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Methane (CH,) oxidation in the presence of nitrogen oxides (NO,) contributes to tropospheric ozone (O,), raising baseline levels of Surface NO, emissions EMISSIONS

ozone pollution in surface air globally. Since methane is also a potent greenhouse gas, controls on methane offer a strategy for Anthropogenic CH, Emissions (Tg yr~)
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jointly addressing air pollution and climate goals [e.q., Flore et al., 2002; Dentener et al., 2005; West and Fiore, 2005; EMEP, 2005]. = Anthrop. NO, increases ., < CLE +29% from 2005 to 2030
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» Characterize the O,; response to CH, control by 3 Tg C yr (+3%) - B) -125 Tg (29%) Tropospheric O,

» Quantify the climate and air quality benefits from CH, controls
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» Evaluate CH, controls in future emission scenarios where emissions of other O, precursors are also changing |
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*Biogenic includes wetlands, oceans, and termites

et al. [2004]; 2000-2004 NCEP meteorology recycled every 5 years the N. Atlantic (see above for NO, emission changes) CH, controls; largest decreases
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occur in high-NO, areas
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> Methane source location has little influence on the surface (or tropospheric) O, distribution a0 e 12 total O;), but also extends to the high end of the distribution in NO -saturated conditions (Los Angeles, Houston)
R I(_<10% globally except_fo(rj Iocalnzelf_l effect_m Asnag Isour(?e regl(')rr?No T her o 4  Future CH, controls relative to the CLE baseline (scenarios B or C) would offset the projected positive climate forcing
arger ozone response in downwelling regions and locations with NO,-saturated chemistry earing a neéw steady-staté | 54 reduce the incidence of high-O, events in all regions, even improving air quality in Europe relative to 2005.
- Largest % decreases occur in lower troposphere (due to T dependent Ko, cp4) after 30 years
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