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ABSTRACT

Retrospective predictions of seasonal hurricane activity in the Atlantic and east Pacific are generated using

an atmospheric model with 50-km horizontal resolution by simply persisting sea surface temperature (SST)

anomalies from June through the hurricane season. Using an ensemble of 5 realizations for each year between

1982 and 2008, the correlations of the model mean predictions with observations of basin-wide hurricane

frequency are 0.69 in the North Atlantic and 0.58 in the east Pacific. In the North Atlantic, a significant part of

the degradation in skill as compared to a model forced with observed SSTs during the hurricane season

(correlation of 0.78) can be explained by the change from June through the hurricane season in one pa-

rameter, the difference between the SST in the main development region and the tropical mean SST. In fact,

simple linear regression models with this one predictor perform nearly as well as the full dynamical model for

basin-wide hurricane frequency in both the east Pacific and the North Atlantic. The implication is that the

quality of seasonal forecasts based on a coupled atmosphere–ocean model will depend in large part on the

model’s ability to predict the evolution of this difference between main development region SST and tropical

mean SST.

1. Introduction

Predictions of the statistics of storm activity in the

upcoming hurricane season have a long history (see

Camargo et al. 2007b for a review). Until recently, these

predictions have been based on statistical models, using

the state of the atmosphere and oceans in some period

before the start of the hurricane season as predictors

(e.g., Gray 1984b; Elsner and Jagger 2006; Klotzbach

and Gray 2009). In recent years, dynamical atmospheric

and coupled atmosphere–ocean models have begun to

be applied to this problem. These models can be used to

predict indices such as vertical shear, low-level vorticity,

midtropospheric relative humidity, or potential inten-

sity, which can then be related statistically to storm gen-

esis (e.g., Wang et al. 2009). Or, more ambitiously, the

storms developed by the atmospheric models can be used

directly (e.g., Vitart 2006; Vitart et al. 2007; Camargo and

Barnston 2009; LaRow et al. 2010). The latter approach

obviously becomes more appealing as these dynamical

models move to finer horizontal resolution and their sim-

ulations of storm statistics become more credible. This

paper takes the latter approach, using a global atmo-

spheric model with 50-km horizontal resolution, but we

also use the results to justify a simple statistical model.

The climatological statistics of tropical storms form-

ing in our dynamical model, as well as the interannual

variability in the model when run over observed sea

surface temperatures (SSTs), have been described in

Zhao et al. (2009, hereafter ZHLV). The quality of the

simulation has encouraged us to use this model as a tool

to explore issues related to predictions of seasonal storm

statistics. We do not describe coupled model simulations

here, but use the atmospheric model in isolation to esti-

mate bounds on the likely quality of future coupled model

predictions. The simulations in ZHLV are not predic-

tions since they assume knowledge of the observed SSTs
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throughout the hurricane season, but they do provide an

estimate of an upper bound to the quality of forecasts

with coupled systems based on this atmospheric model.

Here we consider the opposite limit, constructing a lower

bound on the quality of attainable predictions, by taking

the SST anomalies observed prior to the hurricane sea-

son and assuming that these anomalies persist through

the season. Any prediction that can improve on this per-

sistence forecast for SST should improve on the skill of

these predictions. A possible caveat arises from the pos-

sibility that the uncoupled system might not mimic certain

aspects of the hurricane-scale fully coupled dynamics

even if given correct large-scale SSTs. The high corre-

lations, at least in the North Atlantic and east Pacific, in

ZHLV and in analogous studies with other atmospheric

models, such as LaRow et al. (2008), provide justifica-

tion for this approach.

By comparing simulations forced by persisted SST

anomalies with the more accurate simulations using ob-

served SSTs, one can hope to understand which features

in the evolving SST patterns result in the loss of skill.

This would help efforts in improving coupled model

predictions by focusing attention on those aspects of the

SST field that matter for this application. It also moti-

vates the construction of statistical models that focus on

the indices that explain the loss in skill.

