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[1] New, definitive measures of precipitation frequency provided by CloudSat are used to
assess the realism of global model precipitation. The character of liquid precipitation
(defined as a combination of accumulation, frequency, and intensity) over the global
oceans is significantly different from the character of liquid precipitation produced by
global weather and climate models. Five different models are used in this comparison
representing state‐of‐the‐art weather prediction models, state‐of‐the‐art climate models,
and the emerging high‐resolution global cloud “resolving” models. The differences
between observed and modeled precipitation are larger than can be explained by
observational retrieval errors or by the inherent sampling differences between observations
and models. We show that the time integrated accumulations of precipitation produced by
models closely match observations when globally composited. However, these models
produce precipitation approximately twice as often as that observed and make rainfall far
too lightly. This finding reinforces similar findings from other studies based on surface
accumulated rainfall measurements. The implications of this dreary state of model
depiction of the real world are discussed.
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1. Introduction

[2] The increase in global mean accumulated precipitation
that is expected to occur with global warming is primarily
controlled by requirements for global energy balance [Allen
and Ingram, 2002; Stephens, 2005, among others]. These
energy balance controls on the planet’s hydrological cycle
apply only to the global mean accumulation of precipitation.
It is not obvious how the character of precipitation, defined
not only by accumulation but also in terms of frequency and
intensity among other measures, is expected to change [e.g.,
Stephens and Hu, 2010] nor is it obvious how these changes
manifest themselves on the regional scale. It is well docu-
mented that changes to both the frequency and intensity of
precipitation do occur in climate warming experiments
performed using present generation climate models [e.g.,
Dai and Trenberth, 2004; Sun et al., 2006; Pall et al., 2007;
Neelin et al., 2006], which raises serious questions about

the common hydrological practice of assuming stationary
statistics of precipitation [Milly et al., 2008].
[3] The purpose of this paper is to provide a new evaluation

of the character of oceanic precipitation from three different
types of global prediction models. This evaluation defines the
character of precipitation as a combination of three quantities:
(1) the accumulation of precipitation aDT integrated over
some time period DT,

aDT ¼
X

DT

fi � ri;

and (2) the frequency of occurrence fi over this same period
DT of (3) precipitation of (instantaneous) intensity ri.
[4] Although comparison of modeled aDT with observa-

tions is commonplace, use of such comparisons over sea-
sonal and longer time scales offers little in way of testing the
realism of hydrological processes in Earth system models
since this time‐integrated precipitation is primarily con-
trolled by the energy balance of the planet [e.g., Stephens
and Ellis, 2008]. Joint assessment of model frequency fi
and intensity ri of precipitation provide more insight on the
validity of modeled moist processes, but such assessments
have proven to be difficult to perform since the necessary
global observations are generally lacking. Land surface
observations of the daily‐accumulated rainfall intensities of
rates >1 mm/d were compiled from the Global Historical
Climatology Network by Sun et al. [2006] and compared
to analogous model accumulated precipitation. As in other
studies [e.g., Dai and Trenberth, 2004], the Sun et al. com-
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parison revealed a general overestimate in the frequency of
modeled precipitation and an associated underestimate of
intensity and this finding is also reproduced in this study.
Using comparisons to oceanic precipitation data derived from
satellite microwave observations,Wilcox and Donner [2007]
reached a similar conclusion. Neither study include the con-
tributions of lighter precipitation (<1 mm/d) that approaches
10% of the tropical accumulated rain [Dai et al., 2007;
Berg et al., 2010] and represents an even a larger proportion
of midlatitude precipitation where estimates of both fre-
quency and intensity of precipitation from satellite observa-
tions has proven problematic [Petty, 1997; Ellis et al., 2009;
Berg et al., 2010]. The assessment reported in this study, by
contrast, uses new precipitation information available from
CloudSat observations [e.g., Haynes et al., 2009]. The fre-
quency of precipitation detected by CloudSat is intrinsically
more accurate than any previous satellite sources of data
owing to the acute sensitivity of the CloudSat radar to the
presence of drizzle and lighter precipitation missed by
other satellite observations [e.g., Berg et al., 2010; Ellis et al.,
2009].
[5] The characteristics of these new precipitation data are

