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3. Scaling principles and filtered models

3.1 Incompressibility

Ignoring gravity for the moment, consider a fluid with uniform density  in a state of
rest.  Disturb this state with a perturbation that is of small enough amplitude that one can justify
ignoring all terms that are quadratic in this amplitude.  Assume also that the flow is adiabatic, so
that

. (3.1)

With the perturbation denoted by a prime, and assuming that the perturbations are infinitesimal,
the linearized equation of motion and equation for the conservation of mass become

(3.2)

. (3.3)

Eliminating variables in favor of  leads to the wave equation

, (3.4)

where  and  is thespeed of sound.  For an ideal gas, , so that
 in the case of .  Sound speeds are  in the ocean.

Acoustic waves have little dynamical significance in meteorology or oceanography.  One
would like to modify, orfilter, the equations in such a way as to eliminate them, hopefully without
distorting the remaining non-acoustic, oranelastic, part of the flow. The simplest procedure is to
assume that the fluid is incompressible.  In anincompressible fluid, pressure variations produce
negligible variations in the volume, or density, of fluid particles, and one sets .

Incompressibility is a reasonable approximation for a fluid in a gravitational field if (1)
velocities and phase speeds are much smaller than  and (2) vertical scales of interest are much
smaller than the scale height.  To see this, assume that we are fortunate to have estimates of the
length, time and velocity scales (L,  andU) of the flow.  Start by considering a steady, adiabatic
flow, for which

(3.5)

The first equality follows from 3.1; the second from the equation of motion.  If we continue to
ignore the gravitational field, we can make the estimate

, (3.6)

where  is the magnitude of the density variation following the flow, and  is theMach num-
ber.  If flow speeds are much smaller than the speed of sound, then the fractional change in the

ρ0

dp
dt
------ p∂ ρ∂⁄

s
dρ
dt
------=

ρ0
V′∂
t∂

-------- p′∇–=

ρ′∂
t∂

-------- ρ0∇ V′⋅–
1

p∂ ρ∂⁄
s

-------------------- p′∂
t∂

--------= =

p′

p′tt cs
2

p′∇2=

cs
2

p∂ ρ∂⁄
s

= cs cs
2 γRT=

cs 350 m s⁄= T 300 K= 10
3

m s⁄≈

∇ V⋅ 0=

cs

τ

cs
2 V ρ∇⋅( ) V p∇⋅=

ρV V 2
2 Φ+⁄( ).∇⋅=

δρ ρ⁄ U
2

cs
2⁄≈ M

2
=

δρ M



-3.2-

density following the flow due to pressure fluctuations will be small.  Conservation of mass then
yields

. (3.7)

The individual terms, such as , that make up  are typically of order , so there
must be near perfect cancellation between these terms if , and one is justified in setting

 in the equation of motion under these conditions.

Re-introducing gravity, we see that the possibility exists of a balance between the first and
third terms of 3.5.  Setting , we have the estimate

. (3.8)

L is now a measure of the vertical displacement of the fluid particle.  For the atmosphere,
is referred to as the adiabatic scale height (being the local density scale height of

a constant-  atmosphere) and is of the order of 10 km.  As long as vertical displacements are
only of the order of 1 km or less, and if , incompressibility is a good approximation.  For
example, the planetary boundary layer, the region adjacent to the ground where turbulence is gen-
erated by surface stress and surface heating, is typically 1-2 km thick, and studies of the dynamics
of this layer generally assume incompressibility.  On the other hand, a convective tower in the
tropics that extends from the planetary boundary layer to the tropopause cannot be accurately
modeled with the incompressible equations.  (Question: what is the scale height of the ocean?)

This scaling argument for steady flows is still relevant when the two terms in the material derivative
and  are of the same order, as is the case in turbulent flows.  However, as the example of a linear acoustic wave
makes explicit, one must also account for the possibility that is the dominant term in the material derivative. In
such a linear flow, , where we can think ofc as the phase speed of a wave. The student is encouraged to
provide an argument that 1) this phase speed must be much less than the speed of sound for the incompressible
assumption to be accurate, and 2) in the presence of gravity, the waves must also have a vertical scale smaller than the
adiabatic scale height.

The simplest incompressible set of equations results from the additional assumption that
the density  is a constant, .  In this familiar case of a homogeneous fluid, the equations of
motion and the constraint form a complete set of equations for andp. The pressure
is determined by taking the divergence of the equation of motion to form a Poisson equation forp.