We limit the discussion that follows to the North At-

lantic and eastern Pacific. As discussed in ZHLV, these

are the basins for which the interannual variations in

the model’s storm frequency correlate best with obser-

vations. This is not necessarily because the simulations

are of higher quality in these basins than elsewhere, but at

least in part because signals associated with interannual

variations in SST stand out from the noise most clearly in

these basins. The prediction integrations are designed to

capture the bulk of the storm season in these two basins.

2. Hindcasts of North Atlantic and east Pacific
storm frequency

We refer to the model here as C180HIRAM2.1 [i.e.,

the High-Resolution Atmospheric Model (HIRAM);

C180 refers to a model with a cubed-sphere dynamical

core (Putman and Lin 2007) with 180 3 180 grid points

on each face of the cube, resulting in grid sizes ranging

from 43.5 to 61.6 km]. In addition to the cubed-sphere

dynamical core and resolution, the model differs from

the Geophysical Fluid Dynamics Laboratory (GFDL)

Atmospheric Model version 2.0 (AM2) in its convection

and cloud schemes, as described in ZHLV. The source

of the observed SSTs is the Met Office Hadley Centre

Sea Ice and SST model version 1.1 (HadISST 1.1; Rayner

et al. 2003), while observed storm statistics are taken

from the International Best Track Archive for Climate

Stewardship (IBTrACS, available online at http://www.

ncdc.noaa.gov/oa/ibtracs/; Kruk et al. 2010). In the ex-

periments described in ZHLV, the atmospheric model

is used to generate four realizations of the period 1981–

2005, running continuously for the full period over ob-

served SSTs. For this paper, we have continued these

four integrations up to and including 2008. Below we refer

to these observed SST experiments as the Atmospheric

Model Intercomparison Project (AMIP) experiments.

For our hindcast experiments, we compute the global

SST anomaly field for the month of June in each year

from 1982 to 2008 using the mean of the years 1982–2005

to define the anomaly. (The shorter period is used to

define anomalies because the years 2006–08 were added

at a late point in the execution of these experiments.)

For this analysis, we start from 1982 because this is the

first full year in which satellite retrievals of SST are reg-

ularly incorporated into the HadiSST product (Rayner

et al. 2003), a potential source of inhomogeneity in SST

observations between 1981 and 1982. We integrate from

1 June to the end of December for each year after adding

this anomaly to the climatological mean SST for each

month. The initial states of the atmosphere and the land

are not estimated from observations, they are simply

taken from one of the AMIP experiments. We run five

realizations for each year by perturbing the initial state.

The atmospheric state diverges within a few days among

different realizations and gradually evolves into com-

pletely different solutions after a couple of weeks. We

refer to these persisted June SST anomaly experiments

as the forecast (FCST) experiments. For both the AMIP

and the FCST experiments we analyze the basin-wide

annual hurricane count for the months from July to

December since the FCST experiments can only be con-

sidered retrospective forecasts for this period. The storm-

tracking algorithm used is described in appendix B of

ZHLV. Our focus on hurricane counts is motivated in

part by the suggestion that counts of weaker tropical

storms are more sensitive to the details of the tracking

algorithm, as described in ZHLV.

Figure 1a shows the time series of annual (July–

December) Atlantic hurricane counts from both the

FCST experiments and the observations. For compari-

son, the results from the AMIP experiments are shown

in Fig. 1b. For both the FCST and the AMIP experi-

ments, the number of hurricane counts has been nor-

malized by multiplying by a constant factor (1.17 for

AMIP and 1.06 for FCST) so that each ensemble mean

time-mean reproduces the observed time-mean count.

Between the execution of the AMIP and FCST experi-

ments, the dynamical core of the model was updated

slightly to improve efficiency and stability. Preliminary
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tests, focusing on the Atlantic, suggested that this dif-

ference was of negligible importance for this study, but

after all realizations were completed it became evident

that there was a small difference in the total storm ac-

tivity, which was more significant in the east Pacific.

(The difference is less than 1 hurricane per year in the

North Atlantic and between 1 and 2 in the east Pacific.)

