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ABSTRACT 
Based on  the box method, finite-difference versions of a system of primitive equations in spherical coordinates 

;re formulated for a spherical grid. Non-linear computational  instability  cannot occur in time  integrations of these 
equations. Conservation of total mass is guaranteed by the finite-difference form of the  continuity  equation.  The 
proposed scheme yields no fictitious sources of energy in the derivation of the difference formula  for the  budget of 
the  total energy over the  entire domain. The finite-difference equations for the  budget of the  relative  and absolute 
angular momentum  are  not  exact analogs of the continuous  forms but nevertheless are very accurate. 

This  system of primitive  equations for  a nine-level general circulation model of the atmosphere  has been 
numerically integrated for 50 forecast  days. The network of grid points covers the  entire globe with  nearly uniform 
spacing and  has  no artificial horizontal boundaries. The initial data were latitude-height-dependent zonal mean 
winds and pressures and zonal mean temperatures  perturbed slightly by random  numbers. The  time  integration 
was carried out  without  any finite-difference computational problems and baroclinic waves developed and  propagated. 

K 

LIST OF SYMBOLS 

mean  radius of earth 
lateral interface between  box 0 and box 1 
scalar variable or vector component 
drag coefficient 
specific heat at constant pressure 
specific heat at constant volume 
two- and three-dimensional divergence 

operators (see section 2) 
D operator (see  section 2) 
tension rate of strain 
shearing rate of strain 
pure deformation 
internal dissipation of kinetic energy 
E operator (see section 2) 
Coriolis parameter 
source term for X .  
frictional forces in zonal and meridional 

effect of thermal diffusion 
acceleration of gravity 
G operators (see  section 2) 
H operators (see  section 2) 
level number 
non-dimensional parameter in non-linear 

number of layers  in  the model 

directions 

horizontal viscosity 

K H  horizontal eddy viscosity  coefficient 
Kv vertical eddy viscosity  coefficient 
LX(4 B) , 

7h coefficient in metric term of equation of 

M( y> 

Le(A, B) L operators (see  section 2) 

motion 
M operator (see section 2) 

Nl(  y), Nz(Y) N operators (see  section 2) 
heat added per unit mass 
pressure 
surface pressure 
gas constant for dry air 
surface of a box 
horizontal area of a box 
time 
temperature 
eastward component of wind 
wind components at poles 
northward  component of wind 
outward  component of wind velocity on 

threedimensional velocity vector 
horizontal velocity vector 
volume of a box 
weight=AJAV 
work done by wind stress through  lateral 

boundaries 
work  done by wind stress through sigma 

surfaces 

surface of box 
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X a  scalar;  a  component of Reynolds stress 

x mean value of X 
Y a function of A, B, . . . Z or a  constant 
Y 
z* height of ground surface 
V- three-dimensional divergence operator 
V H .  horizontal divergence operator 

Y diffusive  flux of heat 
r ratio of pure deformation to  square of 

tensor 

a function of Yo and Y, or a  constant 

a a cos 0 

wave  number 
A0 latitude  increment 

6a, Au sigma increment 

Kerf effective wave  number 

AX longitude increment 

e latitude 

X longitude 
P density 
U vertical coordinate=P/P* 

4 geopotential of sigma surface 
W vertical P-velocity 
w vertical u-veloci ty 
n angular velocity of earth’s rotation 

7 stress 

- 

1. INTRODUCTION 

In this study, spherical coordinates are used rather  than 
a  map coordinate system  and  thus  map projection factors 
do not  appear  in  the equations. Furthermore, we have 
used a  network of grid points nearly uniformly spaced 
over the  entire globe. The analysis of a time integration 
of a general circulation model is facilitated when  use is 
made of a coordinate system  and grid network more 
naturally  suited to a global problem. 

Previous to this study,  Kurihara 121 carried out test 
computations on a  barotropic primitive equation model on 
the special grid network which we have  adopted in this 
research. His  tests were  successful, but his computation 
scheme, involving a number of interpolations, was  compli- 
cated. In this study this complication has been  avoided by 
means of the box method. 

It has been  known for some time that for the purpose of 
deriving the finite-difference form of the differential equa- 
tions for an  arbitrarily chosen grid or general polygonal 
mesh,  there is a  method which preserves the conservation 
properties of the original differential equations  and a t  the 
same time yields an empirically accurate difference ap- 
proximation [5, 61. In addition,  Bryan [I] recently  proved 
that  the method  can also satisfy  a quadratic-conserving 
condition by means of a special form to  approximate  the 
divergence of a quantity. We apply this method, which we 
shall call the “box  method”  to a system of primitive equa- 
tions in spherical coordinates to formulate  the energy- 
conserving finite-difference forms. 

The principle of the box method is simple. Imagine  a 

space domain containing volume elements of different 
sizes.  Consider the  equation: 

g = - v .  (VX)+F at 

where X is a scalar quantity; V ,  a three-dimensional 
velocity vector; V., a threedimensional divergence 
operator;  and F is a source term of the  quantity X .  
Integration of the equation (1.1) over a volume element 
or a  “box” gives 

In (1.2), Fdenotes a  mean value of X for a box of volume 
V and surface area 8. The Gauss  theorem is applied in 
deriving the first term on the right-hand side, where v,, is 
the outward  component of velocity on the box surface. 
The second term represents the mean  effect of a source or 
external force. The approximation of the fist term  by the 
box method is made by estimating the flow of a  quant,ity 
to or from all the  adjacent boxes. Notice that if the boxes 
axe regularly placed, the box method  takes  a form similar 
to  the energy-conserving  scheme  proposed by Lilly (see 
the Appendix of [4]) and  adopted by Smagorinsky, 
Manabe,  and Holloway [4]. 
In this formulation, it is desirable that  the correspond- 

ing  finite-difference  scheme  does not  create  in  the mean a 
fictitious source for the  quantity X or its variance. Bryan 
[l] has shown how to establish the schemes  which satisfy 
the  above requirement and, therefore, are free from the 
so-called  non-linear computational instability. The require- 
ment for the finite-difference form of the source term, i.e., 
the second term on the right-hand side of equation (1.2), 
is that, if it contains any transformations from  another 
quantity, numerical consistency should exist. For example, 
in  a  system of energy equations which are derived from the 
finite-difference  expressions of the primitive equations, 
the conversion  between the two Werent types of energy 
must appear in  the two  corresponding equations as the 
same expression but of opposite sign. 