introduced in section 2 along with a discussion of likely
observational error. A description of model data used in
comparisons to the observations is provided in section 3.
The main results of the study, presented in section 4, focus
on instantaneous precipitation rather than daily or seasonal
mean accumulations because (1) model errors revealed in
this quantity provide a clearer indication of flaws in model
physics and possible hints where improvements might be
made to fix them (e.g., G. Stephens et al., The character of
low clouds over the Earth’s oceans, submitted to Journal of
the Atmospheric Sciences, 2010) and (2) instantaneous
precipitation directly couples to other physical processes of
the Earth system. For example, precipitation influences
the water budget of clouds and related radiative effects
[Stephens et al., 2008], the washout of aerosol [e.g., Xian
et al., 2009], and thus aerosol effects on the radiation
balance, the latent heating of the atmosphere and its
effects on storm genesis and intensity (e.g., P. J. Webster and
C. D. Hoyas, Tropical cyclone number and intensity in an
evolving warm pool, submitted to Geophysical Research
Letters, 2010). The intensity and frequency of precipitation
also greatly influences surface hydrological processes such
as water filtration into soils, runoff, river discharge, and
soil drying [Trenberth and Dai, 2007; Dai et al., 2009].
Section 6 summarizes the results of the study.

2. Observations

[6] Although the main source of observational data
employed in this study is the CloudSat spaceborne cloud‐
profiling radar (CPR) [Stephens et al., 2008], precipitation
data taken from other sources are also used for comparison.
These other sources of data include (1) the Version 2AMSR‐E
level‐2B Ocean precipitation product [Kummerow et al.,
2001], (2) the Version 6 13.8 GHz Tropical Rainfall Mea-
surement Mission (TRMM) Precipitation Radar (PR) product
2A25 [Iguchi et al., 2000] and the Version 6 TRMM Micro-
wave Imager (TMI) product 2A12 [Kummerow et al., 1998,
2001], and (3) Global Precipitation Climatology Project
(GPCP) Version 2.1 precipitation data that combines satellite

IR data from Geostationary imagers, sounding data from the
TIROS Operational Vertical Sounder (TOVS) and the
Atmospheric Infrared sounder (AIRS), microwave imager
data from the Special Sensor Microwave Imagers (SSMIs),
and surface rain gage data [Adler et al., 2003].
[7] The CloudSat data used in this study are from

the 2C‐COLUMN‐PRECIP product. Although the full
description of this product is provided by Haynes et al.
[2009], a brief description of the data and related errors is
given here. The CloudSat precipitation information derives
from estimates of the path‐integrated attenuation (PIA) of the
CPR. PIA is determined for each footprint of the radar
(approximately 1.7 km in scale) [Tanelli et al., 2008]. At
this stage in development, only precipitation over the
oceans is produced given the estimate of PIA can be more
accurately determined over ocean surfaces than over land
surface. PIA is used in two ways in the product. The
existence of PIA above some background level of atten-
uation indicates the existence of rain. The intensity of rain
that is reported below is directly proportional to the rain-
water path in the column which is also directly propor-
tional to the magnitude of the PIA [e.g., Haynes et al.,
2009].
[8] The lower detection threshold of oceanic PIA (about

2 dB) translates to a lower threshold precipitation of
approximately 0.02–0.05 mm/h, and hereafter we use
0.05 mm/h as a somewhat conservative estimate of the
minimum observational threshold of an individual CPR
footprint. The intensity of rain is proportional to the PIA
but total attenuation of the radar and multiple scattering
limit estimation of the heaviest rain to about 3–5 mm/h [e.g.,
L’Ecuyer and Stephens, 2002; Haynes et al., 2009].
Although total attenuation occurs in only about 3% of all
precipitating profiles and then primarily at low latitudes, this
limitation leads to a bias in the PIA estimated tropical
accumulation of about 10%–15% when compared to TRMM
observations matched specifically to the CPR [Berg et al.,
2010]. These direct comparisons to the TRMM PR, pro-
vided in the CloudSat 2D‐CLOUDSAT‐TRMM product
(http://cloudsat.cira.colostate.edu), are used here to correct
the underestimated intensities for this relatively small
number of cases of total attenuation removing a source of
bias in the CPR seasonal mean precipitation. Analysis of the
most intense rainfall regime in the Berg et al. [2010] study
suggests that the overall low bias in CloudSat rain accumu-
lation can be removed by simply increasing the PIA‐
estimated intensities of completely attenuated CloudSat
pixels by a factor of 2.5. This correction has been applied to
only that (small) fraction of completely attenuated profiles
that occur in the TRMM region.
[9] Determination of the occurrence of precipitation

