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ABSTRACT

A statistical intensity adjustment is utilized to extract information from tropical cyclone simulations in a

50-km-resolution global model. A simple adjustment based on the modeled and observed probability dis-

tribution of storm lifetime maximum wind speed allows the model to capture the differences between ob-

served intensity distributions in active/inactive year composites from the 1981–2008 period in the North

Atlantic. This intensity adjustment is then used to examine the atmospheric model’s responses to different sea

surface temperature anomalies generated by coupled models for the late twenty-first century. In the North

Atlantic all simulations produce a reduction in the total number of cyclones, but with large intermodel spread

in the magnitude of the reduction. The intensity response is positively correlated with changes in frequency

across the ensemble. However, there is, on average, an increase in intensity in these simulations despite the

mean reduction in frequency. The authors argue that it is useful to decompose these intensity changes into two

parts: an increase in intensity that is intrinsic to the climate change experiments and a change in intensity

positively correlated with frequency, just as in the active/inactive historical composites. By isolating the in-

trinsic component, which is relatively independent of the details of the SST warming pattern, an increase is

found in storm-lifetime maximum winds of 5–10 m s21 for storms with intensities of 30–60 m s21, by the end

of the twenty-first century. The effects of change in frequency, which are dependent on the details of the

spatial structure of the warming, must then be superimposed on this intrinsic change.

1. Introduction

Several recent studies suggest that general circulation

models (GCMs) with resolutions in the range of 20–

100 km are adequate for studying many aspects of trop-

ical cyclone (TC) genesis and TC frequency distributions

(e.g., Bengtsson et al. 2007a,b; Oouchi et al. 2006; LaRow

et al. 2008; Zhao et al. 2009, hereinafter ZHLV; Vitart

2006; Gualdi et al. 2008). However, these models are

typically unable to simulate a realistic frequency of TCs

in the higher intensity categories that account for most

storm damage. One approach to correcting this deficiency

is to use an additional dynamical downscaling step, as in

Bender et al. (2010). In the present study we consider an

alternative simple statistical refinement approach. Using

this statistical adjustment, we investigate the ability of

a GCM with roughly 50-km resolution to simulate aspects

of the interannual variability of TC intensities in the

North Atlantic. Encouraged by these results, we also es-

timate the response of TC intensity distribution to global

warming. In the process, we contrast the relationship

between TC frequency and intensity in interannual vari-

ations and in the simulated response to global warming.

The model we use here is the Geophysical Fluid Dy-

namics Laboratory (GFDL) High Resolution Atmo-

spheric Model (HIRAM), specifically C180HIRAM2.1

[C180 indicates a cubed sphere dynamical core (Putman

and Lin 2007) with 180 3 180 grid points on each face

of the cube, resulting in grid sizes ranging from 43.5 to

61.6 km]. The climatological statistics of hurricanes sim-

ulated in this model, as well as the interannual variability

in the model when run over observed sea surface tem-

peratures (SSTs) from the Hadley Centre Global Sea Ice
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and Sea Surface Temperature (HadISST) dataset, ver-

sion 1.11 (Rayner et al. 2003), have been described in

ZHLV. ZHLV demonstrate that the simulated hurri-

cane statistics from a four-member ensemble compare

well with the observations for the period of 1981–2005.

These include the geographical distribution of storm

genesis locations, as well as the seasonal cycle and the

interannual variability of hurricane frequency for the

North Atlantic and the east and west Pacific. As described

in Zhao et al. (2010), we have continued our four-member

integrations up to and including 2008 and the simulations

continue to maintain their high quality in simulating

hurricane frequency. The observations used in ZHLV

and in Zhao et al. (2010) are taken from the International

Best Track Archive for Climate Stewardship (IBTrACS;

Kruk et al. 2010; http://www.ncdc.noaa.gov/oa/ibtracs/).

Despite its quality in simulating hurricane climatology

and variability, the model cannot produce major Atlantic

hurricanes (category 3 and higher, with maximum wind

speed greater than 50 m s21), as can be seen in Fig. 6a in

ZHLV and Fig. 1 in this study. While this unrealistic as-

pect of the intensity distribution prevents us from taking

the model response of TC intensity to global warming at

face value, some of the most basic differences in intensity

distributions between basins are captured qualitatively,

such as the presence of more intense TCs in the west

Pacific as compared to the Atlantic (Figs. 6a,c in ZHLV).

In this study, we use the same set of simulations (with the

extension up to 2008) to explore whether we can extract

useful information from the model with regard to the TC

intensity distribution, including that of major hurricanes.

To achieve this, we introduce a simple statistical refine-

ment of the GCM results based only on the observed and

modeled climatological intensity distribution.

Seasonal measures of TC intensity are positively corre-

lated with TC frequency in the North Atlantic. Consis-

tently, one also sees an increase in average intensity during

La Niña as compared to El Niño years, and one finds a

trend toward higher intensities over the past three decades

accompanying a trend toward increased number of TCs.