The formulation of the  computation schemes for the 
system of primitive equations satisfying the above re- 
quirements is presented in section 3. In  section 4 the 
energy  consistency of the proposed  schemes is discussed, 
and in section 5 the results of a numerical integration of 
the system of equations for a global  nine-level model is 
presented.2 

9. FINITE-DIFFERENCE  OPERATORS  AND  THEIR 
CHARACTERISTICS 

In this section, we shall present definitions of some of the 
finite-difference operators. Since the box method will be 
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adjacent box ( 1 ) 
key box ( 0 )  \ 
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FIGURE 2.-Diagram of a key  box  surrounded  by six adjacent boxes. 
On the  north  the key box joins box one at interface A , ,  and box 
two at interface Ae. Two  additional boxes, of course, contact  the 
key box on the  top  and  bottom. 

FIQTJRE 1.-Pictorial  view of a key box (0)  at latitude B i j  and longi- 
tude hi, and  part of an  adjacent box ( I )  to  the north.  Thetwo boxes 
touch  each  other along area A t  at latitude BN=B;i+ABii/2. 

applied later to the equations written in the so-called 
u-coordinate system on the sphere, it is convenient t o  
define a volume element as being bounded  by two  con- 
stant  latitude surfaces, two constant longitude surfaces, 
and two constant sigma surfaces, as shown in figure 1. 
We  consider that a key  box has  the indices (i, j ,  k) corre- 
sponding to the X, 8, and u coordinates. The center of the 

one interface even at these sides for the  sake of generality. 
Taking  the symbols x, and for the summation 

with respect to  the interfaces at  the east, west, north, 
and  south sides of the box, respectively, we have 

E W ’ N ’  S 

wE=wW but wN#wS 

where w E = C   w t ,   w w = x   w t ,  w N = C  wz,  and w s = C   w l .  

In defining the finite-difference operators we employ 
E W N S 

the following notations : 

box is located at  latitude e,,, longitude Xi, and (T=uk. 
Then  the  latitudes  and longitudes of the lateral sides of 
the box are represented by eN=etj+(~erj/2) ,  es=of j  
- (ABt5/2), h E = X f j +  (AX&), and XW=h,,-- (AXfj/2). The 
upper  and the lower surfaces are given by a=ak-X and 
u = u ~ + ~ ,  respectively. We  assume that  the boxes are con- 
nected in  the vertical direction to  form  columns and that 
the sigma  levels are common to all columns. 

Hereafter, the value of X in a key box will be denoted 
by Xtrn or X ,  or x,,, and that .of an  adjacent box by X z .  

The horizontal cross-section and the volume of a box 
shown in figure 1 are given by (2.1) and (2.2), respectively. 

A, B, . . 

u=eastward wind  velocity 
v=northward wind  velocity 
@=vertical a-velocity=du/dt - 

P, =surface pressure pressure at  u= 1 
., Z=scalar variable or vector component 

Y =a quantity which is defined as a function 
Y=function of A, B, . . ., Z or constant 

of  Yo and Yl, or a constant 
a=mean  radius of the  earth 
a=a cos 8 

dS=a2 cos 0 dhd0 
dV=a2 cos e dhdedu 

AS,=2a2 sin - cos BtjAXfj (79 (2.1) 
a,( ) =two-dimensional divergence operator 

a( )P*U a( )P*V case 
A v , j k = A S r r ( ~ k + l , z - ~ k - ~ i * )  (2.2) 

- - 
a cos eax+ a cos ea 

Letting At= the area of a lateral interface between the a,( ) =three-dimensional divergence operator 
key box and a contiguous box I ,  we define a weight wI,  

= B 2 (  I +  au >p*z 
Wz=AJAVtjk (2.3) 

which has  the dimension of (length)”. In  the particular Assume that u, v, and variables A, B, . . ., Z are 
case of our spherical grid system, the number of interfaces given on the u-levels of integer k’s as shown in figure 3, 
at the  east  and west sides is just one as seen in figure 2. and J is computed at the tops and bottoms of the boxes, 
However, we shall assume here that there is more than i.e.,  on the integer levels plus or minus a half. 
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DEFINITION OF FINITE-DIFFERENCE OPERATORS k - l  

Assume that  the expressions in continuous form on the 
left-hand sides of the formulas below are  approximated 
by  the corresponding finite-difference operators on the 
righbhand sides. 

k-1/2 -- 5, Q, 

-I u,v,T. w 

"Y)dV+WJ Av 1 or M ( Y  1 
AV k+1/2 ---- 399 

&JJczMY>~s+H,(Y 1, H~(P), N,(Y or MY) 
AS k + l  

. FIQURE 3.-Verticd  cross-section of a  key box showing that  the 
variables u, v,  T, and o are defined at integer k levels whereas 
w and 6 are defined a t  half-integer levels or at  the horizontal 

(FV+G,(AB. . . 2) 
AV 

- 
interfaces at  the  top  and  bottom i f  the key box. 

The functional forms of these operators follow. The 
notation (G-T) and (5-g) denote thedifferencebe- &(AB. . . z)=(q-q) 
tween the sums of a  quantity along the  north  and  south 
sides and that between the  sums along the east and west 
sides, respectively. 

c (2.4) 

(2.6) 

. . . Eo w2} -(AoBo . . . Zo)(w,,,-ws) (2.8) 
2 

Lx(B, A)=: [x{ E (A,-Ao)w,} 
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This is a difference analog of the gradient of AB in  the 
zonal direction. The  quantity grid distance does not 
appear explicitly in  the above formulas but  rather  quanti- 
ties measuring the size of the box and  the area of the 
interfaces. 

The difference operators D( ?J) and HI(  "J) differ  from 
M (  y) and Nl( 7-J) in the  manner of estimation of the 
transport of a given quantity.  Note  that  the former 
schemes  resemble the "filtered factor" form, after the 
terminology of Shuman [3]. However, the  latter schemes 
resemble the "semi-momentum" form. For example, the 
quantity P*u, which is the  transport velocity of a property 
across the interface of two  boxes 0 and 1 separated by a 
north-south boundary, is estimated in the former by 

whereas in  the  latter  this term is computed by 
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(2.14) 

(2.15) 

where V, is the vector of the horizontal wind and OH is 
5banan [31 has shown that  both forms are suitable for t,he horizontal gradient operator in spherical coordinates. 
stable numerical integration of a system of non-linear 
equations which he derived. Furthermore,  in either case, For (2.16) and (2.17), we have 
by approximating a transported quantity  at  the interfaces 
of two adjoining boxes by  a mean value for the two  boxes RVHA=VH(AB)"AVHB 
as suggested by  Bryan 111, we are able to make the flux For (2.18), 
divergence term  in any equation free from the so-called 
non-linear computational instability. V~.V~(P*A)=V~.(P*AV~)-AV~.(P*V~)+AV~.V,P, 

CHARACTERISTICS OF THE  OPERATORS 3. FINITE-DIFFERENCE  FORMS  OF  THE SYSTEM OF 
The following are  important characteristics of the PRIMITIVE  EQUATIONS 