combines the PIA with the radar reflectivity measured
adjacent to the ocean surface to construct the equivalent
unattenuated radar reflectivity at those levels. The larger the
value of this unattenuated reflectivity in the near‐surface
range bins, the larger are the reflecting hydrometeors and the
more likely it is that these particles fall producing precipi-
tation at the surface. Threshold values of this near‐surface
reflectivity are used to define the likelihood of precipitation
as summarized by Haynes et al. [2009]. In this study, we
combine the thresholds that define the rain certain category
(unattenuated near‐surface reflectivity of 0 dBZ or higher)
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and the rain probable category (unattenuated near‐surface
reflectivity is between −7.5 and 0 dBZ) of Haynes et al.
[2009] to define the occurrence of precipitation. This
largely excludes the likelihood of light drizzle (of rain rate
less than about 0.02 mm/d) from the analysis.
[10] Assigning uncertainty to the detection of precipitation

is not simple. Ellis et al. [2009] offer a limited assessment
using surface observations. Agreement between the number
of raining days observed at 9 out of 10 individual surface
stations examined with CloudSat observations confined to a
2.5° × 2.5° box centered on the given stations was within
23% despite the obvious inherent sampling differences
between such data. Another indication of uncertainty is the
approximate 20% difference between rain certain and the
combination of “rain certain” plus “rain probable” also re-
ported by Ellis et al. [2009]. Taken together, it is reasonable
to suggest that the uncertainty in detection is approximately
20%–25%, which is significantly less than the differences
between models and observations shown below.
[11] Errors in precipitation intensity are more directly

quantifiable (see Haynes et al. [2009] for details). It is
reasonable to assume many retrieval errors are random with
small contributions to total error when data are accumulated
over time and space as done in this study. However, there
are two potentially important sources of bias error that need
to be accounted for and are well exemplified in the portion
of a CloudSat orbit highlighted in Figure 1. The first is a
bias error that occurs in the heaviest precipitation events that
attenuate the CloudSat radar completely. As already men-
tioned, these circumstances are flagged in the algorithm, and
although a mean multiplicative factor of 2.5 has been
applied to these cases, it should be noted that the analysis of
Berg et al. [2010] reveal that the scaling factor required to

correct for the underestimation of tropical precipitation
intensity by CloudSat PIA in cases of total attenuation
actually varies between approximately 2 and 3 depending on
water vapor and other environmental factors. We take this
range as an upper and lower bound and use it to determine
the error of tropical precipitation between 35°N‐S for which
the Berg et al. analysis is relevant and where most of the
occurrence of total attenuation occurs.
[12] The second potential source of bias error arises from

the uncertain assignment of the height of the precipitation
water column. Precipitation intensity as derived from the
column information in both the passive microwave ob-
servations and the CloudSat column PIA method is pro-
portional to the precipitation water content defined as the
water path divided by the depth of the column. The depth of
the water column is typically assumed to be the thickness of
the layer between the surface and the height of the freezing
level neglecting the possible existence of supercooled water
above this freezing level as often occurs in deeper convec-
tion and slantwise convection of higher‐latitude frontal
systems. When the freezing level touches the surface, as in
the example of Figure 1, the estimated intensity becomes
unrealistically too high and increasingly is sensitive to the
specification of this column water height with errors
exceeding 100% when freezing levels occur below 1.5 km
[Haynes et al., 2009]. The range in precipitation that results
from a doubling and halving of the precipitation for cases
that occur below the freezing level of 1.5 km is taken as
indicative of error ranges for these cases.

3. Annual Oceanic Accumulations

[13] Figure 2a presents the oceanic rainfall accumulation
(expressed as a time‐mean precipitation rate) derived from

Figure 1. An approximately 400 km long portion of the CloudSat orbit showing the cloud and
precipitation features of a frontal system observed on 8 November 2007. (top) The radar reflectivity
observed by the CPR with the freezing level (0C isotherm) superimposed for reference. (middle)
The measured surface reflectivity (black) and the inferred PIA (green). (bottom) The CPR‐based intensity
(green) with AMSR‐E‐based precipitation in black for reference.
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33 months of CloudSat data taken from June 2006 to
March 2009. The AMSR‐E Goddard PROFiling algorithm
(GPROF) accumulations also shown are for the same
33 month period, and the annual mean GPCP data are also a
multiyear average. The precipitation data averaged between
latitudes of 30°N‐S are referred to as tropical, data averaged
between 30°N‐S to 60°N‐S are similarly referred to as
midlatitudes and data averaged between 60°N‐S are referred
to as global. Averages of 11 years of TRMM PR and TMI
data are also shown for the tropics. The 60°N‐S “global”
oceanic mean accumulation of 3.0 +0.07/−0.04 mm/d
determined from CloudSat compares well with the average
GPCP value of 2.9 mm/d but not to the AMSR‐E data that
substantially underestimates precipitation in the midlati-
tudes. This lack of agreement between CloudSat and
AMSR‐E is expected given that the version of the AMSR‐E
data available for this study is known to miss significant
amounts of midlatitude precipitation [e.g., Ellis et al., 2009;
Petty, 1997]. The agreement among the different observations
for the tropics is also noteworthy with all estimates of accu-
mulation fallingwithin the CloudSat observational error range.
[14] The extent of the error bar on the CloudSat results of

