GFDL - Geophysical Fluid Dynamics Laboratory

Skip to main content

Isaac Held's Blog

29. Eddy resolving ocean models

Animation of the sea surface temperature in a coupled climate model under development at GFDL,
the ocean component having an average resolution of roughly 0.1 degree latitude and longitude.
Click HERE for the animation.
(Visualization created by Remik Ziemlinski; model developed by T. Delworth, A. Rosati, K. Dixon, W. Anderson using MOM4 as the oceanic code base.)

As models gradually move to finer spatial resolution we naturally expect to gradually improve our simulations of atmospheric and oceanic flows.  But things get especially interesting when one  passes thresholds at which new phenomena are simulated that were not present in anything like a realistic form at lower resolution.  The animation illustrates what happens after one passes through an important oceanic threshold, allowing mesoscale eddies to form, filling the oceanic interior with what we refer to as geostrophic turbulence. At resolutions too coarse to simulate the formation of these eddies, flows in ocean models tend to be quite laminar except for some relatively large scale instabilities of intense currents of the kind seen in the snapshot north of the equator in the Eastern Pacific. (For a transition comparably fundamental in atmospheric models, one has to turn to the point at which global models begin to resolve the deep convective elements in the tropical atmosphere — see for example Post #19).

Read the rest of this entry »