We use these interrelated measures to test the results ob-

tained from the statistically adjusted GCM results. Section

2 presents the statistical intensity adjustment and then

describes these comparisons with observations. Section 3

provides the results for global warming experiments using

SSTs from a number of coupled model projections of the

late twenty-first century. SST anomalies based on the

A1B scenario are used for this purpose. Section 4 gives

a summary and discussion of the intensity response to

global warming, linking to the potential intensity (PI)

theory of Emanuel (1988).

2. The statistical refinement and results
for 1981–2008

We define I to be the maximum near-surface wind

speed over the lifetime of a tropical cyclone (TCs are

here defined as any cyclones with I $ 17 m s21 and

the model’s TC identification algorithm is discussed in

ZHLV) and F(I) as the total number of TCs per year with

intensity exceeding I. We also write F(I) 5 NP(I), where

N denotes the total number of TCs and P(I) denotes the

probability that a given TC exceeds the intensity I. Since

dF(I) ’ P(I)dN 1 NdP(I) for small perturbations to the

climate, to realistically simulate dF(I) a model needs to

FIG. 1. (a) Cumulative probability P(I) of TC lifetime maximum

wind speed in the North Atlantic for 1981–2008 for both observa-

tions (solid) and the model (dotted). Dashed curve shows the

model results after a statistical refinement of model wind speed

based on the bilinear relationship shown in (b). (b) Plot of TC

lifetime maximum wind speed between the model and the obser-

vations based on equal value of P(I) shown in (a). Straight lines are

two linear fits, one for tropical storm regime and the other for

hurricane regime.

1 The model-simulated climatology of North Atlantic hurricanes

using the NOAA optimum interpolation SST analysis dataset

(Reynolds et al. 2002) shows a (20%–30%) lower annual count of

hurricanes for this simulation period (ZHLV). A systematic study

on the model sensitivity to the different SST products using the

long-term record will be reported elsewhere (G. Vecchi et al. 2010,

unpublished manuscript).
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produce not only realistic dN but also a realistic P(I) and

its variation dP(I). As seen in ZHLV, a 50-km GCM can

simulate observed dN reasonably well, using interannual

variability and decadal trends as a measure of quality,

even though it generates an unrealistic P(I) for large

I. Below we further illustrate this problem and then in-

troduce a very simple statistical refinement to correct this

model bias.

Figure 1a shows both the modeled and the observed

P(I) in the North Atlantic for the 1981–2008 period. While

the model captures reasonably well the cumulative prob-

ability for TCs with intensity up to the hurricane threshold

(I # 33 m s21), beyond this intensity the probability drops

off rapidly as compared with observations. Category 3 and

higher storms (I $ 50 m s21) are missing entirely in the

model. The observed P(I) flattens above the hurricane

threshold [as discussed by Emanuel (2000) and Swanson

(2007)], while the model generates about the same slope

beyond the hurricane criterion as for lower intensities.

It would clearly be beneficial if this systematic bias in

P(I) could be corrected in a way that would allow the

extraction of significant information concerning major

hurricane frequency. To do this we first identify the

modeled and observed values of I corresponding to equal

values of P. Fig. 1b shows a plot of the modeled and

observed maximum wind speed from this equal-P match.

The data points fall along a simple curve that can be well

represented by two straight lines with an intersection at

a model wind speed close to the hurricane threshold:
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with a 5 1.22, b 5 3.15, and IT 5 34 m s21.

The use of two separate linear fits (one for hurricanes

and the other for tropical storms) is consistent with an

earlier study on TC intensity distribution (Emanuel 2000)

as well as with the strong impression of a distinctive

model deficiency that sets in for maximum winds greater

than hurricane strength. This simple bilinear relationship

forms the basis for our statistical refinement; we simply

use these expressions to convert the GCM intensity into

an adjusted intensity estimate. The dashed curve in Fig. 1a

shows the model P(I) after this statistical correction.

This correction leaves the number of hurricanes essen-

tially unchanged and reduces slightly the total number

of TCs.

To see if this correction adds value to the model, we

examine whether the resulting adjusted model can sim-

ulate differences in intensities in the observational record

from 1981 to 2008. It is known that TCs in active years in

the North Atlantic tend to have higher intensities on

average than TCs in inactive years (e.g., Swanson 2007).

A year-by-year comparison of observed and modeled

intensities is too noisy to be directly useful. Therefore, we

consider three alternative composites to quantify this

relationship: the 10 most active years versus the 10 least

active years in this period as measured by number of TCs

(see appendix for a list of years); La Niña years versus

El Niño years; and the last half of this period (1995–2008)

versus the first half (1981–94), there being an upward

trend in intensity and frequency over this period. The three

tests are not independent, but the alternative groupings

of years provide increased confidence that the model–

observation comparison is robust.