Figure 2a combines the two high and low ranges of each
bias. This error range, however, omits a potentially impor-
tant source of error in the CloudSat data composites. Ne-
glected are representativeness errors due to the incomplete
spatial and temporal sampling that is inherent to these

asynoptically sampled data [e.g., Salby and Callahan, 2007].
One interpretation of the agreement shown in Figure 2a
between the different data sources for the tropical oceans in
particular is that the more limited space‐time sampling of
CloudSat has little influence on these accumulated annual
statistics (as well as on seasonal statistics, data not shown),
and thus, it is reasonable to assume the representativeness
errors are small over oceans [see also Berg et al., 2010]. Since
the AMSR‐E flies on the A‐Train, these data have the same
temporal but very different spatial sampling than CloudSat
and the asynoptic nature of both intrinsically differ from the
data sampling of TRMM. Since the TRMM TMI and the
AMSR‐E accumulations shown are based on the same
GPROF algorithm [Kummerow et al., 1998], the physical
assumptions of the algorithms are thus the same. The small
differences between these two different sources of precipi-
tation data are most likely due to small sampling differences,
which is consistent with the above interpretation that repre-
sentativeness errors due to the asynoptic sampling of the
A‐Train sensors are small compared to the TRMM sample.
The slightly larger accumulations observed by CloudSat
compared to the TRMM and AMSR‐E (about 7%) is due
to the contribution of lighter rain detected by CloudSat but
missed by the TRMM PR and by implication AMSR‐E
and TMI [e.g., Berg et al., 2010]. The agreement between
CloudSat and GPCP in midlatitudes also suggests the
influence of the CloudSat sparse asynoptic sampling on

Figure 2. (a) The observed oceanic rainfall accumulation derived from different sources. (b) Comparison
between CloudSat observed accumulation andmodel accumulation. The uncertainty ranges indicated on the
CloudSat observations are discussed in the text.
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the space‐time accumulated statistics presented in Figure 2a
is also small.

4. Model Data

4.1. Data Sources

[15] Instantaneous (i.e., singe time step) model precipita-
tion, sampled at single time steps every 3 h, was accumulated
from the simulations of five different global models. While
all model simulations apply to the same season, the data
analyzed for each model correspond to different time periods.
We applied different sampling approaches to one model.
One approach sampled the data asynoptically along the
projected satellite orbit whereas the second adopted the
synoptic uniform space‐time sampling across the globe. The
results reported in this study for that model were unchanged
regardless of the approach, thus suggesting that the results
of this study are also generally robust to different sampling
strategies.
[16] The models that are compared to the observations

include as follows: (1) the version CY35R1 of the European
Centre for Medium‐Range Weather Forecasts (ECMWF)
integrated forecast system (IFS) global model with a grid
resolution of 40 km (T511) (The data are from a series of

daily 12–36 h forecasts from operational analyses and were
analyzed for the JJA season of that year. Values are ex-
tracted from three hourly model output along the A‐Train
track and are therefore always within 1.5 h of the overpass
time of CloudSat.); (2) a 5 year JJA AMIP climatology
of the CAM3 climate model [Collins et al., 2006] with an
approximate 2° resolution; (3) an equivalent JJA AMIP
climatology of the AM2 climate model [Geophysical
Fluid Dynamics Laboratory Global Atmosphere Model
Development Team (GFDL‐GAMDT), 2004] also with
an approximate 2° resolution; (4) a 5 year JJA climatology
from the atmospheric only version of the unified global
model of the UK Meteorological Office (HadGEM1)
[Johns, 2006]; and (5) a more restricted 4 day July
simulation of the global cloud‐resolving model NICAM
(Nonhydrostatic ICosahedral Atmospheric Model) [e.g.,
Satoh et al., 2008] in the form reported by Suzuki et al.
[2008] for versions of the model with grid resolutions of
7 and 14 km. The data from the latter four models (CAM3,
AM2, HadGem1, and NICAM) were sampled synoptically.
[17] The global, tropical, and midlatitude JJA accumula-

tions derived from these model data are compared to the
mean of the combined 2006 and 2007 JJA seasons observed
by CloudSat in Figure 2b. All model results lie within the

