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ABSTRACT—Stephanie C. Herring, Andrew Hoell, Martin P. Hoerling, James P. Kossin, Carl J. Schreck III, and Peter A. Stott

This fifth edition of explaining extreme events of the 
previous year (2015) from a climate perspective contin-
ues to provide evidence that climate change is altering 
some extreme event risk. Without exception, all the 
heat-related events studied in this year’s report were 
found to have been made more intense or likely due to 
human-induced climate change, and this was discernible 
even for those events strongly influenced by the 2015 El 
Niño. Furthermore, many papers in this year’s report 
demonstrate that attribution science is capable of separat-
ing the effects of natural drivers including the strong 2015 
El Niño from the influences of long-term human-induced 
climate change.  

Other event types investigated include cold winters, 
tropical cyclone activity, extreme sunshine in the United 
Kingdom, tidal flooding, precipitation, drought, reduced 
snowpack in the U.S. mountain west, arctic sea ice ex-
tent, and wildfires in Alaska. Two studies investigated 
extreme cold waves and monthly-mean cold conditions 
over eastern North America during 2015, and find these 
not to have been symptomatic of human-induced climate 
change. Instead, they find the cold conditions were caused 
primarily by internally generated natural variability. One 
of these studies shows winters are becoming warmer, less 
variable, with no increase in daily temperature extremes 
over the eastern United States. Tropical cyclone activity 
was extreme in 2015 in the western North Pacific (WNP) 
as measured by accumulated cyclone energy (ACE). In this 

report, a study finds that human-caused climate change 
largely increased the odds of this extreme cyclone activity 
season. The 2015 Alaska fire season burned the second 
largest number of acres since records began in 1940. 
Investigators find that human-induced climate change has 
increased the likelihood of a fire season of this severity.

Confidence in results and ability to quickly do an 
attribution analysis depend on the “three pillars” of 
event attribution: the quality of the observational record, 
the ability of models to simulate the event, and our 
understanding of the physical processes that drive the 
event and how they are being impacted by climate change. 
A result that does not find a role for climate change 
may be because one or more of these three elements is 
insufficient to draw a clear conclusion. As these pillars 
are strengthened for different event types, confidence in 
the presence and absence of a climate change influence 
will increase.

This year researchers also link how changes in extreme 
event risk impact human health and discomfort during 
heat waves, specifically by looking at the role of climate 
change on the wet bulb globe temperature during a 
deadly heat wave in Egypt. This report reflects a growing 
interest within the attribution community to connect 
attribution science to societal impacts to inform risk 
management through “impact attribution.” Many will 
watch with great interest as this area of research evolves 
in the coming years. 
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1. INTRODUCTION TO EXPLAINING EXTREME EVENTS OF 
2015 FROM A CLIMATE PERSPECTIVE

stephanie C. herring, andrew hoell, Martin p. hoerling, JaMes p. Kossin,  
Carl J. sChreCK iii , and peter a. stott

In the first years of this report, we answered ques-
tions such as: “What is event attribution?” and “Is 
it even possible to address the effects of long-term 
changes on extreme events using event attribution?” 
The science has now advanced to the point that we can 
detect the effects of climate change on some events 
with high confidence (e.g., especially those linked to 
temperature), although results are necessarily proba-
bilistic and not deterministic. The growing popular 
interest in event-attribution is feeding back to the 
science, for example by requiring it to more carefully 
consider the impacts of various interpretations and 
framings of the causation question. We thus now ask: 
“What is the confidence of the results?” and “How 
should the results be interpreted?” We are conscious 
of the importance of the precise question being asked, 
for instance “What are long-term contributions to 
event frequency?” versus “What are long-term con-
tributions to event intensity?” (e.g., Dole et al. 2011). 
There remains an ongoing need to reconcile attribu-
tion results pertaining to different aspects of extreme 
event behavior (e.g., Otto et al. 2012).  