A more general incompressible model, and one of central importance for oceanographic
modeling and theory, can be obtained by assuming that density variations are not identically zero,
but are small: . It is then useful to define a time-independent
pressure distribution in hydrostatic balance with the constant density : . The
total pressure is then , and by dropping terms of higher than first order in  and , the
equation of motion is replace by

. (3.9)

Since we continue to assume incompressibility, there is no conversion of kinetic+potential
into internal energy. To maintain a consistent energetics one must ignore the effects of divergence
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in the first law of thermodynamics.  Therefore, 2.21 for the conservation of entropy reduces to

(3.10)

if there is no heating or diffusion.  If the density perturbation is simply proportional to a tempera-
ture perturbation, , then 3.10 reduces to

. (3.11)

It is important to realize that this relation is not obtained by setting in the equation for
conservation of mass.  If there are heat sources, or thermal diffusion, then there will be sources
and sinks of . The divergence of the flow must then be non-zero also, strictly speaking, if mass
is to be conserved, but one assumes that these diabatic effects are sufficiently weak that this diver-
gence can continue to be ignored.

We define the buoyancy as .  TheBoussinesq approximation can now be
written (in the absence of heating and friction) as

(3.12)

(3.13)

, (3.14)

where we have dropped the subscript on the pressure to simplify the notation.  Conservation of
energy is easily proven as before.  It now takes the form

, (3.15)

which may be compared with 2.37.  When heating is applied, it acts as a direct source of buoy-
ancy, and of potential energy, rather than internal energy as in a compressible flow.

3.2 Gravitational stability

Imagine a fluid at rest in hydrostatic balance with the density profile .  Picture an
infinitesimal parcel of fluid displaced upwards, by a small amount, from  to , without
altering the pressure field (we return to this last assumption in section 3.3). The parcel will accel-
erate upwards if it finds itself in a region in which its density is less than that of its environment,
for then the upward pressure-gradient force, which balances the environmental density, will be
greater than the gravitational force on the parcel.  The result will then be a growing, unstable par-
cel displacement.

Consider first the case of an incompressible flow, in which the density of a parcel is con-
served.  Instability will then occur if , if heavy fluid overlies light fluid.  In the stable
case, , the magnitude of the upward force will be , or ,
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where  is the vertical displacement.  Therefore,

, (3.16)

where . N is the frequency at which the parcel will oscillate in the stable
case, and is referred to as the Brunt-Vaisala frequency orbuoyancy frequency.

In a compressible fluid, gravitational stability is still determined by the relative magnitude
of the parcel and environmental densities, but it is the parcel’s entropy, not its density, that is con-
served as it is displaced.  Consequently, for an ideal gas, .  But if the
pressure is unperturbed, then

. (3.17)

Therefore, 3.16 is unchanged except that  is now defined to be .  It is the
vertical gradient of the entropy, or the potential temperature, that determines the gravitational sta-
bility of the atmosphere.  For a neutrally stable atmosphere, with , in hydrostatic
balance, one has .  If temperatures decrease more rapidly than
thisdry adiabatic lapse rate, so that , then the atmosphere is gravitationally unstable.

In the ocean, we have a rather complicated equation of state, which we can write as
-- that is, density is a function of temperature, pressure, and salinity. (Upper-case

S is salinity, not entropy.)  In high latitudes, near the freezing temperature, variations inS tend to
dominate -- in low latitudes, variations inT are more important. The influence of pressure on den-
sity is larger than all of these effects if we vary the pressure from its surface value to that at the
bottom of the ocean, but this compression has little dynamical significance. The fact that the way
in which the density depends onT andS is itself dependent on pressure is of more importance.
For example, the salty water flowing out of the Mediterranean is denser than the cold and fresh
bottom water formed near the coast of Antarctica if we compare these waters at surface pressures,
but the Antarctic waters are more dense at deep pressures. We can also find expressions for the
entropy, or potential temperature  of seawater: .  Even better, we can use this
to express density as a function of  rather thanT: .

We define thepotential density, , as the density that a parcel of water would have if its
pressure were changed to some reference pressure  holding the entropy and density fixed --
i.e., .  There is a different potential density for each reference pressure.  The
potential density is conserved following the parcel if the entropy and the salinity are conserved.
By an argument similar to that above, we can now show that the buoyancy frequency in the ocean
is , whereµ0 is the potential density of the unperturbed state, referenced to
the pressure at which we are computingN2. The complication in oceanography is that one cannot,
in general, define one function ofz whose derivative provides the buoyancy frequency -- one
needs to use the potential density referenced to the local pressure.  See Problem 3.1.