Figure 2 shows that the raw GCM output provides

a reasonably good estimate for the difference in the av-

erage number of TCs per year, and the number of hurri-

canes, in each of these three composite pairs. The change

in total number of TCs is underestimated for two of the

three composite pairs, while the hurricane count change is

significantly underestimated in only one of the three. For

major hurricanes, all of which are generated by the sta-

tistical adjustment, the magnitude of the change in num-

ber is captured fairly well, once again, with the change

being underestimated in two of the three composites.

The figure also shows the change in mean intensity, I0,

obtained by averaging the maximum intensity of each

storm over all TCs in given years. The raw GCM simu-

lation of this intensity change has the correct sign but is far

too small in amplitude. The statistical correction provides

much improved estimates of this average intensity shift,

although still somewhat smaller than observed in two of

the three composites.

Figure 3 provides more detail on the change in intensity

distribution in these composites. We define the change in

intensity dI at a given intensity I by first computing the

probability of exceedance P(I) for the active and inactive

cases and converting this into the intensity change at each

value of P. We then convert this from a function of P into

a function of I using the climatological P(I) distribution.

The observed changes ramp up to values of about 10 m s21

for values of I near 50 m s21, and then level off for even

stronger storms. The values in the unadjusted model bear

little resemblance to the observations. The adjustment

stretches the abscissa by a factor of 3.15 for hurricane in-

tensities and the ordinate by roughly the same factor (the

ordinate would be stretched by exactly the same factor if

the active/inactive difference were infinitesimal). The ad-

justment produces curves of dI(I) with shapes comparable

to that observed. Typically, the resulting changes in inten-

sity at values greater that 50 m s21 are roughly 15%–30%

smaller than the estimates from observations.

For a slightly different perspective, we also plot in the

same figure the change in the probability of exceedance
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per unit change in TC count, dP/dN. After statistical

adjustment the fits are equally reasonable at all hurri-

cane intensities in each of the three cases. The obser-

vations show a structure that is relatively flat between 30

and 60 m s21, with an increase in probability of about

0.02 for each increase of one TC per season. The ad-

justed model produces similar shapes and similar am-

plitudes. The impression that the model underpredicts

the response is less evident here than in the plots of dI(I)

because of the normalization by dN. This normalized

probability change will prove to be of interest in the dis-

cussion of our global warming simulations.

Since F(I) [ NP(I), using centered differencing with

respect to a change of large-scale climate condition (e.g.,

SSTs) we can decompose dF/dN between active and in-

active years into two parts, corresponding to the change

in overall number and the change in the intensity distri-

bution:

dF

dN
5 ~P 1 ~N

dP

dN
, (2)

where dN [ N1 2 N2, ~N 5 (N1 1 N2)/2, and similarly

for P. (The centered differencing avoids the need for

considering any additional quadratic terms in this ex-

pansion.) Figure 4a shows this decomposition for one of

our composites: the difference between the 10 most active

and least active years. The normalization by dN does not

change the relative magnitude of these two terms, but it

does force the model and the observations to agree at the

low intensity limit. This allows the model error in simu-

lating the total TC frequency variability (which is in-

dependent from our statistical adjustment) to be factored

out in this comparison. The relative magnitude of these

contributions is very similar in the observations and the

adjusted model results, with the change in overall number

being dominant for I , 40 m s21 but with the change

in intensity distribution growing to comparable or even

larger values for I . 55 m s21.

Qualitatively similar results are obtained for the east

Pacific as for the North Atlantic, although the required

bilinear fit differs quantitatively from that optimized for

the North Atlantic. We do not discuss these east Pacific

results here. The results for the west Pacific are not as

impressive, despite the fact that there is documentation of

an El Niño signal in TC intensities in that basin (Camargo

and Sobel 2005).

Evidently, the statistical adjustment is more than a cos-

metic way of improving the model’s intensity distribution;

it also allows us to extract useful information as to the

sensitivity of the intensity distribution to the changes in

SSTs associated with interannual variability. It generates

model simulations for the differences in intensity distri-

bution between active and inactive years that compare

favorably to the observed changes, although these dif-

ferences tend to be somewhat smaller than observed. This

comparison with observations suggests that it is useful to

examine the response of the same model to global

FIG. 2. (left) Model and observed difference in annual count of all TCs, hurricanes, and major hurricanes between

(top) the active and inactive years, (middle) the La Niña years and El Niño years, and (bottom) the 1995–2008 and

1981–94 periods. (right) As at left, but for the difference in TC mean intensity.
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warming, using the identical statistical intensity ad-

justment.

3. Global warming experiments

In ZHLV, the identical model was used to simulate the

hurricane response to four different SST anomalies gen-

erated by coupled models in the archive of phase 3 of the

Coupled Model Intercomparison Project (CMIP3; https://

esg.llnl.gov:8443/index.jsp) (Meehl et al. 2007) for the late

twenty-first century based on the A1B scenario. The SST

anomalies were obtained from single realizations of three

models [GFDL’s Climate Model version 2.1 (CM2.1), the

third climate configuration of the Met Office Unified

Model (HADCM3), and the Max Planck Institute’s

ECHAM5)], and from the ensemble mean for the simu-

lations for 18 models. Since the ZHLV study, we have

further pursued five additional SST warming experiments.