To state that event attribution is complex, 
especially for extreme rainfall and related storm 
systems including tropical cyclones, is obvious. Yet, 
such complexities mean that the analytic work to 
pull numerous pieces together to establish probable 
cause continues to require considerable time, even 
as computers become more powerful to aid the 
effort. Thus, the reliability and realism of “real time” 
attribution for which there is great public appetite, 
continues to be an open question. The scope of 
information demand is also multifaceted, not only to 
explain “why the event happened,” but also “how well 

the event was anticipated.” These new questions are 
far more challenging to address and are increasingly 
relevant to the concerns of society. Attribution science 
has made progress in answering these questions, 
though considerably more work needs to be done. 

This last year has been exciting for attribution 
science, as the U.S. National Academy of Sciences 
released its report on the topic (NAS 2016). To date, 
it is the most comprehensive look at the state of 
event attribution science, including how the fram-
ing of attribution questions impacts the results. For 
example, in a complex event such as drought, a study 
of precipitation versus a study of temperature may 
yield different results regarding the role of climate 
change. The report also addresses how attribution 
results are presented, interpreted, and communicated. 
It provides the most robust description to date of the 
various methodologies used in event attribution and 
addresses the issues around both the confidence of 
the results and the current capabilities of near-real 
time attribution. No single methodology exists for the 
entire field of event attribution, and each event type 
must be examined individually. Confidence in results 
of an attribution analysis depends on what has been 
referred to as the “three pillars” of event attribution: 
the quality of the observational record, the ability of 
models to simulate the event, and our understanding 
of the physical processes that drive the event and how 
they are being impacted by climate change. 

A recently published paper (Mitchell et al. 2016)
marks the beginning of an important new undertaking 
for the event attribution field by providing an 
example of how to apply event attribution science 
to understanding and preparing for impacts. For 
many years, the scientific community has discussed 
linking event attribution to the impacts of these 
events and the role climate change has played in 
altering those impacts. This year, for the first time, 
attribution scientists partnered with public health 
officials to assess the role climate change played in 
increased mortality from a specific event—the 2003 
European heatwave (Mitchell et al. 2016). Their results 
concluded that in the summer of 2003, “out of the 
estimated ~315 and ~735 summer deaths directly 

AFFILIATIONS: herring—NOAA/National Centers for 
Environmental Information, Boulder, Colorado; hoell and 
hoerling—NOAA/Earth System Research Laboratory, Physical 
Sciences Division, Boulder, Colorado; Kossin—NOAA/National 
Centers for Environmental Information, Madison, Wisconsin; 
sChreCK—NOAA/National Centers for Environmental 
Information and Cooperative Institute for Climate and Satellites–
North Carolina, North Carolina State University, Asheville, 
North Carolina; stott—Met Office Hadley Centre and University 
of Exeter, Exeter, United Kingdom

DOI: 10.1175/BAMS-D-15-0313.1
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attributed to the heatwave event in Greater London 
and Central Paris, respectively, 64 (± 3) deaths were 
attributable to anthropogenic climate change in 
London, and 506 (± 51) in Paris.” While the numbers 
for this heat wave are noteworthy, especially for Paris, 
the paper makes a larger contribution than just its 
analysis of the 2003 event. It lays out a methodology 
for linking the role of climate change on an extreme 
heat event and, subsequently, the impacts of that 
event on human health. Clearly, multiple approaches 
could be taken to address these questions, and the 
paper by Mitchell et al. lays out just one. Also, it is no 
accident that this work addresses a heat event, where 
the climate change signal is strongest and confidence 
in attribution results is highest. 

Even so, it would be premature to regard this 
result—that 506 (± 51) deaths in Paris in summer 2003 
are attributable to anthropogenic climate change—as 
the last word on the matter. Unquantified uncertainties 
need to be further explored owing to different 
observational, modeling, and methodological 
strategies for both climate attribution and health 
sciences. And the confidence with which a linkage 
can be made between anthropogenic emissions and 
impacts is different for other event types. However, 
as the science advances we hope to see more papers 

connecting a line between climate change and 
impacts, not only for heat but also for other event 
types. Friederike Otto put it well in a recent paper 
where she wrote, “The event attribution community 
has come a long way towards applying different 
methodologies and combining meteorological 
variables to indices of relevance to people, making 
impact attribution the challenge for the coming years” 
(Otto 2016). Mitchell’s paper begins to address this 
challenge.