Figure 3. The CloudSat fractional occurrence of (left; liquid) precipitation and rain intensity inferred at
the native resolution of the CloudSat measurements (1.75 km) and for CloudSat observations averaged up
in scale to 0.4°S and 2°S. The oceanic mean values are also given above the images.
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observational uncertainties of the observed global, seasonal
accumulations. Larger differences exist, however, between
model and observations when considering tropical and
midlatitude accumulations separately. The accumulations
from the four general circulation models that employ more
traditional parameterization of moist physics tend to produce
too much precipitation over the tropical oceans compared
to observations. This excess is then compensated for in the
global averages by too little midlatitude precipitation that
falls below the estimated lower error of observation. The
tropical and midlatitude precipitation of the NICAM
model, by contrast to these other models, lies within the
range of observational uncertainty for both the tropics and
midlatitudes.

4.2. Averaging Methods

[18] The comparisons between model and observed
accumulated precipitation shown in Figure 2b are unaffected
by differences in spatial resolution between models and
observations assuming that the representativeness errors of

the observations are negligible. Both the frequency and
intensity of precipitation, however, are scale dependent, and
some adjustment to the observations is required when
making direct comparisons between 2D model fields at
different resolutions and the 1D like CloudSat data obtained
on a finer resolution. Upscaling such 1D‐like data to compare
to model areal grid point data is problematic in many ways.
Precipitation is fundamentally nonuniform (or intermittent)
and the statistical properties of its spatial and temporal
averages are known to display a multifractal dimensional
nature [e.g., Lovejoy et al., 2008; Hubert, 2001]. Multidi-
mensional phenomena‐like precipitation obey a power law
relation on the scales over which they are averaged [e.g.,
Field and Shutts, 2009]. Averaging precipitation over di-
mensions less than that of the full space‐time in which the
phenomena are embedded implies that in general some of the
more intense regions (characterized by a lowest dimension)
will be undersampled resulting in a shift in the probability
distribution function (pdf) of precipitation in favor of lighter
rains. This shift in the pdf does not generally result in any bias
to the mean of the distribution itself.
[19] In this study we apply a procedure to upscale the

CloudSat precipitation to the appropriate model resolution
using the following simple averaging approach that is similar
to the simple averaging employed in the Sun et al. [2006]
study. Each granule of data (one orbit) is divided into a
number of segments of given length that is predetermined by
the model resolution in question. The number of individual
CPR profiles within each segment of data is then determined.
The existence of precipitation above the specified threshold
in any one profile within such a segment is counted as an
occurrence for the entire segment and the precipitation rate is
then averaged across all profiles within the given segment.
The threshold intensity, taken to be 0.05 mm/h at the native
resolution of the observations, is similarly reduced by a factor
that equals the number of profiles that fall within each
segment. The approximate precipitation thresholds used to
sample each model were 0.05, 0.01, 0.01, 0.017, 0.3, and
0.6 mm/d for the IFS, CAM3,AM2, UKMO, NICAM 7 km,
and NICAM 14 km models, respectively.
[20] Figure 3 illustrates the effects of upscaling on both

fi and ri. Figure 3 (left) depicts the 2007 JJA frequencies of
occurrences defined at the native resolution of the observa-
tions accumulated into 2 × 2 latitude/longitude bins, as well
as the frequencies of occurrences averaged up to 0.4° and
2° also accumulated into 2 × 2 latitude/longitude bins.
Figure 3 (right) shows the matching intensities of precipita-
tion. Figure 3 clearly demonstrates the effect of averaging
over successively larger scales with the oceanic mean fre-
quency increasing from 11% to 20% and 40% and the
oceanic‐wide intensities decreasing from 1.2 mm/h to 0.51
and 0.29 mm/h as the scale of observations increases from
the native 1.7 km resolution of the observations to 0.4° and
2°, respectively.
[21] In an effort to place bounds on the impact of this

simple upscaling in one as opposed to two dimensions,
TRMM PR rainfall data were used to establish approximate
1D averaging scales that preserve the overall frequency of
precipitation at a variety of areal averaging scales. PR data
of 1 month were aggregated to a variety of spatial scales
employing both linear along‐track averaging and 2D areal
averaging. Resulting estimates of rain fraction over the