(1) If a quantity &/ is invariant with the exchange of written 
operators. The equations of motion in X, 0, a coordinates are 

the box  indices 0 and 1, e.g., =YoYl or 7-J =(Yr+Yo)/2, 
or y =constant,  the volume integral of D( y) and - b ( P * U ) = - ~ ~ ( U ) + ( ~ + ~  tan 9 .>P*v 
M( ?J ) for the whole space vanishes, i.e., 

at 

c c c D( y>.AVi5*=0 
"R.*" dP a (P*cr$"+Fl (3.1) a a ~  aa 

r ~ k  

(2.13) meridional directions respectively. The first law of thermo- 
dynamics is written 

(2) The global area integrals of Hz(Y)  and Nz( Y )  
become  zero, 

b - (P*T)="~(T)+"-+-++F~ (3.3) R Tw P& 
at CP CP 
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k =  K _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -  
K + 112 = I  *- 

FIGURE 4.-Diagram of the  vertical division of the model atmos- 
phere into "K" layers  centered at k sigma levels and bounded 
by u k + %  and uk+. Star (*) level is the ground  surface,  and the 
top of t,he at~mosphere is at u%=O. 

where c p  is the specific heat  capacity at  constant pressure; 
w ,  vertical P-velocity (dP/dt)  ; 4, added heat per unit  mass; 
and FT, the effect of thermal diffusion. The  continuity 
equation takes either of the forms (3.4) and (3.5) 

a zP*=-Bdl) (3.4) 

or 

(3.5) 

a 
" * o = - - D ( l )  at (3.4A) 

or 

where 

where Q=angular velocity of the  rotation of the  earth. 

The vertical sigma- and P-velocities are  to be obtained by are 
the diagnostic relations (3.6) and (3.7) below.  (See  refer- 
ence 141.) 

The diagnostic relations corresponding to (3.6) to (3.8) 

- 
w k + 1 / 2 = -   [ U k + l , z  

{ H l ( l ) A k # u  } -X { H l ( l ) A k ' u  I] 1 K k 

p w  k'=l  k'= 1 

iZ=L p* [ u ~ a 2 ( l ) d ~ - ~ ~ ~ ( I ) d u ]  0 (3.6) - - (3.6A) 

w o k = p ~ o . w k + l / Z + ~ k - 1 / 2  

2 

+uk+llZ+'Jk-l /Z 

The relation (3.8) below  gives the  hydrostatic relation. 2 ~ ~ + ~ o G A ( P * ) + ~ o Q , ( P * ) ]  (3.7A) 

Figure 4 shows the vertical division of the air column where 4 k  has  to  be  related  to &+% or dr+ by (3.9) 

into K layers and  the assignment of a k index  to each R T k  

level. We assume that  the variables u, v, T, and u are # k * I / 2 = 4 k F -  (3.9) 
given for the levels having integer k, while 9, W, and u 
are for the levels with half-integer k. (See fig. 3.) The  sur- where A k U = U k + 1 / 2 - U k t - 1 / 2 .  Relation (3.9) insures that 
face pressure P* is, of course, independent of k. 4 k n = 6 ( 4 k + l / Z + ~ k - l / 2 )  (3.10) 

2 $ ( u k + l / Z + u k - l / Z )  

M R S I O N  I O F  THE FINITE-DIFFERENCE FORMS 

The above prognostic equations (3.1) through (3.5) are 
approximated  by  means of the finite-difference operators 
defined in the previous section as follows. 

The last terms in (3.1A),  (3.2A), and (3.3A) will be de- 
veloped in Appendix l. 

Condition (2.12) guarantees  the conservation of total 
mass of the air in (3.4A). 
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Notice that  the vertical summations (weighted by 
Akc/g) of the next-to-last terms on the right-hand  sides of 

--Le(P,, z,), where z, is the height of the earth's surface 
above mean sea level. These values evaluate the effect 
of mountains on the integrated momentum of the air 
column. If the boxes are licked to form a ring along a 
latitude circle as in  this study,  the relation (3.11) below in (3.1) and 

p*ldx 
ap*- 

(3.1A) and (3.2A) take  the values --L,(P,, z*) and  instead of *) 

(3.11) 

instead of 
Consequently, in this case the pressure gradient force 
contributes to  the budget of total absolute angular momen- 
tum only through the mountain torque. in (3.2). 

The differential  form which  seems suitable for repre- Then a system of finite-difference equations can  be 
senting the budget ?f relative angular I U X I X + ~ ~ ~ ~  is established by changing the forms of pressure gradient 
derived  from (3.1) by using the relation force terms from  those in (3.1A) and (3.2A) to 

- 1 Furthermore, the following relation is used to obtain an - 

appropriate form of the budget of absolute angular 
momentum, 

(3.13) 

Examining (3.1A), we see that  the finite-difference  analog 
to the  above conditions is not satisfied  exactly.  However, 
based on the results of the angular momentum analysis 
of the general  circulation experiment [4] at  the Geo- 
physical Fluid Dynamics  Laboratory  (GFDL) of ESSA, 
the truncation errors in this respect are supposedly not 
cumulative so that  the numerical completeness in the 
budget of angular momentum is held to a high  degree of 
approximation. 

A complete system of primitive equations is formed by 
the relations (3.1A) through (3.8A) together with the 
boundary condition (3.14) : 

- - 
w1/2=09 W R + 1 / 2 = 0  (3.14) 

In  addition, if use is made of the above-mentioned 
version of the finite-difference form, the relation to be 
derived from ( 3 4 ,  i.e., 

2 ("")- e) v.v-v.(vP:/2) at "" 
also holds numerically. 

VERSION II OF THE FINITE-DIFFERENCE FORMS 

Another version of the finite-diff  erence forms of the primi- 
tive equations can be developed. In this version, the terms 
of pressure gradient force in  the momentum equations are 
transformed so that these terms take  the forms, 

respectively, and by replacing D- and H,-operators in 
(3.1A) through (3.8A) by M- and N,-operators defined 
in  the previous section. In addition,  the relation (3.9) 
and  the  boundary condition (3.14) are required to com- 
plete the system of equations. 

By means of (3.8A), the finite-difference form of the 
pressure gradient force for the X-direction  in this version 
can  be rewritten as follows 

If boxes are placed  along a latitude circle to form a ring, 
the summation cos @,,EA(AB)AS,, equals zero. There- 

fore, in this case, the volume integral of the  term for the 
pressure gradient force  does not reveal the presence of a 
fictitious source of momentum but contains only the 
effect of mountain  torque resulting from the  third  term 
on the right-hand side of (3.15). In  this respect, there is 
no difference between the two  versions of the finite- 
difference  forms.  However, in  an analysis of the momen- 
tum  budget, Version I seems to be more suitable since 
the effect of mountain  torque is explicitly  shown by it, 
and  this effect  can be.@ectly estimated,for  an air column. 

