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More than half of global methane emissions 
are influenced by human activities

~300 Tg CH4 yr-1 Anthropogenic [EDGAR 3.2 Fast-Track 2000; Olivier et al., 2005]
~200 Tg CH4 yr-1 Biogenic sources [Wang et al., 2004]  
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Air quality-Climate Linkage:
CH4, O3 are important greenhouse gases
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Change in 10-model mean July 
surface O3 [Prather et al., 2003]

Adapted from J. West

Attributed mainly to increases in methane and NOx
[Wang et al., 1998; Prather et al., 2003]

Observations indicate historical increase in background 
ozone; IPCC scenarios project future growth

Ozone at European mountain sites 
1870-1990  [Marenco et al., 1994].

2100 SRES A2 - 2000



Rising background O3 at northern mid-latitudes has 
implications for attaining air quality standards
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O3 (ppbv)
U.S. 8-hr 
average

Analyses of surface O3 from North American and European 
monitoring sites indicate increasing background
[Lin et al., 2000; Jaffe et al., 2003,2005; Vingarzen et al., 2004; 
EMEP/CCC-Report 1/2005 ]
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Radiative Forcing of Climate from Preindustrial to Present:

Important Contributions from Methane and Ozone

Hansen, Scientific American, 2004



Approach: Use 3-D Models of Atmospheric Chemistry to examine 
climate and air quality response to emission changes

GEOS-CHEM
[Bey et al., 2001]

MOZART-2
[Horow itz et al., 2003]

3-D model structure

• GEOS GMAO meteorology
• 4°x5°; 20 σ-levels
• GEIA/Harvard emissions
• Uniform, fixed CH4

• NCEP meteorology
• 1.9°x1.9°; 28 σ-levels
• EDGAR v. 2.0 emissions
• CH4 EDGAR emissions for 

1990s



50% 
anth.
NOx

2030 
A1

50% 
anth.
CH4

50% 
anth.
VOC

2030 
B1

1995
(base)

50% 
anth.
VOC

50% 
anth.
CH4

50% 
anth.
NOx

2030 
A1

2030 
B1

IPCC 
scenario

Anthrop. NOx emissions
(2030 vs. present)

Global              U.S.

Methane 
emissions

(2030 vs. present)

A1 +80% -20% +30%
B1 -5% -50% +12%

Number of U.S. summer grid-
square days with O3 > 80 ppbv

R
ad

ia
tiv

e 
Fo

rc
in

g 
(W

 m
-2

)
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background O3

Fiore et al., GRL, 2002

Double dividend of Methane Controls:
Decreased greenhouse warming and improved air quality

GEOS-Chem Model Simulations (4°x5°)



Response of Global Surface Ozone to 50% decrease in global methane 
emissions (actually changing uniform concentration from 1700 to 1000 ppbv)

• Ozone decreases by 1-6 ppb
• ~3 ppb over land in US summer
**   ~60% of reduction in 10 yr; ~80% in 20 yr.



Impacts of O3 Precursor Reductions on 
U.S. Summer Afternoon Surface O3 Frequency Distributions

West & Fiore, ES&T, 2005

GEOS-Chem Model Simulations (4°x5°)



Tropospheric ozone response to anthropogenic methane 
emission changes is fairly linear

X

MOZART-2 (this work)
TM3 [Dentener et al., ACPD, 2005]
GISS [Shindell et al., GRL, 2005
GEOS-CHEM [Fiore et al., GRL, 2002]
IPCC TAR [Prather et al., 2001]



How Much Methane Can Be Reduced?

Comparison: Clean Air Interstate Rule (proposed NOx control) 
reduces 0.86 ppb over the eastern US, at $0.88 billion yr-1

West & Fiore, ES&T, 2005
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1950s Present1980s

NMVOCs + NOx + CH4??

Ozone Abatement Strategies Evolve as our 
Understanding of the Ozone Problem Advances

Abatement Strategy:

O3 smog recognized
as an URBAN problem:
Los Angeles,
Haagen-Smit identifies
chemical mechanism

Smog considered
REGIONAL problem; 
role of biogenic 
VOCs discovered A GLOBAL perspective:

role of intercontinental
transport, background



Addressing the CH4-O3 air quality-climate linkage

1. Does CH4 source location 
influence the O3 response? 

2. What is driving recent trends 
in atmospheric CH4 ?
 Sources?
 Sinks? 

Methane controls are receiving attention as a means to 
simultaneously address climate and global air pollution 

[EMEP/CCC report 1/2005]
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Methane Control Simulations in MOZART-2: 

30% Decrease in Global Anthropogenic CH4 Emissions

Global surface CH4 conc. (ppb)
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Decrease in 
Tropospheric 
O3 Burden

pp
b

 Approaching steady-state after 30 years
 Does O3 impact depend on source location?