The manner in which the large-scale gravitational stability is maintained is of central
importance in both meteorology and oceanography, since its magnitude greatly affects the struc-
ture of the circulation.
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For another perspective on gravitational instability, consider small disturbances to a
Boussinesq fluid at rest with a uniform buoyancy gradient , a constant.
Ignore rotation and the spatial variation of , and assume that the flow is a function ofx andz
only.  The resultinglinear equations are

(3.18)

Eliminating other variables in favor of the vertical velocity leads to the equation

. (3.19)

Since  is independent ofz, we can look for solutions of the form
, leading to the dispersion relation for internal gravity waves:

. (3.20)

The frequency is always less than the buoyancy frequencyN, approachingN for small horizon-
tal scales ( ). Note that the pressure perturbations have a negligible effect on the dynamics in
this limiting case.  This is consistent with the result that  in the familiar parcel argument,
which assumes explicitly that the pressure is unperturbed.

If , then

, (3.21)

where .  Since the flow has the dependence , the positive sign in
3.21 corresponds to exponential growth, , with e-folding time

. (3.22)

The growth rate depends only on the ratio of the vertical and horizontal scales; in this sense there
is no scale selection in gravitational instability (when viscosity and thermal conductivity are neg-
ligible).  Maximum growth  occurs when horizontal scales are much smaller than vertical
scales.

3.3 The anelastic approximation

The Boussinesq equations are not adequate for the study of deep motions in the atmo-
sphere, with vertical scales comparable to the scale height. For such flows it is no longer valid to
assume that density variations due to pressure gradient forces are negligible following the flow. A
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useful generalization of the Boussinesq system was provided by Ogura and Phillips.  One still
expresses all thermodynamic variables as small perturbations about a reference atmosphere, but
now the density in this reference state is a function of height, .  Potential temperature, and
not density, is conserved following the flow, in the absence of heating.  Ogura and Phillips con-
sider the special case in which the reference atmosphere has a constant potential temperature .
Assuming that  and , etc., we can approximate the pressure gradi-
ent force as

, (3.23)

where the buoyancy is now equal to .  The thermodynamic equation is simply
 for adiabatic flow, or  in the presence of the heatingQ per

unit mass.

The final equation needed to complete this set can be obtained by assuming that pressure
variations following the fluid can be estimated from the pressure of the reference atmosphere:

.  From the ideal gas law, one has

, (3.24)

so that , or .  For a constant  reference
atmosphere, and in the absence of heating and dissipation, the complete set ofanelasticequations
becomes

(3.25)

(3.26)

, (3.27)

where can be thought of as determined implicitly, just as in the homogeneous-incompressible
and Boussinesq systems.

The equations reduce to the Boussinesq system when attention is confined to a region in
which the variation of the basic state density is negligible.  Whenever one uses the Boussinesq
equations to describe the atmosphere, one should think of them as this limiting case of the anelas-
tic system, with the buoyancy equal to . (Can you derive energy conservation for this sys-
tem?)

3.4. Linear waves in an isothermal atmosphere

It is informative to consider the dispersion relation for linear waves in an isothermal
( ) atmosphere at rest, ignoring spherical geometry and rotation but without any further
approximation.  The unperturbed state is denoted by the subscriptr.  Since it is at rest, the unper-
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turbed atmosphere is in hydrostatic balance:

. (3.28)

For simplicity assume that the motion is confined to thex-z plane.  The linearized equations are

(3.29)

The final equation can be obtained from the equation of state in the form , noting that
.

This set can be reduced to two equations in the unknowns  and .  In the special case
of an isothermal basic state, we have , with , and , while

 is a constant.  After some manipulation, one obtains for this special case

(3.30)

, (3.31)

or, after a few final cancellations,

. (3.32)

The term with the singlez-derivative can be removed by setting

. (3.33)

Thus,

. (3.34)

This imposing equation has constant coefficients, and one may look for wavelike solutions of the
form

, (3.35)

where (k,m) is the wavenumber in the (x,z) plane,  is the frequency, and  is the complex
amplitude.  The following dispersion relation foracoustic-gravity waves in an isothermal atmo-
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sphere results:

. (3.36)

The solution for  is

, (3.37)

where .  The argument of the square root is minimized when
and , whereupon it takes the value . But ,
so the argument is always positive.  It follows that all modes are stable (  is real).