It is for this reason that we normalize the AMIP and

FCST ensembles separately. The normalization will not

influence the correlations between the model and the

observations, but will reduce the model’s RMSE slightly

(while we have computed this bias correction with the

full FCST ensemble, excluding the prediction year from

this correction makes little difference).

Both the ensemble mean and the full range over the

ensemble are shown in Fig. 1. The correlation between

the ensemble mean hurricane counts and the observations

is 0.78 for the AMIP experiments. This is slightly lower

than the value in ZHLV (0.83), due to the addition of the

years 2006–08. The reduction in correlation is entirely

due to 2006, for which all members of the ensemble

predict more hurricanes than were observed. From the

AMIP to the FCST experiments we see a reduction in

skill that can be measured by an increase in the RMS

count error from 1.91 to 2.34 and the drop in the cor-

relation from 0.78 to 0.69.

While one expects a few observations to lie outside of

the range spanned by all 9 of these realizations, 2006 and

1996 seem to stand out as years for which this atmo-

spheric model is least successful, with the former year

being too active in the model and the latter too quies-

cent. In contrast, neither the AMIP nor the FCST en-

semble spreads have difficulty in encompassing the peak

activity in 2005.

FIG. 1. (a) North Atlantic July–December hurricane counts for each year for the period of

1982–2008. IBTrACS observations (red circles), five-member ensemble mean from the FCST

experiments (blue squares), and the maximum and minimum number for each year from the

five-member integrations (shaded area). (b) As in (a), but for the AMIP experiments with four-

member ensemble. Model time series are normalized as described in text.
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To understand the reduction in skill from the AMIP

to the FCST experiments, we characterize the differ-

ence in SSTs between the two sets of experiments by

an index based on results of Swanson (2008), Vecchi

et al. (2008), Knutson et al. (2008), and ZHLV. The in-

dex is defined as the difference between the SSTs aver-

aged over the North Atlantic main development region

(MDR; 108–258N, 808–208W) and the SSTs averaged

over the entire tropics (308S–308N). This index is re-

ferred to below as the Atlantic relative SST, or FNA.

ZHLV (see their Fig. 16) shows that FNA anomaly for

the August–September–October (ASO) hurricane sea-

son explains much of the interannual variance in hurri-

cane counts in the AMIP experiments as well as the

spread in global warming simulations using the twenty-

first-century SST anomalies projected by different global

coupled models. Figure 2 shows that the difference be-

tween the value of FNA anomaly for June and the value

averaged over ASO explains much of the difference in

ensemble mean Atlantic hurricane counts between the

FCST and the AMIP experiments. The correlation be-

tween the difference in hurricane counts and the dif-

ference in FNA anomaly is 0.62 [significant at p 5 0.01,

estimating the effective degrees of freedom (Wilks 2006,

p. 144) from the autocorrelation of 0.3 for FNA at a 1-yr

lag]. This correlation indicates that a significant fraction

of the deterioration in skill from AMIP to FCST can

be thought of as due to the errors made in the value of

the FNA anomaly by using persistence of the June SST

anomaly. This figure also provides evidence that the

small difference in the dynamical core used in the AMIP

and FCST runs is not responsible for the bulk of the

reduction in correlation, since this reduction can be ex-

plained in large part by the FNA index.

One can check whether this correlation between the

difference in FNA anomaly and the difference in storm

counts in Fig. 2 is as large as could be expected given the

noise in the model. As discussed in ZHLV, the standard

deviation in Atlantic hurricane count across an ensem-

ble with identical SSTs in this model is roughly 0.5 1

0.2N, where N is the mean hurricane count for a given

year. Using this estimate, assuming Gaussian statistics,

one can estimate the expected value of the correlation

between the two curves in Fig. 2 if the difference in FNA

anomaly is the only relevant difference in the SST fields.

The expected correlation is 0.78 with a standard de-

viation of 0.07, significantly larger than the value of

0.62 obtained above. The implication is that, while the

change in FNA anomaly is responsible for a large part of

the signal, the model’s Atlantic hurricane activity is also

responding to other aspects of the change in the SST

anomaly field over the prediction period.