Meaningful connections between weather and 
climate events and impacts will require that the 
event attribution community collaborate with the 
impacts community. Furthermore, event attribution 
would be most useful to the impacts community if 
potential users engage closely with scientists in the 
co-production of knowledge relevant to decision-
making. The European Climate and Weather Events: 
Interpretation and Attribution (EUCLEIA) project 
has engaged with such stakeholders and found that 
different sectors often have different uses for such 
information and different requirements (Stott et al. 
2015). For example, the insurance industry may value 
robustness over speed in the assessment of climate 
risks. By contrast, the World Weather Attribution 
project has worked with Red Cross/Red Crescent 

Fig. 1.1. Location and types of events analyzed in this publication. 
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which require information on faster time scales. They 
find value in rapid assessments of recent disastrous 
weather and climate events during the relatively 
short window of opportunity when resources may 
be available to enable communities to become more 
resilient to such shocks in the future (https://www 
.climatecentral.org/about/partners/). 

A common characteristic for all these impact 
attribution efforts is that they have been cross dis-
ciplinary. In support of the IPCC’s 1.5°C impacts 
report, collaborations between science disciplines 
have been established that will hopefully continue to 
increase the applicability of event attribution science 
in decision-making.

In addition to the literature, Mother Nature also 
made this year an interesting one because of the 
strong El Niño. Although we had anticipated that we 
would focus on event types other than heat in this 
year’s report, the heat proposals we received put an 
interesting twist on the heat attribution question. 
With the presence of a strong El Niño in 2015, these 
papers asked whether attribution could effectively 
disentangle the effects of El Niño from longer-term 
human-caused warming. Without exception, the 
analyses in this report were successfully able to 
do this. All investigations of heat events found an 
increased risk from human-caused climate change 
separate from the role of El Niño and other drivers 
from natural variability.

As we look back at five years of this BAMS Explain-
ing Extreme Events from a Climate Perspective report, 
we are excited to see the overall progress made to date. 
That progress is not merely in the climate science, 
but also in the growth of capabilities to share that 
information with others and to communicate that 
knowledge clearly. Also, the range of event types being 
examined with a focus on attribution has broadened 
over the years, and the ability of analyses to distin-
guish between natural and human-caused drivers 
continues to increase. It is also worth noting that this 
publication does not discriminate between papers that 
do and do not find a role for climate change. A large 
number of papers published in this report over the 
past five years (~35%) did not find any role for climate 
change on the risk of the event, and we expect to 
continue receiving and publishing similarly-themed 
manuscripts in the future.  

Looking ahead, over the next half decade there 
is certainly a great deal of work still to be done in 
improving the reliability of event attribution results 
and how they are communicated. We will be closely 
watching to see how the effort to meet the challenge 

of “impact attribution” advances in the coming years. 
We are seeing the start of bridges being built between 
the disciplines of climate attribution, the practice 
of weather forecasting, and socioeconomic science, 
which are each truly essential next steps in using attri-
bution analysis to inform risk management decisions. 
However, progress in managing risks from extreme 
events can only be made if the foundational pillars 
of observations, modeling, and our understanding of 
the physical processes that drive extreme events and 
their relationship to climate change also continue to 
improve. Continued investments in climate science 
at all levels are crucial not only in the next five years, 
but for the foreseeable future.

Dole, R., and Coauthors, 2011: Was there a basis for 
anticipating the 2010 Russian heat wave? Geophys. 
Res. Lett., 38, L06702, doi:10.1029/2010GL046582.

Mitchell, D., and Coauthors, 2016:  Attributing human 
mortality during extreme heat waves to anthropo-
genic climate change.  Environ. Res. Lett., 11, 074006, 
doi:10.1088/1748-9326/11/7/074006.