Four of these are analogous to those in ZHLV but use SST

anomalies from different coupled models [GFDL CM2.0,

the Hadley Centre Global Environmental Model version

1 (HADGEM1), the Meteorological Research Institute

(MRI) coupled general circulation model version 2.3.2

(CGCM2.3.2), and the Center for Climate System Re-

search (CCSR) Model for Interdisciplinary Research

on Climate, high-resolution version (MIROC-HI)]. In

FIG. 3. (left) As in Fig. 2, but for model and observed differences in TC intensity dI(I). (right) As at left, but

for dP(I)/dN.
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addition to these coupled model projections, we have

also performed a simple experiment with the control SST

uniformly warmed by 2 K (called P2K below). As de-

scribed in ZHLV, we compute the multimodel ensemble

mean SST anomaly by differencing the period 2081–2100

and the period 2001–20 from the A1B simulations in the

CMIP3 archive. For each of the seven individual models,

we use one realization (run 1 in the CMIP3 archive) to

compute the 2001–2100 linear trend. The linear trend is

then multiplied by 0.8 so that it is consistent in magnitude

with the 80-yr period (2010–90) used for the multimodel

ensemble mean. The use of century-scale linear trend

instead of the difference between the two end periods

helps reduce the contribution of internal variability in the

individual models since only one realization is used for

each model.

As described in ZHLV, we have generated two control

simulations by prescribing the climatological SSTs (sea-

sonally varying with no interannual variability) using the

time-averaged HadISST dataset (Rayner et al. 2003) as

well as the National Oceanic and Atmospheric Adminis-

tration (NOAA) optimum interpolation SST analysis da-

taset (Reynolds et al. 2002). We then add the SST warming

anomalies (also seasonally varying with no interannual

variability) projected by the coupled models to each of

the climatological SSTs to pursue the global warming ex-

periments. For the five additional global warming experi-

ments since the ZHLV study, we have only conducted the

warming experiments with respect to the HadISST con-

trol climatological SST. In all cases, including P2K, we

also double the concentration of CO2 in the atmosphere,

a change roughly comparable to that imposed over the

twenty-first century in the A1B experiments. As in ZHLV,

10-yr integrations were carried out for both the controls

and the perturbation experiments. To be sure that 10-yr

statistics are sufficient for storm intensity analysis, we have

also selectively extended a few experiments (the control,

18-model ensemble mean warming, P2K, and GFDL

CM2.1 for the HadISST background climatology) to

20 years. We do not find substantial differences between

the 10-yr and 20-yr statistics. We use the 20-yr averages

and the averages over the two background climatology

experiments for the cases available in the results described

below. We then apply the statistical intensity correction

described in section 2 to these global warming experiments

to investigate storm responses to twenty-first-century

warming.

Before displaying the full range of storm intensity re-

sponse and its decomposition, Fig. 5 shows a scatterplot of

the changes in annual count of Atlantic TCs, hurricanes,

and major hurricanes in all of the integrations versus the

changes in an Atlantic relative SST index. This index (be-

low called FNA) is defined as the August–October sea-

sonal mean difference between the SSTs averaged over

the North Atlantic Main Development Region (MDR)

(108–258N, 808–208W) and the SSTs averaged over the

entire tropics (308S–308N) (e.g., Swanson 2008; Vecchi

et al. 2008; ZHLV). ZHLV (their Fig. 16) show that the

FNA anomaly explains much of the spread in the four

global warming simulations using the SST anomalies

projected by global coupled models. Zhao et al. (2010)

(their Fig. 5a) further demonstrate that the index is well

FIG. 4. Decomposition of dF(I)/dN (solid) into the two terms
~P(I) (dotted) and ~NdP(I)/dN (dashed) for the (top) observation

and (bottom) model, using the difference between the 10 most and

least active years. See Eq. (2) for the decomposition and the defi-

nition of F, ~P, and ~N.

1 DECEMBER 2010 Z H A O A N D H E L D 6387



correlated interannually with both the observed (r 5 0.76)

and model-simulated (r 5 0.83) hurricane counts and

point out its implications for hurricane seasonal pre-

diction. With five additional global warming patterns and

the statistical refinement, Fig. 5 emphasizes that this index

is separately well correlated with the number of TCs,

hurricanes, and major hurricanes generated by the model

running over these various SST warming patterns. The

linear regressions for each classification give different

slopes, with weaker storms having larger slopes simply

because there are more such storms. More interestingly,

the value of dFNA that produces zero change in frequency

is lower for hurricanes (0.28C) than for all TCs (0.458C), so

that a number of simulations produce an increase in hur-

ricane counts, but none produce an increase in the total of

all TCs. While one might expect this trend to be continued

for major hurricanes as compared to hurricanes in general,

this is not the case; the crossing point for major hurricanes

and all hurricanes are nearly the same in these results. The

extent to which this is a limitation of the statistical intensity

adjustment strategy is unclear.