The positive sign in 3.37 corresponds to the high-frequency acoustic branch and the nega-
tive sign to the low-frequency gravity-wave branch.  Acoustic and gravity waves are well sepa-
rated if

, (3.38)

in which case

. (3.39)

The condition 3.38 is satisfied for our isothermal atmosphere if

,

so it is only in the particular case that bothk andmare of the order of that this frequency separation is not sharp.

Note also that there are solutions of the set of equations 3.30-3.31 with . They are
of the form , with  and .  These horizontally
propagating sound waves are referred to asLamb waves.  Even though their amplitude increases
with height, they are external, or surface-trapped waves, since their kinetic energy density
decreases exponentially away from the surface.  The kinetic energy density of the internal waves
3.35 is independent of height.

We have already seen that the Boussinesq equations in this same geometry produce the
dispersion relation

. (3.40)

This corresponds to the gravity-wave branch of the full dispersion relation for the isothermal
atmosphere, when wavelengths are sufficiently small that the term  is negligible in the
denominator.
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3.5.Hydrostatic balance

The atmosphere and the oceans are both thin shells of fluid on a nearly spherical earth.
Therefore, we are often interested in flows for which the aspect ratio  is small, where  is the
ratio of the characteristic vertical scaleH over which the flow varies to the characteristic horizon-
tal scaleL.  For an extratropical cyclone, with a characteristic horizontal scale of ,

. When the aspect ratio is small, one can generally assume that the flow is in hydrostatic
balanceeven when it is not at rest.

Consider first a non-rotating Boussinesq fluid. We assume that the horizontal and vertical
length and velocity (U,W) scales are related by , and that we can set
or .  From the horizontal equation of motion one can then estimate the magnitude of the
pressure variations as .  Therefore,

. (3.41)

The same estimate is obtained if one assumes instead that the local time derivative dominates the
material derivative in each equation.  Therefore, when the aspect ratio is small, we expect to be
able to ignore the material derivative in the vertical equation of motion, leaving hydrostatic bal-
ance. The resulting system of equations is (indicating the horizontal component of a vector by the
subscripth)

(3.42)

(3.43)

(3.44)

, (3.45)

where .

While this model may not appear much simpler than the full equations, in fact, the ability
to think of the pressure at a point as being determined by the weight of the fluid above it is a sim-
plification whose importance is hard to overestimate, as it colors all of our thinking about large-
scale flows in the atmosphere and ocean.

Multiplying the horizontal equation of motion by  and using 3.44 and 3.45, we have

. (3.46)

From this result we find that these hydrostatic equations retain anexact energy conservation law

, (3.47)

that is identical to the full Boussinesq version, except that the kinetic energy of vertical motion
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must be omitted in the energy density.

One can easily repeat the analysis for a small disturbance to a Boussinesq fluid at rest with
a uniform Brunt-Vaisala frequency, but using these hydrostatic equations.  The only difference is
the deletion of the term  in the vertical equation of motion, leading to the dispersion rela-
tion for hydrostatic gravity waves:

. (3.48)

Consistent with the “derivation” of the hydrostatic model, this is the appropriate approximation to
the non-hydrostatic dispersion relation when the aspect ratio is small ( ).

If we consider the gravitationally unstable case, , the hydrostatic dispersion relation produces the
unphysical result that the maximum growth rate is unbounded.  Clearly, it makes little sense to allow gravitational
instability to occur in a hydrostatic system, as the most unstable disturbances in an inviscid flow have large aspect
ratio ( ). Yet, except in the simplest linear problems the development of gravitational instability from hydrostatic
antecedents is common.  An important example is that of a hydrostatic gravity wave that grows in amplitude as it
propagates upwards (see Eq. ?), eventually producing overturning isentropes.  For a problem such as this, and many
others, the hydrostatic equations are not well posed, but require the addition of terms that mimic the effects of the
non-hydrostatic, turbulent mixing induced by gravitational instability.