Regarding the co&ervation of air mass and  budget 
of relative  and absolatd angular  momentum, Version I1 
has  the  same characteristics as Version I. 

Because of the circumstances of computer programing, 
we used the difference equations  written  in Version I1 in 
our test integration of the equations for a general circula- 
tion  model. 

i 
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4. FINITE-DIFFERENCE  FORMS  OF  THE  ENERGY In (4.7), the volume integral of (uFh+vFe) represents the 
EQUATIONS internal dissipation of kinetic energy and  the work done 

by the wind against the surface stress, (i contains the 
effects of radiation and condensation, and  the volume 

In our derivation of the energy equations corresponding integral of c P T  gives the diffusive  exchange of sensible 
to  the  system of primitive equations, the differential forms heat at  the air-earth boundary. 
of the  equations  are considered first. The equation for the The finitedifference form of the kinetic energy equation 
change of kinetic energy is obtained from (3.1),  (3.2), and corresponding to  the above differential form is easily 
(3.4) by using the relation (4.1) : obtained by  the  relation: 

ENERGY BUDGET FOR MRSION I 

On the  other  hand, by use of (3.4),  (3.7), and (3.8), the 
following relation is derived : 

Consequently, the following equation for kinetic energy 
is obtained: 

"R -+uFx+vFe (4.3) Tw 
U 

In order to derive the  potential energy equation the 
relation (3.3) is first multiplied by c,  as follows: 

- (P,~,T)=-B~(~,T)+R $ + P , P ~ ~ , F ~  (4.4) 
b 
at 

The  quantity c,T is related to the  internal plus potential 
energy, i.e., c,T++, through (3.8) 

Accordingly, we derive the following: 

The vertical integral of the  sum of (4.3) and (4.4) 
becomes, therefore, 

The change of the  total energy of the atmosphere is 
given by the  area integral of (4.6): 

E at JJk* ( c J ' + + + 7 )  u Z + d  dv - 9 

=J~J(~~~+oK+P*~+C,) 7 m (4.7) 

(4.1A) 

We can derive (4.2A) with the use of (2.4),  (2.16), 
(2.17),  (2.18),  (3.4A),  (3.7A),  (3.8A), and (3.9), 

-UO { RGx(P,T)+G 6 k  [a L(P*, 411 
1 } 

-Vo { RGe(P,T)+G 6 k b  * Le(P*, 411 
1 

By use of (4.2A), the finitedifference form of the kinetic 
energy equation becomes 

Notice that  the volume integral of the first, second, and 
third terms on the right-hand side of (4.3A) vanishes as 
shown by (2.12),  (2.14), and (3.14), respectively. 

The finitedifference form of (4.4) is easily obtained. 

$ ( P,c,T~)=--D ( c p  F) 

From the  hydrostatic relation (3.8A), 

and consequently, 

The following equation for the change of total energy of 
the air column is derived from (4.3A),  (4.4A), and (4.5A) : 
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Integrating (4.6A) over the entire domain by means of 
(2.13) and (2.14), we obtain  an equation which  corresponds 
exactly to (4.7), 

K 
=C i c j c k=1 ~ . u o ( ~ x > o + v o ( ~ e ) o + p * o ~ + c , ( ~ , ) o ~  AV,,k g 

(4.7A) 

The finite-difference form of (4.7) above shows that there 
exists  no  fictitious  source of energy  in this scheme, and 
our  finite-difference  forms,  Version I, of the primitive 
equations, are  thus energetically consistent provided that 
time truncation error can  be  disregarded. 

ENERGY  BUDGET FOR VERSION II 

The finite-difference forms of the energy equations for 
Version I1 in  the previous  section are  to be derived by  the 
same procedure as used  for  Version I. The relations 
corresponding to (4.3A),  (4.4A), and (4.6A) are obtained 
by replacing D-, Hl-, and Hz-operators in  these formulas 
by M-, Nl-, and N,-operators,  respectively. The area 
integral of the relation expressing the change of total 
energy for an air column  yields the formula  which is 
exactly equivalent to (4.7A). Consequently, the Version I1 
system of equations in Section 3 is also consistent from 
the energetical point of view. 

5. RESULTS OF THE TEST COMPUTATION 
Our main purpose in establishing the finite-difference 

scheme  based  on the box method is to apply it to  a 
spherical  grid system to develop a numerical  experiment 
of the general  circulation  on a.global scale. As a test of the 
usefulness of the proposed  schemes,  we made the numerical 
integration of a system of primitive equations which are 
formulated in  the form of Version II in section 3 for a 
nine-level  general  circulation  model of the atmosphere. 

The vertical division of the atmosphere into nine layers 
is only slightly changed from that used in the experiment 
[4]. See table 1. Figure 5 shows an  octant of the grid system, 
in which the  dots a t  the centers of the boxes represent the 
grid points. The horizontal cross-sections of the boxes are 
shown in this figure. The grid system is the same kind as 
the spherical grid system 1 proposed by Kurihara [2]. The 
resolution of the grid network is such that between the 
pole and the equator  there are 24 points. As pointed out 
in [2], the  distribution of grid points is chosen so that  the 
resolution is nearly uniform with respect to  the area. 
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FIGURE 5.-Diagram of one octant of the grid system used in the 
test  computation.  Dots indicate the grid points  located at  the 
centers of the boxes. There  are 24 grid  points between the equat,or 
and  the pole. The horizontal cross-sections of the boxes and  the 
way they  are positioned with respect to  adjacent boxes are shown. 
Note  that  in  this  diagram  latitudes are equally spaced which re- 
sults in some distortion of box shapes, especially in  the Tropics. 

Note  that, if we had  adopted a grid  similar to  the system 3 
in [2], we could have avoided having two  polar  boxes. 

The system of fundamental equations is the  same  as 
that adopted  in the general  circulation  experiment without 
hydrologic  processes by Smagorinsky, Manabe,  and 
Holloway [4], except  for the form of the frictional dissipa- 
tion and  heat diffusion. Horizontal diffusion of momentum 
and of heat in  our model are estimated primarily by n 
simplified  form of the so-called linear viscosity. The value 
of the kinematical eddy viscosity  coefficient  used  was 
5X10g cm.z sec." before the  6th  day of the integration 
and lo9 cm.z sec." afterward. 