(1) global -30% anthrop. emissions 
(2) zero Asian emissions (=30% global)

BASE CASE

-30% anthrop. emis.

Tg



CLIMATE IMPACTS: Change in July 2000 Trop. O3 Columns 
(to 200 hPa)

30% decrease in global anthrop.
CH4 emissions

Zero CH4 emissions from Asia
(= 30% decrease in global anthrop.)

Dobson Units
-34 -27 -20 -14 -7 mW m-2 (Radiative Forcing)

No Asia – (30% global decrease)

Tropospheric O3 column response is 
independent of CH4 emission location 
except for small (~10%) local changes

DU
-5.1 -3.4 -1.7 -0.7 mW m-2+0.7



U.S. Surface Afternoon Ozone Response in Summer 
also independent of methane emission location 

MEAN DIFFERENCE MAX DIFFERENCE
(Composite max daily 
afternoon mean JJA) NO ASIAN ANTHROP. CH4

GLOBAL 30% DECREASE IN ANTHROP. CH4

Stronger sensitivity in NOx-saturated regions (Los Angeles),
partially due to local ozone production from methane



Observed trend in Surface CH4 (ppb) 1990-2004

Data from 42 GMD stations with 8-yr minimum 
record is area-weighted, after averaging in bands 

60-90N, 30-60N, 0-30N, 0-30S, 30-90S
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Hypotheses for leveling off
discussed in the literature:

1. Approach to steady-state

2. Source Changes   
Anthropogenic
Wetlands
Biomass burning

3. Transport

4. Sink (OH)
Humidity
Temperature
OH precursor emissions
overhead O3 columns

How does BASE CASE Model compare with GMD observations?
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OBSERVED

BASE CASE MODEL

Captures flattening post-1998 
but underestimates abundance

Emissions problem?

Possible explanations for observed behavior:
(1) Source changes 
(2) Meteorologically-driven changes in CH4 lifetime
(3) Approach to steady-state with constant lifetime



Bias and Correlation vs. GMD Surface CH4: 1990-2004

BASE simulation with constant emissions:
 Overestimates interhemispheric gradient 
 Correlates poorly at high northern latitudes

BASE

Mean Bias (ppb) r2



Estimates for Changing Methane Sources in the 1990s
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Bias & Correlation vs. GMD CH4 observations: 1990-2004

ANTH simulation with time-varying 
EDGAR 3.2 emissions:
 Improves abundance post-1998
 Interhemispheric gradient too high 
 Poor correlation at high N latitudes
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ANTH+BIO simulation with time-
varying EDGAR 3.2 + wetland 
emissions improves:
 Global mean surface conc.
 Interhemispheric gradient 
 Correlation at high N latitudes

Bias & Correlation vs. GMD CH4 observations: 1990-2004
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Time-Varying Emissions:  Summary

Next: Focus on Sinks
-- Examine with BASE model (constant emissions)
-- Recycle NCEP winds from 2004 “steady-state”
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Methane rises again when 1990-1997 winds 
are applied to “steady-state” 2004 concentrations
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 Recycled NCEP 1990-2004 

Meteorological drivers for observed trend 
 Not just simple approach to steady-state

Area-weighted global mean CH4 concentrations in 
BASE simulation (constant emissions)
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How does meteorology affect the CH4 lifetime? 

Lifetime Correlates Strongly With Lower Tropospheric
OH                  and             Temperature
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 r2 = 0.65

105 molecules cm-3

r2 = 0.69

K

Temperature
Humidity
Lightning NOx
Photolysis

Rapid transport to sink regions

Candidate Processes:



Methane Distribution and Trends: Climate and Air Quality Impacts

• 20% anthrop. CH4 emissions can be reduced at low cost

• Ozone response largely independent of CH4 source location

• 30% decreases in anthrop. CH4 reduces radiative forcing by 0.2 
Wm-2 and JJA U.S. surface O3 by 1-4 ppbv
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Global Mean CH4 (ppb) Hypotheses for leveling off:

1. Approach to steady-state
 not the whole story

2. Source Changes   
 improve simulated abundances

but not driving trend
3. Transport

4. Sink (OH)

Meteorology major driver;
further work needed to 
isolate cause

Potential for strong climate feedbacks 



Q: How will future global change influence atmospheric CH4?
Potential for complex biosphere-atmosphere interactions

CH4 + OH …products

Soil 

BVOC NOx
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