Figure 4. (a) Rainfall fraction from 35°S to 35°N derived
from TRMM PR data with different degrees of spatial aver-
aging. (b) Effective linear (1D) averaging scale required to
reproduce rain fraction for various degrees of areal (2D)
averaging.
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TRMM domain are presented as a function of averaging
scale in Figure 4a. Since areal averaging covers a much
larger area than averaging over a linear segment with the
same dimension, significantly larger rain fractions are ob-
tained with 2D averaging. We define the length of the 1D
averaging segment that most closely approximates the rain
fraction at areal averaging scale (or model resolution) to be

the “effective” 1D averaging scale that is most representa-
tive of that resolution. Using the TRMM PR rainfall data,
effective 1D averaging scales for model resolutions ranging
from 5 to 100 km are presented in Figure 4b, confirming the
expectation that a 1D averaging scale larger than the reso-
lution of the given model is required to obtain the corre-
sponding equivalent 2D rain fraction. To match the 40 km

Figure 5. The frequency of precipitation from model simulations and CloudSat observations for global
oceans, tropical oceans, and midlatitude oceans as defined in the text.
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resolution of the ECMWF product, for instance, requires
CloudSat data to be averaged along a 120 km averaging
segment, a factor of three larger than the dimension of the
ECMWF grid box. In practice, the scaling between 1D and
2D averaging will depend strongly on the organization of
the rainfall being observed and should be expected to vary
with location and rainfall regime. In light of the global focus
of the current study, however, we adopt this simple
approximate upscaling relationship acknowledging that it
may introduce some uncertainty in the results. In an effort to
represent these uncertainties, results are shown for upscale
averaging to two different resolutions, one that matches the
model resolution (1×) and one that is a factor of 3 larger
than the corresponding model resolutions (3×).

5. Results

[22] The observed and modeled frequencies of occurrence
of precipitation are summarized in Figures 5a–5c. The

observations presented in Figure 5 are a result of the simple
averaging procedures applied to the native CloudSat ob-
servations collected for both the 2006 and 2007 JJA seasons.
These averaged data are then presented in Figure 5 in the
form of composite averages for the global oceans, the tropical
oceans, and the oceans of the midlatitudes as previously
defined. The global distributions of the (3×) observed and
modeled frequencies as well as the global and zonal differ-
ences between the model and observations are also shown in
Figure 6 for two of the model studies. Presented on Figure 7
are the zonally averaged differences between (3×) observa-
tions of precipitation frequency and the frequency of occur-
rence of precipitation from three of the models. On the whole,
the differences between modeled and observed frequency of
occurrence of precipitation exceed that explained by obser-
vational errors and/or the amount of averaging of the data
(Figure 5). The general tendency is for models to produce
precipitation that is far too frequent, especially in midlati-
tudes (e.g., Figures 6 and 7). The occurrences averaged over

Figure 6. Comparison of the observed global distributions of frequency of occurrence of (top) pre-
cipitation to those of from three different models, (left) the 7 km NCAM model, (center) version
CY35R1 of the ECMWF integrated forecast system, and (right) the CAM3 climate model. Also
shown are zonally averaged differences between model and observations.
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all six model data sets for the entire oceans (60°N‐S) are 1.7
and 2.4 times more frequent than the 3× and 1× global
CloudSat averages, respectively. The behavior of the NICAM
model notably differs from that of the more conventional
GCMs. The differences between the latter models and ob-
servations tend to be largest at the rainiest latitudes evident in
the zonal averaged profiles of Figure 7 whereas the differ-
ences between the NICAM model and observations are
largest in midlatitudes and there is a general agreement with
observations over the tropical oceans. While the biases of
NICAM are small over tropical oceans, Sato et al. [2009]
note that these biases are larger over land.
[23] Comparison of observed and modeled intensity of

precipitation is provided in Figure 8. Since the time‐integrated
accumulations of precipitation closely match the observations
(Figure 2b), the consequence of precipitation that is predicted
too frequently (Figures 5–7) is the intensity of model pre-
cipitation must then also occur too lightly. The mean‐model
bias of intensity is 1.3 and 1.9 times less than the 3× and
1× averaged observations. Differences in intensity also exist
across models. The NICAM model generally agrees with
the observations in the tropics as noted in reference to
Figure 3 but contains substantial biases in rainfall intensity
at higher latitudes. This agreement between the global cloud
model and observations in the tropics warrants further
comment and further analysis. Demott et al. [2007] con-
trasted the 3–6 hourly precipitation from the community
atmospheric model (CAM) and the “multiscale modeling
framework” (MMF) version of CAM in which cumulus
parameterization is replaced with a cloud resolving model.
They found that the CAM produces too much light rainfall
that occurs as soon as the boundary layer energizes whereas
the MMF precipitation, like observations, lags the build up
of energy by several hours. This result suggests that there
may be some reason to expect that the NICAM model may
capture a more delayed and realistic triggering of convec-
tion that perhaps implies a more realistic representation of
the frequency of convective precipitation and its intensity.
The different behavior of the NICAM model precipitation
in the tropics compared to GCMs, reinforced with the