The diffusion of momentum  in  the vertical direction was 
computed by means of an eddy viscosity  coefficient  which 
depends on mixing length.  This was identical with the ver- 
tical diffusion  used in  the model of reference [4]. The  sta- 
bilizing  effects of moist convection are implicitly simulated 
in our model  in the  same  manner as was done in [4] by 

TABLE 1.-Vertical  leveling of model 

Level I: 

0. ri 
1.0 

2.0 
1.5 

2.5 

3.0 
3.5 

4.5 
4.0 

5.0 

5.5 
6.0 
6.5 
7.0 
7.5 

8.0 

9.0 
9.5 

8.5 

Sigma 

0 
0.010 . MO 
.In30 
,100 

.230 

.la 

.315 

. 4 0 0  
,500 

.6M) 
,685  

.835 

.770 

.900 
940 

. wo 
1. Mx) 

.gno 

Height in k m .  
(Standard 

Atmosphere) 

infinity 
30.77 
24.10 
19.88 
15.65 

13.15 
10.65 

7.02 
5.55 

n. 83 

4.08 

2.14 
3. 11 

1.51 
.n7 
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FIGURE 6.-Latitudinal distribution of zonal  mean  surface  pressure 
a t  9 and 9.25 days. The mean  surface  pressure of the model 
atmosphere is about 28 mb.  lower than observed  because the 
model has  the  same mass of air as the  actual  atmosphere  but  it 
has no  mountains. 
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FIQURE 'I.-Three-day time series of surface  pressure at   the 
north  and  south poles and  at  the intersections of 0" E. longitude 
with45' N., 45" S., and  the  Equator. Since the surface is flat  and 
uniform,  the assignment of the location of the prime  meridian 
is  arbitrary. 

adjusting  the lapse rate to the moist adiabatic value, if 
the former exceeds t,he latter,  without changing the mean 
temperature of any column of air. 

Since t,he domain for which the calculations are  made 
is global, no  lateral  boundary conditions are needed. The 
upper  and lower boundary conditions, including the for- 
mdation of the air-eart,h interactions, are  the  same  as used 
in [4]. The lower boundary is everywhere uniform and at  
sea. level. 

The scheme of time  integration, including the use of an 
implicit integration scheme for the vertical diffusion terms, 
and  the  method of periodic time smoothing are  the same 
as  that used in  the experiment [4], except that  the time 
interval is 7.5 min. in the present model. 

In  the formulation of the  radiational  heating,  the dis- 
tribution of solar insolation and atmospheric absorbers 
such as  water  vapor, carbon dioxide, ozone, and cloud are 

assumed to  be  the same as those adopted in  the experi- 
ment for a hemispheric domain [4]. They  are extended 
symmetrically into  the  Southern Hemisphere across the 
equator. 

The initial conditions for  the  test  run  are symmetric 
about  the  equator since time  and zonal averages of the 
zonal component of winds, temperatures, and pressures for 
the  last 70 days of the so-called dry general circulation 
model run [4] are given in each  hemisphere. That is, the 
input  data do not  vary  with longitude. Since the meridi- 
ona.1 wind component  was small in  the  mean,it was set to ze- 
ro initially in  our run. As the only factor to destroy the sym- 
metry between  hemispheres and zonal uniformity within 
each  hemisphere,  before the  start of the run all the tem- 
peratures were perturbed  by  random  numbers  in  a  range 
within plus or minus 0.1"K. The computations were  ex- 
tended to 50 days  without  any special  sign of computa- 
tional trouble. The  maps of the  output, which are made 
by interpolating the spherical grid onto a rectangular 
grid  in  which the  latitudes  are evenly spaced, shows that 
baroclinic  waves with wave  number  5 to 7 developed. 
The predicted patterns of variables remained smooth, and 
the behavior of the disturbances was reasonable. 

In  the early stages of the  integration,  an oscillation of 
the surface pressure with a period of about 11.5 hr. was 
observed. The range of oscillation a t  the poles reached 
15 mb. Figure 6 shows the  latitudinal distribution of 
zonal mean surface pressure a t  9 days  and that  at 6 hr. 
later. It is seen that  the seiche of air took  place in each 
hemisphere. Corresponding to this, a  rather rough varia- 
tion of total relative angular momentum with time was 
also obtained in  contrast to a slow variation of total  ab- 
solute angular momentum. We  suppose that  the above- 
mentioned oscillation  was initiated from an imbalance in 
the initial conditions, which may  have resulted from one 
or more  causes. At B later perioa in  the  test  run,  the  state 
of quasi-equilibrium among the accelerations in the me- 
ridional direction  seems to have been approached. As 
shown in figure 7, the range of oscillation at  the poles 
decreased to 3 mb. We can see the passage of large-scale 
disturbances in middle  latitudes in the same figure. 

In figures 8 through 12, global maps of various variables 
at  50 days are shown. As indicated by  the time series of 
total kinetic energy, total absolute and relative angular 
momentum,  and  mean hemispheric temperature shownin 
figure 13, the  state of the  atmosphere a t  this time is still 
not close  to the quasi-equilibrium. However,  well-devel- 
oped disturbances do appear in middle  latitudes,  and no 
violent motions occurred a t  the low latitudes. Note that 
all patterns  are smooth and  there is no indication of  com- 
putational trouble. In  the  map of the meridional compo- 
nent 01 wind, the existence of cross-equatorial flow is 
noticeable, which might  imply  a possibly important role 
of this flow in the general circulation of the atmosphere. 
At 50 days there are still strong high-pressure areas over 
the poles with correspondingly low surface temperatures 
there. This is a phenomenon  which  occurs in all model 
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FIGURE 8.-Surface pressure map at 50 days.  Contours  are drawn every 10 mb. In this  and  the following  maps, the  latitudes  are evenly 
spaced to  the poles  which  occupy the  entire  top  and  bottom edges of the maps. The  distortion a t  high latitudes is very  great. 
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FIGURE 9.-Map of geopotential height at level 5 (approximately 500 mb.) at 50 days.  Contours  are  drawn far every 200 m. 
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FIGURE 10.-Meridional  com- 
ponent of the wind at level 5 
at 50 days (.a) for the  stand- 
ard run with  linear  viscosity 
and for the  runs (b) with  no 
viscosity and (c) with non- 
linear  viscosity. The  latter 
two runs were started from 
40-day data of the  standard 
run.  Contours  are  drawn  for 
every 10 m./sec. Areas of 
northward flow are  shaded. 
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FIQWRE 12.-zonJ component of the wind at level 9 (at approximately 990 mb. or 80 m.  above  the surface) at 50 days. Contours  are  drawn 
every 10 m./sec. Note the equatorial and polar easterlies and the westerlies (shaded) in  middle latitudes. 
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PIQTJRE 13.-Time series O f  global  mean  kinetic  energy,  absolute 
and relative  angular  momentum, and  temperature for the 50-day 
test  run.  The 11.5-hr. oscillation was filtered out of the  data by a 
two-weight running  mean of values 46 time  steps  apart. Beyond 
40 days  the kinetic  energy  curve has  three branches:  one for the 
standard  run  with horizontal  diffusion in the form of linear 
viscosity;  a second for the  test of the non-linear  viscosity; and a 
third for the case  with no horizontal diffusion a t  all. 

experiments at  GFDL during the  early stages of their 
development. Later  the baroclinic  waves break through 
to the poles, raise polar temperatures, and lower polar 
pressures. We have  not extended the computaion to this 
latter stage. 