An examination of the large-scale dynamical and ther-

modynamical field in the MDR indicates that the simu-

lated intermodel spread in storm frequency response can

also be well explained by both potential intensity and

vertical wind shear (similar to the results in ZHLV). In

both cases, the correlations are above 0.8. Also, in the case

of uniform warming (i.e., P2K), the MDR vertical wind

shear increases slightly, consistent with the storm reduc-

tion shown in Fig. 5. This result indicates that in addition to

the change of relative SST, which largely determines the

response of storm genesis frequency, uniform warming acts

to suppress the Atlantic storm genesis by a modest amount

in this model.

Among the different SST anomaly experiments, the

result that stands out with a value of dFNA close to 20.88C

and producing the largest reduction in total storm counts

is due to the SSTs from HADGEM1. The North Atlantic

TC count drops off from 10.9 to 1.4 storms in this case.

Since the Atlantic storms in the HADGEM1 projected

twenty-first-century warming experiment are so infre-

quent, even 20-yr simulation is insufficient to obtain stable

statistics, especially for intense hurricanes. Therefore, we

will exclude this model in the following analysis of storm

intensity distribution, keeping in mind the presence of this

distinctive outlier in the ensemble.

To examine storm response over the full range of in-

tensities, Fig. 6a displays changes in cumulative frequency

dF(I) of the North Atlantic TCs between the global

warming and the control experiments. [Since we care

about the overall change of frequency over the full range

of intensity it is desirable not to normalize dF(I) by dN.

Indeed, as we will show below, dN is an important com-

ponent in determining the overall frequency change even

for fairly intense hurricanes.] As shown in Fig. 5, all ex-

periments produce a decline of the total number of

storms, with a large spread in the magnitude of the de-

cline. As intensity increases, the magnitude of reduction

in TC activity decreases, with models producing both rise

and fall for hurricanes and for major hurricanes. [Note

that the seemingly narrowing spread at higher intensity

does not indicate better agreement among models; it is

simply due to the distribution of TC cumulative proba-

bility P(I), which declines sharply with intensity. When

measured by fractional change, the model spread actually

slightly increases with intensity (not shown, being quite

noisy)].

Both the ensemble mean of the SST anomaly experi-

ments and the result from the 18-model ensemble mean

SST anomaly show significant reductions of storms at in-

tensities below 60 m s21 with total loss of annual count of

roughly 3–4 (;30%–40%). There is, however, a significant

difference between the two, with the 18-model ensemble

mean SST anomaly experiment producing a larger re-

duction. This is likely due to sampling difference. In par-

ticular, the SST projection from the HADGEM1 model is

used in generating the 18-model ensemble mean SSTs but

is excluded in the intensity analysis and therefore the

ensemble mean of different SST warming experiments.

FIG. 5. Scatterplots of the difference (warming minus control) in

North Atlantic Main Development Region (MDR) relative SST

and the corresponding difference in the annual count of Atlantic

TCs (circles), hurricanes (squares), and major hurricanes (penta-

grams). Filled symbols denote the results from the 18-model en-

semble mean SST anomaly experiments. The results lying on the

zero relative SST line are for the uniform warming (P2K) experi-

ment. Lines are linear regressions. Relative SST is defined as the

August–October seasonal mean difference between the SSTs av-

eraged over the North Atlantic MDR and the SSTs averaged over

the entire tropical ocean (308S–308N).
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More generally, the Atlantic MDR relative SST from the

18-model ensemble mean is lower (20.15 K) than that

averaged across the different SST warming experiments

we have utilized, consistent with its lower Atlantic TC

activity across much of the intensity spectrum. At in-

tensities above 60 m s21 (category 4 and higher), both the

mean of the SST anomaly experiments and the experi-

ment with the ensemble mean SST anomaly display only

a small change, with about a half of the models generating

increasing/decreasing storm activity. At intensities above

75 m s21, the results are noisy because of the small num-

ber of events, but seven out of the eight experiments

produce an increase.

To better elucidate the intensity responses, Figs. 6b and

6c display the partition of dF(I) into terms due to the

changes in dN and dP: dF 5 PdN 1 NdP 1 dNdP. Here

we use one-sided differences (perturbed minus control)

so the quadratic term needs to be considered, but in fact it

turns out to be negligible. Both the P(I)dN and NdP(I)

terms contribute to the total change. Similar to the active/

inactive composites in the historical experiments (see Fig.

4), P(I)dN dominates dF(I) at the lower range of intensity

while at higher intensity the NdP(I) term becomes a

larger term. However, there is a fundamental difference

here in that the global warming experiments produce

increasing P(I) despite declining N (Figs. 6b,c), whereas

the historical active/inactive composites show decreasing

P(I) associated with declining N (Fig. 3, right panels).