A hint as to the source of this information in the SST

field is provided by the correlation map between the

basin-averaged North Atlantic hurricane count differ-

ence between the FCST and AMIP experiments and the

local change in relative SST anomaly from June to the

ASO mean. Figure 3a shows that besides the large

values in the Atlantic MDR itself, there are also signif-

icant correlations in the eastern and western equatorial

Pacific. We can first regress the difference in Atlantic

hurricane count to the difference in FNA anomaly to

obtain a linear relationship and then use it to obtain

a residual count difference, which is not explained by

the difference in FNA anomaly. Figure 3b shows a cor-

relation map between the residual count difference and

local change of relative SST. Evidently the effect of

eastern and western equatorial Pacific SST cannot be

completely captured by the change in the FNA index.

Indeed, in a multiple linear regression calculation, the

correlation coefficient increases from 0.62 to 0.72 if we

take into account both the Atlantic MDR relative SST

and the eastern Pacific relative SST (see Fig. 3). The

correlation further increases to 0.79 (a value as large as

could be expected given the noise level of the model and

the size of the ensembles) when the western equatorial

Pacific region (see Fig. 3) is also included in the multi-

regression model.

The relative SSTs in the two identified Pacific regions

display significant correlation to El Niño–Southern Os-

cillation (ENSO) indices; in particular, the correlation

with the Niño-3.4 index is 0.54 for the eastern Pacific

region and 20.78 for the western Pacific region. ENSO

has long been recognized to be an important factor in

impacting the hurricane activities in the North Atlantic

basin (e.g., Gray 1984a; Goldenberg and Shapiro 1996;

Camargo et al. 2007a). Since our AMIP experiments use

observed SSTs, the ENSO state is already accounted for

through the boundary forcing. The correlation between

FIG. 2. Time series of the difference in yearly (July–December)

Atlantic hurricane counts between the FCST and the AMIP en-

semble means shown in Fig. 1 (solid line). The time series of the

difference between yearly Atlantic June and ASO relative SST

anomalies (dashed line; see text for the definition of Atlantic rel-

ative SST).
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Niño-3.4 SST index and the AMIP-simulated hurricane

count is 20.4 for the 1982–2008 period, slightly lower

than that for the observations (20.5). This level of cor-

relation is however much lower than that between FNA

and the hurricane count for both the model and the

observations.

If one uses the difference in the Niño-3.4 index instead

of FNA to explain the deterioration in skill from AMIP

to FCST, the correlation with the difference in simulated

hurricane counts is only 0.27. Using both F NA and Niño-

3.4 index in a multiple regression increases the correla-

tion from 0.62 for FNA alone to only 0.65. This is in large

part due to the high correlation from June to the ASO

mean in Niño-3.4 (.0.8), since the ‘‘spring barrier’’ has

already been passed by June. Nevertheless, as we will

discuss in section 3, the FNA index alone does not cap-

ture the full effect of ENSO on hurricane variability.

Furthermore, the persisted June SST anomaly also tends

to underestimate the ENSO signal, since ENSO events

tend to build over boreal summer and fall (Harrison and

Larkin 1998). We leave a more systematic exploration

of how the changes in SST anomalies over the forecast

interval affect the skill of the FCST ensemble for future

work.

Figure 4 shows similar plots as in Fig. 1, but for the

east Pacific. As in Fig. 1, both the FCST and the AMIP

hurricane counts have been separately normalized by

multiplying by constant factors (1.39 for AMIP and 1.11

for FCST) to correct the model bias. Because the

simulated storms in the east Pacific tend to be of smaller

scale than those in the North Atlantic, they appear to be

more sensitive to the minor changes in the dynamical

core referred to above. The AMIP normalization factor

is larger than that used in ZHLV (1.25) for the entire

season (April–December) since the AMIP experiments

tend to underproduce east Pacific hurricanes for July–

September while slightly overproducing in May and

June, as shown in Fig. 5 in ZHLV. Overall, the corre-

lation between the ensemble mean east Pacific hurricane

counts and the observations is 0.58 for the FCST ex-

periments with a RMS count error of about 3 hurricanes.