Cross-sections  of the zonal mean of zonal  wind and of 
zonal mean  temperature a t  45 days  are shown in figure 14. 
Notice the  jet  stream a t  level 3 (about 165 mb.) a t  about 
31 ON. and 33OS., and  the easterlies in  the Tropics. There 
is a high  degree of symmetry between  hemispheres a t  this 
relatively early stage  in  the time htegration. 

The global mean kinetic energy is  plotted in figure 15 
along with the  terms  contributing to its change, i.e., the 
global mean of the conversion of potential energy to kin- 
etic energy and the global mean total frictional dissipation 
of kinetic energy, for the 1-day period starting at  day 45. 
The kinetic  energv  budget for this  period is presented in table 2. 
These results support  the discussions in section 4; i.e., the 
energy budget is consistently held by  the system of equa- 
tions used  except for a small error resulting from time 
truncation. 

The budget of global mean absolute angular momentum 
is given in table 3. The change in global  mean absolute 
angular momentum from 45 to  46 days is insignificantly 
small.  Accordingly, the  product of mean global torque  and 
the length of time indicates roughly the  extent of the 
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FIQURE 14.-Meridional cross-section at 45 days of (top)  zonal  mean emal wind (m./sec.) and of (bottom)zonal  mean  temperature (" K.) . 
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TABLE 2.-Budget of kinetic energy for 46 to 46 days 

ginetic energy at 46 days. . . . . . . . . . . . . . . . . . . . . .  2.486XlOC ergs o m - 2  
Kinetic energy at 45 days. _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _  2.412X100  ergs cm.4 
Rate of increase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.074X100  ergs cm.-r day 1 

T A B L e  3.-Budget of absolute angular momentum 

Absolute angular momentum at 46 days."." 2.0377035X101* gm. see.-l 
Absolute angular momentum at 45 days...". 2.0377WX101e gm. sec.-1 
Rate of increase .__________________-__________ 0.0000035X101e=3.5Xl01o m. sec.-l dar t  

m i J {  

1.4 
ABSOLUTE ANGULAR 

MOMENTUM 
ABSOLUTE ANGULAR u o  

MOMENTUM 
2 037695 

8000 

CONVERSION 

Time  mean  global  torque . . . . . . . . . . . . . . . . . . . .  1.45X10' dynes c m - 1  
Time  integrated torque  over l-day period.". 125X1010 gm. sec.-i 

~ ~~~ 

c I I 
45.0 

O A V S  
4i.5 46.0 

non-conservation of angular momentum  in our model 
during this 1-da.y period, The mean torque error of about 
107dynes/cm. is only a few percent of themagnitude of the 
mean surface torque in  the Tropics or in middle latitudes. 
Therefore, this amount of error is practically negligible. 

In general the  development of flow  in this numhrical 
integration, such as  the growth of baroclinic  waves, ap- 
peared to be  slow compared with the general circulation 
experiments by Smagorinsky, Manabe,  and Holloway [4]. 
This might  have been caused by the formulation of hori- 
zontal diffusion of momentum in the form of linear vis- 
cosity. In this case,  diffusion  is  effective  from the 
beginning of the run to make the flow smooth. If we had 
used a  type of non-linear  viscosity, the mixing of any 
given quantity would have been  small until the deform& 
tion of the flow reached its normal level. 

In order to investigate the differences in the behavior 
of the flow resulting from  the different types of viscosity, 
two other test runs, one without  any horizontal viscosity 
at  all and  another with non-linear  viscosity,  were started 
from  the 40-day data, and  the computations were  con- 
tinued for  10 days, in parallel with the  standard  run. In  
the run without viscosity, the flow accelerated and  there 
was a  marked reduction in the mean  scale of the disturb- 
ances, but  the integration remained  stable without any 
catastrophic deterioration of the flow, and disturbances 
were still identifiable with ones found in the  runs with 
viscosity. The surface pressure map  and the distribution 
of meridional wind at  level 5 (500 mb.) at 50 days  are 
presented in figure 16 and in the middle part of figure 10, 
respectively, for comparison with the  maps for the orig- 
inal test run having linear horizontal .viscosity. 

The surface pressure map at  50 days for the  run in 
which the momentum diffusion in the form of non-linear 
viscosity  was  assumed after 40 days is presented in figure 
17. The  bottom  part of figure 10  shows the meridional 
flow at level 5 for the same run.  The contours are quite 
smooth, perhaps because of a large value of the coefficient 
in the expression for  the non-linear  viscosity. In  figure 13, 
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FIGURE 15.-Time series of global mean kinetic energy and absolute 
angular momentum together with terms  contributing  to  their 
change; namely, conversion, dissipation, and surface torque, for 
the 1-day period starting at 45 days. 

the  variations of kinetic energy with time are plottsd for 
the  ten overlapping days during which the three different 
kinds of momentum diffusion  were  employed. In the case 
of the non-linear viscosity, the new  level of kinetic energy 
seems to be about 10 percent lower than  that fox the case 
of linear viscosity. Examining  the  maps of surface pres- 
sure and  the meridional wind a t  level 5,  we infer that  the 
differences in energy level can be attributed to  changes 
in both  the scale and the amplitude of the disturbances 
resulting from differences  in the  type of viscosity and in 
the value of the viscosity  coefficient. The phase speed of 
disturbances is apparently also affected by  the viscosity 
used. In the  future,  a decision is needed as to  the  most 
suitable form for representing the diffusion in order to 
simulate accurately the flow in the atmosphere. 

I n  conclusion, the test  integration showed that: 
(a) A system of primitive equations formulated by  the 

box method could be time integrated over a global  do- 
main for 50 days without any sign of finite-difference  com- 
putational trouble. 

(b) The nine-level  model of the atmosphere withstood 
an initial imbalance in  the wind  field, and  a  rather high- 
amplitude seiche of air between the poles and  the  equator 
was damped  out. 

(c) Baroclinic waves of wave number 5 to 7 developed 
in the model, the predicted patterns of the variables re- 
maiped smooth, and  the behavior of the disturbances was 
reasonable. 