Compressibility adds no new complications (except that one should allow for the possibil-
ity that the characteristic vertical scale is larger than the scale height, in which case it should be
replaced by the latter in the scale analysis.)  The resulting model is

(3.49)

(3.50)

(3.51)

. (3.52)

After one has made the hydrostatic approximation, it is often convenient to change the ver-
tical coordinate. A very common choice in meteorology ispressure coordinates. The hydrostatic
relation ensures that pressure decreases monotonically with increasing height, so the transforma-
tion fromz to p is well-defined.  (It should be emphasized that by making the hydrostatic approx-
imation, we have already distinguished between the horizontal and vertical directions, and (u,v)
continues to refer to the horizontal flow, perpendicular to thez-axis.)  The “vertical velocity” in
pressure coordinates is .  From the definition of the material derivative, we have

, (3.53)

where the horizontal and time derivatives are taken at constant pressure.

To convert from differentiation at constantz to differentiation at constantp, the chain rule
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(or draw a figure) implies

, (3.54)

where  is eitherx, y or t.  Therefore, the pressure gradient in the horizontal equation of motion
becomes

, (3.55)

where is the geopotential and the derivatives are at constant pressure if not otherwise indicated.
Away from the surface, routine weather observations, which form the basis of much of our under-
standing of large-scale atmospheric circulations, are invariably presented in pressure coordinates.
A common “weather map” consists of a plot of the height of the 500 mb (50 hPa) pressure sur-
face, rather than pressure at a certain height.

The pressure-coordinate form of mass conservation is most easily obtained from the
expression for the mass element,

, (3.56)

so that

. (3.57)

Since ,  and , the result is

. (3.58)

Mass conservation for hydrostatic flow in pressure coordinates takes a form analogous to that in
an incompressible fluid.  It is this simplification, along with the simpler expression for the pres-
sure gradient 3.55, that provides the motivation for this change in coordinate. The only complica-
tion arises from the lower boundary condition.  Since

, (3.59)

the condition of no normal flow on a flat surface ( ) translates in pressure coordi-
nates into

. (3.60)

It is sometimes convenient to stretch the pressure coordinate to mimic a height coordinate,
by setting .H is a constant included to giveZ the units of length.  We set it
equal to , where  is a reference temperature, and also define .  The
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equations of motion in this log(pressure) coordinate are

(3.61)

where  and , with the lower boundary condition

. (3.62)

This coordinate is very common in discussions of stratospheric dynamics.  Consider a
basic state resting atmosphere with the stratification .  Infinitesimal 2-dimensional
( ) perturbations about this state satisfy

(3.63)

plus the hydrostatic equation.  These can be combined into

. (3.64)

Here .  (Note that this is not precisely the Brunt-Vaisala frequency unless
the atmosphere is isothermal).  In the case that the reference state being perturbed is isothermal,

 is a constant.  Setting

, (3.65)

we have the dispersion relation

. (3.66)

This is in agreement with the gravity-wave branch of the full dispersion relation for an isothermal
atmosphere, given that the aspect ratio is small. By omitting the acceleration of the vertical veloc-
ity, the hydrostatic approximation has eliminated all acoustic oscillations -- except for the purely
horizontally propagating Lamb wave -- without requiring any assumption about incompressibility.

It is informative to show that the Lamb wave can be retrieved from these log(pressure)
equations, by applying the linearized boundary condition,  at  and looking
for solutions that decay for largeZ.

The choice of  as vertical coordinate also have some admirers, since it results in a hydrostatic equation
( ) that is closer in form to that in a Boussinesq model, with the “vertical” derivative of  being con-
served by the flow, rather than being some function of the vertical coordinate times a conserved quantity, as in pres-
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sure or log(pressure) coordinates.

In numerical atmospheric models, it is common to transform to , where  is the surface
pressure, so that the lower boundary is a coordinate surface.

Another vertical coordinate that is especially useful when the flow is adiabatic
( ) is itself. Since it only makes sense to apply the hydrostatic equations when the
flow is stably stratified, the transformation forzor p to can be assumed to be well-defined. The
simplification results from the fact that there is no “vertical” velocity with this coordinate, for adi-
abatic flow.  The chain rule implies that

(3.67)

where . M is the dry static energy, although in this context it is often referred to as
the Montgomery streamfunction.