This indicates a relatively small drop of correlation com-

pared to the AMIP experiments (correlation 5 0.65),

with the RMS count error being slightly smaller than

in AMIP.

Similar to the procedure used in the North Atlantic,

we can define a relative SST index for the east Pacific

(FEP). We choose the east Pacific MDR region as (7.58–

158N, 1608–808W). As discussed below, FEP is itself

a useful predictor of storm count in the east Pacific.

However, the persisted June value of FEP anomaly is

very strongly correlated with the ASO mean (correla-

tion .0.9), so there is little advantage in predicting the

evolution of this index over the forecast period, in

distinction to the Atlantic case. Consistently, the dif-

ferences in the simulations when using observed and

persisted anomalies are well within the model’s noise

level.

FIG. 3. (a) Correlation map between the local change in relative SST anomaly from June to

the ASO mean and the basin-averaged North Atlantic hurricane count difference between the

FCST and AMIP experiments. (b) As in (a), but the total North Atlantic hurricane count

difference is replaced with a residual count difference that is not explained by the difference in

Atlantic MDR relative SST anomaly (see text for the details). The three boxes show the North

Atlantic MDR (108–258N, 808–208W), the east Pacific region (7.58–158N, 1608–1008W), and the

west Pacific region (08–108N, 1108E–1808), which explain most of the difference in North At-

lantic hurricane count between the FCST and AMIP experiments.
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3. A simple statistical model for basin-wide
hurricane frequency

The relative SST anomalies have a large controlling

effect on the interannual variation of basin-wide hurricane

activity as can be seen by a simple linear regression. Figure 5

shows scatterplots of yearly (July–December) hurricane

counts versus yearly ASO FNA and FEP anomalies for the

period of 1982–2008 from the combined AMIP and FCST

experiments and the observations. In the North Atlantic,

FNA anomaly explains well over 50% of the variance in

hurricane counts for both the models and the observations

(correlations are 0.76 for the observations and 0.83 for the

model ensemble mean; separation between AMIP and

FCST shows little difference in both correlation and

slope). The linear regression coefficient gives 8.8 (7.2–

10.4) and 9.6 (6.3–13) (with the quantities in parentheses

being the 95% confidence intervals), respectively, hurri-

canes per year per degree change of FNA for the model

and the observations. These values are slightly larger than

that in ZHLV (7.8 hurricanes per year per kelvin), where

results of both the AMIP and climate change experiments

were considered together in the regression. Figure 5b

shows a similar plot for the east Pacific, where there is also

a clear positive correlation although with a lower coeffi-

cient (0.71 for the model and 0.67 for the observations).

The linear regression coefficient gives respectively 10.9

(8–13.9) and 9.8 (5.4–14.10) hurricanes per year per de-

gree change of FEP for the model and the observations.

Overall, the model reproduces well the observed re-

lationship between the basin’s hurricane frequency and

the basin relative SSTs for both the North Atlantic and

the east Pacific. Interestingly, both ocean basins pres-

ent similar dependence of hurricane frequency on their

corresponding relative SSTs (roughly 1 hurricane per

year for each 0.1 degree change of relative SSTs) despite

their different climatological values. The large correla-

tion between relative SST anomaly and the model hur-

ricane frequency indicates that a simple linear regression

model with FNA (FEP) anomaly as a single predictor

can be useful to explain and predict the modeled North

Atlantic (east Pacific) hurricane count.

FIG. 4. As in Fig. 1, but for the east Pacific.
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We first test a simple linear regression model obtained

from Fig. 5 in reproducing both the North Atlantic and

the east Pacific hurricane frequency. Since our dynamical

model is not tuned to optimize the interannual variations

in hurricanes, we choose regression slope based on the

dynamical model results, that is 8.8 hurricanes per year

per kelvin for the North Atlantic and 10.9 hurricanes per

year per kelvin for the east Pacific. As expected, the linear

model using the observed ASO relative SST anomaly

produces time series of hurricane count about as well as

the AMIP ensemble mean, with correlation 5 0.76 and

RMSE 5 2 hurricanes for the North Atlantic and corre-

lation 5 0.67 and RMSE 5 2.5 for the east Pacific.