This distinction is qualitatively consistent with recent

studies (e.g., Bengtsson et al. 2007b; Bender et al. 2010) as

summarized in Knutson et al. (2010), which suggest that

warmer climate likely leads to more very intense Atlantic

hurricanes but with an overall decrease in frequency.

However, the quantitative prediction of the transition

point from dF(I) , 0 to dF(I) . 0 appears to be uncertain

and sensitive to both SSTs and individual downscaling

models used. For example, Bender et al. (2010) used a

dynamical downscaling model and found that three out of

the five SST projections (including the 18-model ensemble

mean SSTs) produce large reductions of intense/major

(category 3 and above) hurricanes while the other two

produce an increase. For category 4 and 5 hurricanes, four

out of the five SST warming experiments produce an in-

crease with one still producing a decrease. For the en-

semble mean SSTs, the results of Bender et al. (2010)

indicate a transition point at intensity somewhere between

categories 3 and 4 (50–60 m s21). In our study the transi-

tion point appears to occur at a higher intensity (60–

70 m s21) for the ensemble mean SSTs. On the other

hand, our results for the ECHAM5 projected SST produce

a much lower transition point than that from the ensemble

mean SST, with increases of both hurricanes and intense

hurricanes. This is consistent with Bengtsson et al. (2007b),

who used a similar SST projection but a different global

high-resolution atmospheric model. We emphasize that

because of the potential for cancellation between the two

tendencies (i.e., dN and dP) in a greenhouse gas–warmed

FIG. 6. (a) Difference (warming minus control) in cumulative

frequency dF(I) of North Atlantic TCs between global warming

experiments and the control experiment. Red indicates the en-

semble mean for the SST anomaly experiments; blue, the result for

the 18-model ensemble mean SST anomaly experiment; and green,

the result from the 2-K uniform warming experiment. Dark shad-

ing indicates the central 50% range (25%–75%) and light shading

the minimum and maximum from the SST anomaly experiments.

(b),(c) As in (a), but for P(I)dN and NdP(I), respectively.

1 DECEMBER 2010 Z H A O A N D H E L D 6389



climate, projections for changes in the frequency of intense

hurricanes are difficult. Indeed, Figs. 6b and 6c suggest that

the spread among models in the changes in frequency of

intense storms comes from the spread in both dN and dP

(note that the scale in the dP plot is half of that in other

plots in this figure.) This spread in dP is solely due to the

differences in the SST warming patterns that also result in

the change in dN. This suggests an alternative way of de-

composing the total response into pieces dominated by

different processes.

Consider the mean over all TCs of the lifetime maxi-

mum intensity, I0, a quantity already discussed above in

the context of interannual variability. Figure 7a shows

a scatterplot of dI0 and dN for the North Atlantic obtained

by differencing each global warming experiment with the

control. There is an approximately linear relationship

between the two with a correlation coefficient of about 0.7.

The linear regression yields a slope of roughly 0.8 m s21

per TC across the eight experiments. This slope is close to

the value of dI0/dN estimated from the active and inactive

years for the 1981–2008 simulation (red star in Fig. 7a).

This common slope suggests some commonality to the

dynamics controlling the covariation of intensity and total

TC frequency. However, the average intensity across the

FIG. 7. (a) Scatterplot (squares) of the difference in TC mean intensity (I0) and the difference in total number of

TCs (N) for the North Atlantic between warmer and control experiments. The blue pentagram is the average across

the eight experiments. The blue line indicates the linear regression. The red pentagram denotes the change of I0 and

N values between active and inactive years from 1981–2008 simulation. The red line connects the red pentagram to

the origin, showing the slope. (b) As in (a), but dI0 is replaced by DI0. (c) Difference in intensity dI at given cumulative

probabilities for the North Atlantic between warmer and control experiments. The abscissa is plotted in terms of

intensity based on the control experiment I(P). Red indicates the ensemble mean for the SST anomaly experiments;

blue, the result for the 18-model ensemble mean SST anomaly experiment; and green, the result from the 2-K

uniform warming experiments. Shaded areas show central 50% range and maximum and minimum changes. (d) As in

(c), but for DI(I). (e) As in (c), but for the difference in cumulative probability dP(I) for the North Atlantic between

warmer and control experiments. (f) As in (e), but for DP(I).
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eight experiments increases despite a substantial reduc-

tion of the mean N in the warmer climate.

We are led to the picture that there are a set of envi-

ronmental factors (e.g., SST indices) that control both

total TC frequency and statistical measures of intensity

in both the interannual and global warming simulations,

but that there is another factor x that also comes into

play when considering changes in intensity due to global

warming, causing I0 to increase. The change of I0 with

global warming may then be written as

dI
0

5
›I

0

›N
dN 1

›I
0

›x
dx. (3)

Figure 7b shows the same plot as in Fig. 7a but with dI0

replaced by

DI
0

[ dI
0
�

›I
0

›N
dN, (4)

where the slope in the second term is taken from the

active/inactive composite (the dotted red line in Fig. 7a).