suggestions of the Demott et al. study, suggests that the
reason for the different behavior of the tropical rainfall of
the NICAM model compared to other models requires
deeper analysis than can be provided in this study and is a
topic of ongoing research.
[24] The results of Figure 9 offer further evidence that the

model biases illustrated in Figures 5–8 are not merely a
consequence of inadequate upscaling of observations but
indicative of a systemic problem of models more generally.
Figure 9 illustrates the comparison of model‐derived radar
reflectivity profiles and CloudSat observed profiles that
have been constructed in the form of cumulative frequency
in altitude display (CFAD) diagrams. These model re-
flectivity profiles are calculated using model condensate and
model precipitation applied to a CloudSat radar simulator
[e.g., Haynes et al., 2009]. Each model grid box is split into
subcolumns to represent the subgrid cloud/precipitation
fraction and overlap profile explicitly and the reflectivity is
then calculated from the “in‐cloud” condensate for each
subcolumn. These profiles are thus meant to be equivalent to
the in‐cloud profiles analogous to those obtained by the
CloudSat CPR at its native resolution and therefore free of
explicit effects of cloud and precipitation grid‐scale fractions
that affect the model grid box average values. The model
CFADs shown are calculated from ECMWF model data
extracted along the satellite track for July 2007 over tropical
oceans between 30°N‐S and the second is a similar composite
of UKMOmodel forecasts for the same month. In both cases,
the frequency of the drizzle/rain reflectivity mode (i.e., the
low level reflectivity maximum above about −10 dBZ) is
clearly overestimated compared to the observed profiles of
reflectivity. The observations tend to exhibit a more pre-
dominant cloud reflectivity peak around −25 dBZ than is
apparent in either model simulated reflectivity profiles. Other
differences between model and observed CFADs, such as the
differences at higher altitude associated with cloud ice par-
ticles, have been discussed in more detail by Bodas‐Salcedo
et al. [2008] and also by Masunaga et al. [2008] and Satoh
et al. [2010]. Satoh et al. [2010], for example, produced
CFADs that more closely match observations when grau-

Figure 7. Differences between observed and modeled zonally averaged frequency of occurrence of
precipitation: (a) the 7 km NCAM model, (b) version CY35R1 of the ECMWF integrated forecast
system, and (c) CAM.
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pel and faster sedimentation of ice particles are introduced
into the model.

6. Summary and Discussion

[25] CloudSat’s depiction of the character of precipitation
over the global oceans [e.g., Haynes et al., 2009] is signif-
icantly different from the character of the precipitation
produced by global weather and climate models. The five

different models used include version CY35R1 of the
ECMWF integrated forecast system (IFS) global model with
a grid resolution of 40 km (T511), the CAM3 and AM2
climate models each at an approximate 2° resolution, the
atmospheric‐only version of the unified global model of the
UK Meteorological Office (HadGEM1) at 1.25° resolution
and the NICAM global cloud‐resolving model NICAM
with grid resolutions of 7 and 14 km. These represent both

Figure 8. As in Figure 5, but for the instantaneous precipitation intensity.
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state‐of‐the‐art weather prediction models and climate
models and a state‐of‐the‐art emerging high‐resolution
global cloud model.
[26] The focus of the comparison is on the character of

oceanic precipitation defined as a combination of the
accumulation of precipitation aDT integrated over some time
period DT, the frequency of occurrence of precipitation fi
over this same period DT and the (instantaneous) intensity ri
of the precipitation. The comparisons presented are
restricted to oceanic precipitation primarily because the
observations are more reliable there and the analogous re-
sults for land precipitation based on surface observations
have been described elsewhere [e.g., Sun et al., 2006].
[27] The main findings of the research reported in this