Similar to the dynamical model using persisted June

SST anomalies, we can use the June FNA and FEP

anomalies in the linear regression model to predict the

storm frequency in each hurricane season. Figure 6 shows

how this simple linear prediction model compares with

the dynamical model prediction (FCST). For the North

Atlantic, the linear model produces a slightly lower

skill than the FCST. The correlation is reduced from

0.69 to 0.55 and the RMS count error increases from

2.34 to 2.64 hurricanes. Much of the skill loss is due

to several years prior to 1988. For the east Pacific,

the linear prediction model performs slightly better

than the FCST ensemble mean with slightly larger

correlation (0.62) and smaller RMS count error (2.67

hurricanes).

Despite the comparable overall skill for the simple

linear regression model, both the ENSO years and the

very active year of 2005 provides evidence that the dy-

namical model is able to recover more information from

the SST field than the simple relative SST index. Figure 7

shows a comparison of the North Atlantic yearly (July–

December) hurricane counts averaged for the El Niño

years (1982, 1987, 1991, 1992, 1994, 1997, and 2002) and

the La Niña years (1988, 1998, 1999, 2000, 2001, and

2007) from the AMIP, the FCST, and the linear regres-

sion model using both the observed ASO and the per-

sisted June relative SST anomaly. Evidently, both the

AMIP and the FCST experiments produce a better con-

trast between the La Niña and El Niño years while their

corresponding linear model predictions on average sig-

nificantly underestimate the difference. An examination

of the variation of FNA with ENSO indicates that it is

consistent with the suppression–enhancement of hurri-

cane activity with El Niño–La Niña (not shown). Nev-

ertheless, Fig. 7 also suggests clearly that this FNA index

alone does not capture the full effect of ENSO on storm

variability.

Figure 8 shows a comparison of 2005 July–December

hurricane counts from the AMIP and FCST ensembles

and the linear regression model based on the observed

ASO and persisted June relative SST anomalies. Both

AMIP and FCST experiments produce more hurricanes

on average than the linear model, although there is sub-

stantial spread among individual runs. The linear model

significantly underestimates the number of hurricanes

for 2005. A check for the spatial distribution of relative

SST for 2005 shows a relative cooling of the east Pacific

FIG. 5. (a) Scatterplot of the North Atlantic annual (July–

December) hurricane count anomalies vs its ASO season MDR

relative SST anomalies for each year for the period of 1982–2008.

AMIP and FCST experiments (normalized) (circles) and observa-

tions (asterisks). Linear regression for the AMIP and FCST (solid

lines) and observation (dashed lines). Correlations are shown in the

legend. (b) As in (a), but for the east Pacific.
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besides the strong relative warming in the North Atlantic

MDR. This is consistent with further increased Atlantic

hurricane activity as indicated by the correlation map

in Fig. 3. This effect of remote region SST is presum-

ably better captured by the dynamical model than the

simple FNA index.

It is interesting that this simple linear prediction

model, using the persisted relative SST index, performs

better for 2005 than the linear model using the actual

ASO relative SST index. This is likely due to a cancel-

lation of errors. The linear model underpredicts hurri-

cane count in 2005 when using the observed hurricane

season index, but the June value of this index happens to

be greater than the ASO value, so that the linear model

using the persisted index performs better. Given the

large number of storms in this season, it is possible that

the evolution of this relative SST index from June

through the hurricane season was influenced by the hur-

ricanes themselves, creating some ambiguity in how to

interpret prescribed SST models.