With roughly 50% of the variance removed, all the

models now exhibit a rise of intensity with a mean in-

crease of 4.5 m s21 and a standard deviation of 1.4 m s21

across the models. This represents the intensity change

adjusted to remove the part of the response that is evi-

dently associated with the change in N. One would expect

this intrinsic intensity change to be roughly consistent

with the estimate of intensity response in simulations of

single storms in idealized environments perturbed to

correspond to global warming conditions (Knutson and

Tuleya 2004).

The intermodel spread in dI0 is also correlated (co-

efficient 5 0.78) with the model-simulated change in

seasonal (August–October) mean Atlantic MDR maxi-

mum potential intensity (MPI), a proposed theoretical

upper limit for TC intensity (Emanuel 1988). Seven out of

the eight warming experiments produce an increase of

MPI in the Atlantic MDR. (MPI is computed using the

ratio of thermal to mechanical drag coefficient of 0.9 and

assuming a reversible adiabatic ascent.) The linear re-

gression of dMPI and dN yields somewhat a smaller slope

(;0.6 m s21 per TC) than dI0/dN (;0.8 m s21 per TC).

This is also true for the historical simulations for the ac-

tive and inactive years. When the dN-dependent part of

dMPI is removed (as in Fig. 7b), the mean change of MPI

is roughly 2.5 m s21. This is substantially smaller than

that of DI0. While it is plausible that the seasonally and

spatially averaged MPI may underestimate the actual

MPI of individual TCs, this difference also suggests that

besides the change of MPI itself—the change of the shape

of the intensity probability distribution toward more

intense storms—may play an important role in deter-

mining the simulated change of TC mean intensity in

a warmer climate.

A more detailed view of the TC intensity response can

be obtained from the intensity change dI(I) as defined in

section 2. Analogous to the procedure used above, we can

define DI(I) by removing the dN-dependent part using the

active/inactive composite for dI(I)/dN. Most of the models

(Fig. 7c) produce positive dI(I) for all values of I, but there

is large spread across the models, ranging from small neg-

ative values to positive values as large as 110 m s21.

Plotting DI(I) considerably reduces the model spread,

with all models now displaying clear positive DI(I) for all

values of intensity. For hurricanes up to category 3, the

increase is roughly 5–10 m s21 whereas for category 4 and

higher intensities (I $ 60 m s21), the model spread be-

comes somewhat larger, ranging from 3 to 12 m s21. The

smaller change in I0 is due to the large weight in the av-

eraging given to the large number of weak storms for

which the intensity changes are relatively small. [The sharp

change in DI(I) at the hurricane threshold, 33 m s21, is due

to our bilinear statistical adjustment of intensities, with the

adjustment increasing rapidly in magnitude precisely at

this value of I. Smoothing out this adjustment would result

in a smoother plot of dI(I).]

As a final perspective, we also plot dP(I) and DP(I) in

this figure. Once again, the spread in dP(I) is reduced

when computing DP(I), with the peak value of the latter

close to 0.15 at the hurricane threshold. Since these are

changes in cumulative probability, the derivative with

respect to I corresponds to changes in the probabil-

ity density function of storm intensity. The distribution

of DP(I) indicates, after subtracting out the ‘‘N depen-

dence,’’ that there is a relatively continuous increase in

the probability of storms at intensities above 40 m s21

with a fairly sharp reduction in the probability of storms

below hurricane intensity. For category 4 and stronger

hurricanes (I $ 60 m s21), DP is roughly 0.03–0.13, cor-

responding to a 20%–90% increase in probability, taking

the statistical adjustment at face value. Some of this large

spread is likely due to sampling noise resulting from the

small number of storms involved in these estimates. The

effects of changes in dN must be added to this intrinsic

intensity increase associated with global warming.

4. Discussion

We have explored the implications of using a statisti-

cal adjustment to the intensity distribution of tropical

cyclones generated by the HIRAM GCM running at

approximately 50-km resolution. The hurricane fre-

quencies in the North Atlantic simulated by this model,

running over observed SSTs (HADISST1.1) from 1981
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to 2008, appear to be realistic as judged by simulations of

interannual variability and trend. But the model does

not simulate any hurricanes with maximum wind speeds

greater than 50 m s21 (category 3 or higher) in the North

Atlantic. Using a simple statistical adjustment that is con-

structed so as to generate a realistic distribution of inten-

sities, the resulting model captures much of the intensity

change between active and inactive years in the North

Atlantic over this historical period.