(d) The accmacy in estimation of the budgets of energy 
and absolute angular momentum  was reaffirmed by  the 
analysis of the test integration. 

(e) The appropriate formulations of momentum d s u -  
sion seem to be required for the  accurate simulation of the 
flow. 



MONTHLY WEATHER REVIEW vol. 95, We. 8 524 

6O"N 

3O"N 

W 
0 

0" 
I- 

5 

30"s 

60"s 

0" 90" 180" 
LONGITUDE 

270" 360" 

FIOURE 16.--Surface pressure map at 50 days  for  the  run  started from 40 days of the  standard  run  but  computed  without horizontal vis- 
cosity. Contours  are  drawn  every  10  mb. 
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FIQURE 17.-Surface pressure map at 50 days for the  run  started from 40 days of the  standard run but computed  with  horizontal  dfiusion 
in the  form of non-linear  viscosity. Contours are  drawn  every  10  mb. 
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Appendix 1. written  in  the form of the so-called  non-linear  viscosity 

FINITE-DIFFERENCE  FORMS  OF  THE  FRICTIONAL as well as in a linear form. 

FORCE,  ENERGY  DISSIPATION,  AND  HEAT  DIFFUSION can be  form&ted by ( ~ 1 . 5 )  and ( ~ 1 . 7 )  : 
According to Smagorinsky [7], the non-linear viscosity 

FRICTIONAL  FORCE 
+a= - ree=prD, 

The frictional force term FX in the equation (3.1) and ba * Fe in (3.2) represent the rate of change of P*u and P*v re- 
suiting from the diffusion of momentum. Let us define the 

=-p* - I'DT (in X, o, u coordinates) (A1.5) 

following : where the tension rate of strain D,, is given by 

westward diffusive flux of eastward momentum 
TI@ southward diffusive  flux of eastward momentum du 'Os e 
rX2 downward  diffusive  flux of eastward momentum a de COS e 
roX westward diffusive  flux of northward momentum 
re@ southward diffusive  flux of northward momentum 
reZ downward  diffusive flux of northward momentum 

D'=&-" 
- ( ' ) (in X, e, z coordinates) 

(in X, e, a coordinates) (A1.6) 
Then, Fa and Fe written in  the X, e, z coordinate system 
and  in  the X, e, u coordinate  system, respectively, take  the and 
following forms: rae= @= prDs 

=-P* - ba rDs (in X, 8, a coordinates) (A1.7) * 
+& d (+ %)+A [ "& ( P cos2 e - where Ds is the shearing rate of strain given  below in  the 

two coordinate systems 

P* area W e  COS e tan e breZ Fe=- p [-+ adX a& +a ria+,] 

(A1.9) 

The boundary conditions are 

The  quantity rkS is a diffusive transfer of eastward 
momentum from the atmosphere to  the  earth across the 
surface a= 1, flat or sloping, and rSs is the corresponding 
term for northward momentum. 

The horizontal diffusive flux of momentum will be 

where K e f f  is the effective  wave number  having  the dimen- 
sions of (length)", and (Dl is pure deformation, i.e., 
ID1 =[D$+@,11/2 which has  the dimension (time)+. 

In the version of linear viscosity, the horizontal stresses 
written  in  the X, e, z coordinate  system are: 

P = p K H  COS e 
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In  the above definition, Ka is the horizontal eddy viscosity In the  above formulas, 
coefficient having the dimensions of (length)2- (time)-l. 

mentum is usudy defined as follows: 
On the  other  hand,  the vertical diffusive  flux of mo- -=-( ('&)02 ~ I k + 1 1 2 + ~ k + 1 / 2   4 2 k -  

6@ 2 

If X in (A1.12) and (A1.13) is replaced by X cos 8, X o l k  on 
the right-hand side should be X,,, cos 8, or XOZk cos 0,. 
The divisor cos 8 in (A1.l) should be cos Bo in  the finite- 
difference formulation. The conditions which are con- 
sistent with (A1.3) and (A1.4) can  be obtained by as- 
suming that 

x020= " X 0 2 1  
where Kv is the vertical eddy viscosity coefficient with 
the dimensions (length)2. (time)-l. 

In formulating the finite-difference  schemes of the 
frictional force, we  need to determine what kind of stress 
is acting at an interface between the key box and an 
adjacent box 1. Refer to figure A1 for definitions. West- 
ward  diffusive  fluxes of momentum, denoted by TOX;~ and 
~!1ji in the figure, are defined at  the 0-I interfaces on 
the  east  and  the west  sides of the box; southward fluxes, 
7;: and T& are at  the  north and the  south interfaces; 
and downward  fluxes, r?$& and T ! & . ~ ,  are at  the bottom 
and the  top of the box. 

The finite-difference forms corresponding to (Al . l )  
and (A1.2) in the X, 0, a coordinate system  can  be obtained 
by using the following rules. Let X be a component of 
the Reynolds stress tensor. Then,  the  quantities on the 
left-hand sides of the formulas written below are expressed 
by  the forms on the right-hand sides. 

and 

In  the finitedifference forms corresponding to (A1.5) 

and (A1.7) P, - takes  the  form a4 
aa 

p*o+P*2 . ["I 
2 

The deformation at the interface of the boxes, i.e., 
(A1.6) and (A1.8), can be estimated by applying the 
following rules : 

% at  the east interface or -. - at  the  north inter- % aA 
ba abX ba ab8 
_.- 
face 

where  where A is a given variable. 

% aA at  the east interface or - - - at the  north & -.- aa ab8 ba 

.}I 
(Al.13) 

interface 

where 
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finite-difference form. The values corresponding to (A1.16), 

obtained by exchanging the  subscripts 0 and 1 in  the  above 
formulas. In  the finite-difference formulation of deforma- 
tion, the zonal variation of a quantity  at  a  north or south (DIs>1=~" (b --- -) 
interface and  the meridional variation at an  east or west 
interface  are  taken to be zero, and  the factor (v/a) tan 6 
in tension is taken  into consideration only at  the  east  and 
west interfaces. Finally, the assumptions AO0=Ao1, AOK+, 
=AOK should also be used. The coefficient r in (A1.5) and 

where 
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(A1.17), and (A1.18) at the west or south interfaces are (WRSG),=$(A --.+A * --,p.> dss abx U% 

a4 bu 34 bu 
a adX abX bo 

bu 

(A1.7) is estimated a t  each lateral interface by (Keff)-zlDl, (DIS)2=T@X &#I bv a($ bv 
da abX aax ba 

The ko in the above is a non-dimensional parameter of 
order unity. 

The  form of the vertical stress corresponding to (A1.10) 
is shown  below as  an example: 

where 

The above equation does not  apply when k=O and K. 