To investigate the extent to which we can further ex-

tend the lead time for the linear prediction model using

persisted SST anomalies, we use FNA and FEP anomalies

for each month prior to the ASO hurricane season for the

North Atlantic and east Pacific. Figure 9 shows both the

correlation and the RMS count error for the hindcast

period of 1982–2008 for a series of leading month pre-

dictions. For the North Atlantic, the model maintains

significant skill back to April with correlation roughly 0.4

and RMS count error about 3 hurricanes. From April to

May, the correlation increases to 0.5. The linear model

skill increases continuously with reduced lead time with

a strong improvement from June to July. In the east Pa-

cific, there is a sharp improvement of model skill from

April to May with correlation increasing from 0.4 to 0.57

and RMS count error decreasing from 3.5 to 2.8 hurri-

canes. However, after May, the skill of the linear model

tends to level off in contrast to the steady improvement in

the North Atlantic. These persistence forecasts provide a

baseline against which to compare coupled model results.

FIG. 6. A comparison of the linear prediction model (black circles) using June relative SST

anomaly with the FCST ensemble mean (blue squares) and the observations (red circles) for

(top) North Atlantic and (bottom) east Pacific. Correlations and RMS count errors are shown

in the legend.
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4. Conclusions

We have documented the level of skill of a global at-

mospheric model in predicting the hurricane count in

the upcoming hurricane season with hindcast experi-

ments (for 1982–2008) in which the SST anomaly is

persisted from June. Using 5 realizations with a 50-km

resolution model that simulates a fairly accurate global

hurricane climatology, we find that the correlation of

the ensemble mean (July–December) hurricane count

to observations is 0.69 in the North Atlantic and 0.58

in the east Pacific. These correlations provide an esti-

mate of the lower bound on the forecast skill, skill which

should be improved by the ability to predict SST anom-

alies better than the persistence forecasts. Using this

model, experiments with observed SSTs suggest that the

correlation can be improved to about 0.78 in the North

Atlantic with perfect SST prediction, but also that there

is little improvement expected in the east Pacific. This

distinction is interesting given the anticorrelation on in-

terannual time scales between the two basins (Wang and

Lee 2009), and the ability of the model to simulate this

correlation, as described in ZHLV.

Despite the simplicity of this approach of persisting

June SST anomaly, the level of skill for our dynamical

model is generally comparable with those reported in the

literature (e.g., Vitart 2006; Vitart et al. 2007; Camargo

and Barnston 2009; LaRow et al. 2010). It should be

noted, however, that there are many differences be-

tween these reports, such as the verification periods, the

lead time, the metrics for evaluation, as well as the model

calibrations. Furthermore, differences in model resolu-

tion, whether or not a multimodel ensemble is used,

whether the forecast system is fully coupled with the

ocean, and different choice of SSTs in an atmospheric

model all play some role in variations of the forecast skill

(Camargo et al. 2007b). A systematic evaluation of these

models under controlled conditions would be a useful

step to providing a formal assessment of the key controls

to forecast skill among these models.

In our model, much of the difference in the North

Atlantic between the ensemble with persisted SST and

that with observed SSTs can be explained by the evo-

lution in one SST index: the relative change of the SSTs

in the main development region as compared to the

tropical mean SST. While we do not claim that this is the

optimal SST index for this purpose, it provides a useful

first-order description of differences in the modeled

North Atlantic and east Pacific hurricane frequencies.

We have not searched for the best index systematically,

due in part to the shortness of the time period of the

simulations, but have tested this particular index be-

cause of arguments for its value in the literature (e.g.,

Swanson 2008; Vecchi et al. 2008; ZHLV). It is our

FIG. 7. A comparison of the North Atlantic yearly (July–

December) hurricane counts averaged for the El Niño years and

the La Niña years from the AMIP, the FCST, and the linear re-

gression model using both the observed ASO [STAT(ASO)] and

the persisted June [STAT(JUN)] relative SST anomaly.

FIG. 8. A comparison of North Atlantic July–December hurricane

counts from the AMIP, FCST, and a linear regression model using

observed ASO [STAT(ASO)] and persisted June [STAT(JUN)]

relative SST anomaly for the year 2005. Hurricane counts for AMIP

and FCST are from Fig. 1: individual runs (open symbols) and en-

semble mean (filled symbols). Error bars for the linear model shows

95% confidence level for the regression slope.

