into account. Some

research work has started to address the bias issue be-

tween a model and the real-world observations, for ex-

ample, assimilating anomalies rather than the full values

into the model (Smith et al. 2007). As an alternative ap-

proach to address the model bias issue, a multimodel

ensemble assimilation system is under development at

GFDL, and it may be useful to relax the negative impact

of individual model bias on assimilation results. In such

a system, the error statistics used to extract observational

information are based on a multimodel ensemble, and the

generated analysis can be accordingly distributed into

different model spaces. It is expected that such a multi-

model ensemble assimilation system not only improves

the estimate of anomalies but also controls the climato-

logical drift to some degree. In addition, further studies

should also include specialized observations such as the

Rapid Climate Change (RAPID) mooring array (Kanzow

et al. 2007; Cunningham et al. 2007) into the monitoring

system to obtain more insights on the impact of the ob-

serving system on the monitoring and prediction of the

North Atlantic climate system.
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