ENERGY  DISSIPATION 

The dissipation of kinetic energy is derived here in 
x, e, a coordinates. The inner product of horizontal wind 
and  the frictional force can be divided into three parts; 
namely, 

where (WKLT) represents the work done by wind stress 
through the lateral  boundary;  (WKSG),  the  workdone 
through sigma surfaces; and (DIS), the  internal dissipa- 
tion of kinetic energy. Furthermore,  both uFx and vFe can 
be  separated in the same way, 

Vertical integration of (WKSG),  by  means of (A1.3) and 
(A1.4), yields the dissipation of kinetic energy at  the 
ground surface by the work  done against the surface 
stress : 

On the other hand,  the global area integration of (WKLT) 
vanishes. 

J'(WKLT)~S=O (A1.22) 
A S  

The  internal dissipation in  the case  of non-linear viscosity 
becomes 

(A1.23) 

Using the frictional forces  expressed according to t,he 
previously mentioned rules, we can define the finite- 
difference forms of (WKSG), (DIS), and  (WKLT) so 
that  the following  conditions  which  correspond  to (A1.20), 
(Al.21), and (A1.22), respectively, are satisfied: 

These six components  are  written as 'follows: 

b 
(WKLT),=-- (+ - * u)" ( 7 x 0  cos2 e - - adx ba , a& b~ COS e 

b 

The  internal dissipation takes the  form corresponding 
to (A1.23) 
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where 
FIGURE A1.-Diagram of the  locations of the westward  diffusive 

fluxes of momentum] 72; and T:;, and westward  diffusive flux 
of heat, rf, at  an  east  interface of the key box with an  adjacent 
box; the  southward diffusive fluxes of momentum] 72; and TE, 
and  southward  diffusive flux of heat, -Y:,~, at a  north  interface 
of the key box with  another contiguous  box; and  the downward 
diffusive fluxes, 7%+% and 7::+%, of momentum  and of heat, 
&+%, at  the  bottom of the key box. 

i 0 for k=1 
+& (ye  a)-g 

(in X, e, a coordinates) a &  
(A1.25) 

The conditions at  the upper  and the lower boundaries are 
(B)  = 

+(vo,- Ok 1 
~ - for - ) 2 1  Uk"ak-1 &a yh=yB=y'=o at  a=O (A1.26) 

It would be desirable that the relation between the 
assumed surface wind VOR+% and VOR is such that  the value 
(A) in the  above formula becomes positive when k = K .  

If we assume that  the air-earth exchange of momentum 
along a slope  is the same as it is over a horizontal plane, 
(&) and (&) may  be  estimated, given the  drag 
coefficient CD, by 

where so is an  area  factor; so={ 1+[Gx(z,)]2+[Ge(z,)]2}, 
in which z, denotes the  height of the ground surface. 

The  quantity yEs represents the diffusive transfer of heat 
to the  earth across the surface a = l .  

With  the horizontal and vertical eddy diffusion co- 
efficients for heat denoted by AB and AV, both of which 
have  the dimensions (length)2. (time)-I, the  heat diffusion 
fluxes are expressed in X, e, z and X, 8, a coordinates 
respectively: 

HEAT DIFFUSION bT 
ye= PAB &de 

In  the following let us define rX as the westward diffusive 
flux of heat; ye the southward diffusive  flux of heat; and ="p -AH - (- --- 
yz the downward diffusive  flux of heat.  The  rate of change 
of P,T due to heat diffusion,  i.e., FT in  equation (3.3), is 
given by 

* &  & baa& abeda 'a * bT * '7 (A1.29) 

aT 
yz= P A P  - az 

P* 2 bT 
= - s p p A v x  (A1.30) 
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As shown in figure All  +, 9, and y* are defined a t  the 
east  and west interfaces, at the  north and  south  inter- 
faces, and a t  the  bottom  and  top of the box,  respectively. 
The finite-difference forms of heat diffusion  fluxes and 
FT can  be formulated by using the same rules as those 
employed in the formulation of the frictional forces. 

Appendix 2. 

5 29 

1=3 

SPECIAL  FINITE-DIFFERENCE  FORMS  FOR 
THE TWO POLAR  BOXES 

If, as is the case  when  using system 1 in  Kurihara’s 
paper ([2], p. 401), a grid point is situated on the north or 
south pole,  special  finite-difference  forms of the equations 
are needed.  However, the occurrence of a polar  box can be 
avoided, for example, by adopting the grid system 3 in [2]. 

Assume that the  north polar  box is surrounded by four 
boxes as shown  in  figure A2. In this case, the box is 

bounded by only three surfaces,  i.e., 6=Os=-“--’ r A6 

g = c k + # ,  and f s = f f k - W .  The horizontal cross-section and 
volume of the box are 

2 2  

AS=2m2( 1 -sin e,) 
AV= A S  6~ (A2.1) 

Since the  four  lateral interfaces have  the  same  area, their 
weights computed by (2.3) are w1=w2=w3=w4=w. 

The integrated mean of the wind in  the  north polar  box 
is defined by U and V (see  fig. A2). If the wind at the 
polar  box is observed from the surrounding boxes  in the 
figure, U and V are  taken  as 

U=u, V=v by  the box 1=1, 
U=-v, V=u by  the box 1=2, 
U=-u, V=-v by  the box 1=3, 
U=v, V=-u by  the box 1=4. 

These relations must  be used  in obtaining the finite- 
difference forms for the surrounding boxes. Figure A2 
can  be made to represent the south polar  box by ex- 
changing the indices for boxes  one and three. However, 
the conversions  between small and  capital u and v are 
changed  accordingly. 

The finite-difference forms of the system of equations 
for the polar boxes including the prognostic equations 
for P* U and P*V are obtained in  the same manner as 
derived in Section 3 for the other boxes. In  the derivation, 
due  regard is given to  the above wind  field  definitions. 
For example, the  rate of change of P*o at the  north pole 
is given by 

2  2  2 

(A2.2) 

289-089 0 - 67 - 5 289-089 0 - 67 - 5 

I= I 

FIGURE A2.-Diagram  of the U and V wind components in  the 
north polar box surrounded by boxes I= 1 through 4. Observed 
from box 2 the U-component appears  as a  northerly wind (v<0) 
and  the V-component, a west wind (u>O). 

If the thermal  equation  and  the  equation of kinetic 
energy are derived, it is seen that the horizontal inflow 
of energy into  the polar boxes is the same as the outflow 
across the poleward boundaries of the surrounding boxes. 

The finite-difference forms of the frictional forces, 
energy dissipation, and  the effect of heat diffusion in  the 
polar  boxes  can also be obtained by using T~~~ P ,  and ye 
which are defined at  the poleward  sides of the surrounding 
boxes. 
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