The observations used to test the model are composites

of active and inactive years. Three different composites

are utilized: the 10 most active versus 10 least active years,

El Niño versus La Niña years, and the first half of this

period versus the second half. Even though they are not

independent, it is reassuring that there is in each case

a similar clear increase in measures of storm intensity in

active years as compared to inactive years. A test of this

kind is valuable, if not essential, to help judge the value of

dynamical or statistical models for addressing the ques-

tion of global warming and hurricane intensity. What the

best metric is for this comparison of model and obser-

vations, given the noise in intensity distributions within

individual years, remains an important open question in

our view.

Global warming simulations are conducted by using

SST anomalies generated for the A1B scenario over the

twenty-first century by a suite of coupled models for which

results are archived in the CMIP3 database. An ensemble

SST anomaly is also considered, as well as an idealized

uniform increase of 2 K. The CO2 concentration is also

doubled in each of these simulations.

As discussed with a smaller ensemble of simulations in

ZHLV, on average there is a tendency for a reduction in

the number of tropical cyclones in the North Atlantic, but

there is a large spread when using the different SST

anomalies from different coupled models. This spread is

due to differences in spatial structure of the SST anomaly;

specifically, SSTs from models that warm the tropical

Atlantic less than the tropics as a whole generate larger

decreases in TC frequency than the average model,

whereas SSTs from models that warm the Atlantic more

than the tropical mean generate a smaller decrease, or

even an increase. After statistical adjustment, we find an

analogous result for various measures of mean intensity:

various statistical measures of the change in intensity are

positively correlated across the ensemble with the change

in frequency, just as for interannual variability in the his-

torical period that we use for model testing.

Based on this result, we examine the consequences of

adjusting these intensity changes for the differing changes

in frequency, assuming that the mechanisms causing the

frequency/intensity correlation in observations (and in our

historical simulations) are active in the global warming

simulations as well. This manipulation leaves behind re-

sidual intensity changes that occur in the global warming

simulations that have no direct analog in interannual var-

iability. This residual, or intrinsic, intensity response has

reduced intermodel spread. We find roughly a 5–10 m s21

increase in intensity for storms in the 30–60 m s21 range in

these twenty-first-century projections. This intrinsic in-

tensity shift, which is not overly sensitive to the spatial

structure of the warming, is then modified by the part of

the response that is correlated with the frequency change,

which is strongly dependent on spatial structure.

A plausible explanation for this behavior would be

that some factor closely related to potential intensity

(Emanuel 1988) is influencing the global warming simu-

lations in a manner that does not come into play in the

active/inactive composites (or our simulations of those

observations). One can similarly decompose the potential

intensity into two components, one that is related to fre-

quency and one that is not. When the frequency-

dependent component of PI response is removed, we find

an intrinsic increase of PI about 2–3 m s21, which is close

to the PI change generated from the uniform 2-K warm-

ing experiment. However, this change in seasonally and

spatially averaged potential intensity alone appears not

to be sufficient to explain the simulated mean intensity

change (4–5 m s21), indicating that changes in the shape

of the intensity distribution may also be important. One

might also consider the possibility of direct effects of CO2

as relevant in this regard, but initial analysis of experi-

ments with CO2 increase and unmodified SSTs (to be

reported elsewhere) suggests that this direct effect is a

weakening, rather than a strengthening, of intensities in

this model.

All of our conclusions concerning intensity rely on the

statistical intensity adjustment that we utilize. Dynamical

approaches are ultimately more convincing. Using a dy-

namical downscaling approach, Bender et al. (2010), for

example, suggests a transition point from a reduction to an

increase at intensity between categories 3 and 4 (50–

60 m s21) using an ensemble mean SST projection. How-

ever, our results from the ensemble mean SST indicates a

transition point at a higher intensity (60–70 m s21). More-

over, only half of the projected SSTs produce an overall

increase of frequency at intensity around 60 m s21 in our

simulation. We emphasize that because of the potential

competing effects between changes in total storm fre-

quency (dN) and changes in intensity probability distri-

bution (dP) in a greenhouse gas–warmed climate, model

errors in predicting both dN and dP will impact the

overall projection of intense hurricanes. For example, the

modeling framework of Bender et al. (2010) appears to

underestimate the intensity difference between active

and inactive decades in its historical simulations. Since it
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also projects a reduction of TCs on average, the sugges-

tion would be that it might be overestimating the intensity

increase with global warming by underestimating the re-

duction in intensity associated with the reduction in fre-

quency. Further comparisons with this and other modeling

approaches [such as that of Emanuel et al. (2008)] should

be informative, especially if the results from these differ-

ent methodologies for active/inactive composites from the

historical record are documented.
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APPENDIX

List of Active/Inactive and La Niña/El Niño Years

Ten most active years: 2005, 1995, 2008, 2003, 2004,

2001, 2000, 2007, 1998, 1996

Ten least active years: 1983, 1982, 1986, 1987, 1992,

1994, 1991, 1993, 1997, 2006

La Niña years: 1988, 1998, 1999, 2000, 2001, 2007

El Niño years: 1982, 1987, 1991, 1992, 1994, 1997, 2002
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