FIG. 9. Correlations (solid) and RMS count errors (dashed) for

the linear prediction model using anomalous relative SSTs from

each month prior to the ASO hurricane season for the North At-

lantic (circles) and the east Pacific (squares).
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estimate that, despite the noise level in the model (the

spread among ensemble members), there is room for an

improved index by taking into account more informa-

tion from the Pacific or using different statistical model

formulations (Villarini et al. 2010).

Even if it does not represent the full effect of the

evolution of SST anomalies in our model, we suggest

that this is a very useful and simple index to use when

evaluating the value of SST forecasts for improving

prediction of the seasonal hurricane count. The analo-

gous index in the east Pacific has more persistence from

June through the heart of the hurricane season, helping

to explain why the forecasts by the dynamical model do

not improve significantly when we use observed as op-

posed to persisted SST anomalies.

We have also demonstrated that the simplest linear

model, with hurricane count increasing at roughly 1

storm per 0.1 degree increase in this relative SST index,

performs about as well as the full dynamical model for

the observed SST and nearly as well for the persisted

June SST anomaly experiments. The linear prediction

model with persisted SST anomalies generates signifi-

cant skill back to April in the North Atlantic. Its skill

improves continuously with reduced lead time. In con-

trast, for the east Pacific, the linear prediction model

shows a sharp improvement of skill from April to May,

with the skill tending to level off after May. While this

simplest linear model is clearly imperfect, its skill in

predicting basin-wide hurricane frequency appears to

be as good as or better than more complex statistical

models (e.g., Camargo et al. 2007b). However, to con-

siderably improve the lead time for the hurricane seasonal

forecast beyond the short time-scale persistence forecasts

described here, a hybrid statistical-dynamical model (e.g.,

Wang et al. 2009; Vecchi et al. 2010, manuscript submitted

to Mon. Wea. Rev.) or a dynamical coupled system (e.g.,

Vitart 2006; Vitart et al. 2007) would be needed.

There are hints that the dynamical model is extracting

more useful information from the SST field than just the

temperature of the main development region relative to

the tropical mean. For example, the dynamical model

with both observed and persisted June SST produces a

larger contrast of North Atlantic hurricane activity be-

tween the La Niña and El Niño years, while the corre-

sponding linear models using the index of relative SST

as a single predictor significantly underestimate the dif-

ference. Further hints come from the dynamical model’s

ability to better simulate the very active 2005 season.

One also hopes that dynamic models will eventually

provide useful skill for intrabasin spatial distributions and

intensities, beyond the simple basin wide hurricane counts

discussed here. But the first goal in development of dy-

namical prediction of phenomena is to be competitive

with the best statistical forecasts. By capturing the un-

derlying dynamics, rather than putting in by hand the

rules that are empirically found to connect hurricanes

with climate, we have more confidence that the model

results will be transferable to novel situations where our

familiar rules might break down. Conversely, our

confidence in the intrinsic relevance of predictors used

in statistical forecasts is increased by dynamical simula-

tions for which the predictors work just as well as for ob-

servations.

Our results strengthen the notion that SSTs alone

provide most of the skill in seasonal hurricane forecasts.

On interannual time scales, the predictable components

of the tropical atmospheric environment directly affect-

ing storm genesis, such as changes in vertical shear, at-

mospheric stability, and midtropospheric moisture, are

likely to be very closely tied to these SSTs (e.g., Vecchi

and Soden 2007; Latif et al. 2007; Camargo et al. 2007a;

Tang and Neelin 2004; Garner et al. 2009). Furthermore,

since climate anomalies in remote oceans, such as those

occurring in the Pacific during the ENSO years, can af-

fect both the tropical mean and the tropical Atlantic SST

(e.g., Klein et al. 1999; Kushnir et al. 2006), seasonal

climate forecasts and observations should be improved

throughout the tropics to improve seasonal hurricane

forecasts in the Atlantic and east Pacific.
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