The equation for conservation of mass in isentropic coordinates can be obtained from the
form of the mass element,

, (3.68)

which, assuming that , leads to

. (3.69)

An analogous transformation for a Boussinesq system, important in oceanography, is obtained by
choosing density as the vertical coordinate. (See Problem 3.2)

Spherical geometry and rotation add some additional complications to discussions of the
hydrostatic approximation. In order to retain the simple approximation that in the
full vertical equation of motion, one must also ignore the vertical component of the Coriolis force,

, and the metric term . Our scaling implies that the metric term is smaller
than the pressure gradient by a factor of .  The ratio of the Coriolis to pressure-
gradient forces in the vertical equation of motion is .  For

, .  In the atmosphere, velocities and phase speeds of interest are typi-
cally an order of magnitude larger than this, and relevant values ofH are substantially smaller as
well, so one can justify neglect of this term empirically, even though it is not smaller than retained
terms by a full aspect ratio.

Having omitted the Coriolis force from the vertical equation of motion, to retain energetic
consistency the term  in the zonal momentum equation must also be discarded.  The
omission of the metric term in the vertical equation requires that the metric terms involvingw in
the zonal and meridional equations be omitted, for the same reason.  If we now want to retain an
angular momentum conservation law, the radial coordinater in the remaining metric terms and in
the material derivative must be replaced by a constant value,a.  More generally, whenever the
horizontal gradient operator appears (in the pressure gradients, the substantial derivatives, and
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in the equation for conservation of mass), it must be computed as if the flow were confined to the
surface of a sphere of radiusa, ignoring variations inr within the atmosphere.  This combination
of assumptions is referred to as thetraditional approximation, and leads to the following set of
primitive equations for the atmosphere:

(3.70)

(3.71)

(3.72)

(3.73)

, (3.74)

where

(3.75)

and

. (3.76)

Exercise: These equations are the starting point for most global numerical atmospheric models
used for weather prediction and climate studies. Confirm that they do possess natural energy and
angular momentum conservation laws.

It is a plausible requirement of any model used for studies of climate that it possess exact analogs of the
energy and angular momentum conservation laws.  The manner in which this was assured in the derivation of the
primitive equation model appears to be somewhatad hoc.  A natural way of insuring the existence of such laws is to
start with a Hamiltonian rather than the equations of motion themselves.  The Hamiltonian formulation of fluid
dynamics is not without its subtleties, however, and we forego this approach here.

3.6 Shallow-water and layered models

The hydrostatic flow of a homogeneous (uniform density) incompressible fluid is of spe-
cial interest, both because it provides a simple framework in which to investigate the interactions
between rotation, buoyancy, and advection, and because it is directly relevant as a model of some
atmospheric phenomena.

Let  and  be the height of the lower and upper boundaries of this homogeneous layer
of fluid above a geopotential surface.  The lower boundary is assumed to be rigid and the upper
boundary is assumed to evolve so as to maintain a constant pressure (which we set equal to zero)
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at the boundary.  The thickness of the layer is .  Given hydrostatic balance, the pres-
sureis simply the weight of the fluid above the point in question,

, (3.77)

where the uniform density has been set equal to unity. Therefore, the horizontal pressure gradient
is .  (All vectors are assumed to be horizontal,i.e., to lie on a constant geopotential
surface.) Since this pressure gradient is independent of height within the layer, we can satisfy the
equation of motion by assuming that the flow is also independent of height.  The resulting primi-
tive equation of motion in spherical coordinates is

(3.78)

, (3.79)

while conservation of mass takes the form

. (3.80)

The first term ensures that the 3-dimensional flow at has no component normal to the sur-
face.  Thus, the vertical velocity varies linearly from the value  at the lower boundary to
the value  at the upper surface.

If we assume that the domain of interest is small compared to the radius of the earth, we
can ignore the spherical geometry, including the metric terms, and set , a
constant.  The governing equations become

(3.81)

(3.82)

, (3.83)

with .  These are also the equations for a rotating laboratory
shallow-water flow, except that in the laboratory, since the rotation axis is parallel to the
gravitational force.
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Problems

3.1  Consider an ocean at rest with the vertical profiles of potential temperature and salin-
ity and .  Suppose that we know the equation of state in the form .
What is the expression for the buoyancy frequency?

3.2 In the set of equations 3.29 for linear waves in an isothermal atmosphere, set the verti-
cal motion of the perturbation identically to zero, and solve the resulting equations to find the
Lamb-wave solution.  Confirm that the kinetic energy density of Lamb waves decreases with
height.

3.3  If one uses density as a vertical coordinate in a Boussinesq fluid, what is the form of
the equation of motion and the equation for conservation of mass?

Θ z( ) S z( ) ρ ρ Θ S p, ,( )=