paper are as follows:
[28] 1. The oceanic rainfall accumulations derived from a

composite of 33 months of CloudSat observations from June
2006 to March 2009, compared to analogous multiyear ac-
cumulations derived from AMSR‐E, TRMM, and GPCP,
reveal a high level of agreement amongst these different data
in tropical latitudes (between 30°N‐S). The agreement of the
CloudSat observations with these other data sources over
tropical oceans suggests that the more limited space‐time
sampling of CloudSat compared to these other observations
has little influence on the accumulated annual (and seasonal)
statistics. The accumulations in the extra tropical latitudes
(between 30°N‐S and 60°N‐S) exhibit less agreement with
the Version‐2 AMSR‐E data falling significantly below
both the CloudSat and GPCP estimates and below the
estimated error range of CloudSat. This result was expected
given past studies that have pointed to detection issues in
AMSR‐E precipitation algorithms [Petty, 1997; Ellis et al.,
2009]. The CloudSat‐based global mean oceanic accumu-
lation is 3.0 +0.7/−0.4 mm/d that agrees with GPCP derived
from entirely independent data. A surprising result, how-
ever, is the observed large accumulation that occurs in
midlatitudes (3.12 +1.15/−0.51 mm/d) that independently
supports and adds confidence to the more empirical results
of GPCP in these latitudes.
[29] 2. The comparison of the observed global mean

accumulated precipitation with simulated data from five
different models reveals a remarkable level of agreement
(Figure 2b). While not entirely unexpected given the basic
energy balance control on accumulation, this result never-

theless suggests that the global mean atmospheric energy
budget of the models studied is close to reality. The
agreement between model and observations begins to break
down when regional accumulations are considered. The
accumulations from the four general circulation models that
employ more traditional parameterization of moist physics
tend to produce too much precipitation over the tropical
oceans compared to observations. This overestimate is then
compensated for in the global averages by too little mid-
latitude precipitation. The tropical and midlatitude precipi-
tation of the NICAM model, by contrast, lies within the
range of observational uncertainty for both the tropics and
midlatitudes. The extent that these differences between
models relate to the different convective parameterizations
used in the GCMs compared to the more explicit convection
of NICAM warrants further study.
[30] 3. The differences between the modeled and observed

frequencies of precipitation are larger than can be explained
by observational errors and by procedures to average the
observations to model resolution. The tendency is for
models to produce precipitation that is too frequent, as
already noted in past studies. The occurrences averaged over
the six model data sets are approximately twice the fre-
quency of observations. This bias is partially alleviated in
the higher resolution model that treats convection explicitly
and whose resolution is closer to the native resolution of
the observations where agreement between this model
and observations is better in the tropics but significantly
worse in midlatitudes. Since the time‐integrated accumula-
tions of precipitation more closely match the observations
(Figure 2b), it follows that precipitation is predicted too fre-
quently and too lightly. Themeanmodel intensity lies between
1.3 and 1.9 times less than the averaged observations.
[31] 4. As further evidence of the model biases in pre-

cipitation character, model reflectivity profiles calculated
using model condensate and precipitation applied to a
CloudSat radar simulator [e.g., Haynes et al., 2009] were
compared to observed profiles. This comparison is meant
to represent in‐cloud properties free of the uncertainties
associated with upscale averaging. The model reflectivity
profiles show the influence of excessive drizzle/rain on re-
flectivity with a maximum low‐level frequency of reflectivity
occurring low in the atmosphere and above −10 dBZ in
contrast to the observed, more predominant low‐level cloud

Figure 9. Cumulative frequency in altitude display of 94 GHz radar reflectivities measured by CloudSat
and simulated from cloud and precipitation data obtained from two different global prediction models.
The data apply to July 2007 and to the tropical region confined between latitudes 30°N/S.
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reflectivity peak at −25 dBZ. The extent these differences are
merely an effect of subgrid scale variability not captured by
the models versus errors in the way precipitation physics is
included in models is understudy.
[32] The differences in the character of model precipita-

tion are systemic and have a number of important implica-
tions for modeling the coupled Earth system as discussed
above. It is also well known that the ability of a numerical
model for resolving wave‐like fields that vary continuously
in time and space is several times the grid resolution [e.g.,
Williamson, 2008]. Our results suggest this is also true of
intermittent fields like precipitation. Since the tendency is
for increased frequency of precipitation as the averaging
scale of observations increases (e.g., Figures 3 and 5), the
much higher frequency of occurrences of model grid point
precipitation implies that this precipitation is more repre-
sentative of a scale that is many times the model grid reso-
lution. Roberts and Lean [2008], for example, demonstrated
that an acceptable measure of skill in precipitation forecasts
from high‐resolution models of 1 and 12 km resolution
occurs at scales of 45–60 and 50–80 km, respectively. This
suggests that the real resolution of model precipitation is
several times that of the model grid resolution. This im-
plies little skill in precipitation calculated at individual grid
points, and thus applications involving downscaling of grid
point precipitation to yet even finer‐scale resolution has
little foundation and relevance to the real Earth system.
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