NAS, 2016: Attribution of Extreme Weather Events in 
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2. MULTIMODEL ASSESSMENT OF ANTHROPOGENIC 
INFLUENCE ON RECORD GLOBAL AND REGIONAL 

WARMTH DURING 2015

Jonghun KaM, thoMas r. Knutson, Fanrong Zeng, and andrew t. wittenberg

Introduction. HadCRUT4v4 observed surface tem-
perature data (Morice et al. 2012; 5° × 5° lat.–lon. 
grid boxes) indicates that 2015 was a clear record-
breaking year for global annual mean temperatures 
(Figs. 2.1a,b,e). In this analysis, we consider only grid 
boxes with at least 100 years of historical data, which 
narrows the focus mainly to the Atlantic and Indian 
Oceans, the North Pacific Ocean, Europe, the United 
States, southern Asia, and Australia (Fig. 2.1d). Six-
teen percent of this analyzed area experienced record 
annual warmth during 2015 (Fig. 2.1d). 

Observed global temperatures over the past decade 
had been warming at a rate less than the ensemble 
mean warming in the Coupled Model Intercom-
parison Project phase 5 all-forcing historical runs 
(CMIP5–ALL; Taylor et al. 2012). However, the record 
global temperature of 2015 (Fig. 2.1e), including the 
influence of a strong El Niño event (Fig. 2.1f), was 
warmer globally than the mean of the CMIP5-ALL 
model ensemble levels for 2015, relative to their re-
spective 1881–1920 means.

 Major regions with unprecedented annual mean 
warmth in 2015 included the northeast Pacific 
and northwest Atlantic, while during September–
November (SON) 2015, southern India/Sri Lanka 
stood out with record seasonal warmth (Fig. 2.1g; our 
region of focus in southern India and Sri Lanka does 
include some SST influence, as we used the combined 
SST/Tair dataset; see Supplemental Material). Only 
a small region south of Greenland (0.2% of the 

globe) experienced record annual mean cold surface 
temperatures (Fig. 2.1d). 

We constructed our regions of focus based on 
areas highlighted in Fig. 2.1d. These regions had 
some irregular shapes and were constructed to be 
mostly covered by new record annual or seasonal 
temperatures in 2015. In addition to global mean 
temperatures, we focused on two main regions and 
temporal domains—the Niño-4 region (annual 
means) and a region including southern India and Sri 
Lanka (SON means). To demonstrate the robustness 
for annual mean record warmth in 2015 over the 
Niño-4 region (Fig. 2.1g), we also showed extended 
reconstructed sea surface temperature (ERSST.v4; 
Huang et al. 2016) and Hadley Centre sea ice and sea 
surface temperature (HadISST1.1; Rayner et al. 2003) 
data reconstructions and found that these also show 
unprecedented annual mean warmth during 2015.

This study investigates the causes of these record 
warm events using an eight-model set of all-forcing 
(anthropogenic + natural) historical climate model 
runs, associated long-term control (unforced) runs, 
and natural forcing runs (CMIP5–ALL, –CONT, 
and –NAT, respectively). These eight models (listed 
in Supplemental Material) were selected, as they were 
the ones with CMIP5-NAT runs extending to 2012. 
Our methods follow the studies of Knutson et al. (2013 
and 2014); some of the descriptive text below is drawn 
from those reports.

Time-evolving trend analyses for long-term global and 
regional anthropogenic warming. Figures 2.2a–c show  
analyses for long-term global and regional trends 
using different start years, but with a common end 
year (2012 for CMIP5–NAT and 2015 for CMIP5–
ALL; the latter are extended with simulations forced 
by the RCP4.5 emissions scenario). Observed trends 
ending in 2012 and 2015 are shown for comparison. 

In 2015, record warm surface temperatures were observed for the global mean, India, and the 
equatorial central Pacific. CMIP5 simulations suggest that for the globe and India,  

anthropogenic warming was largely to blame. 

AFFILIATIONS: KaM—NOAA/Geophysical Fluid Dynamics 
Laboratory and the Cooperative Institute for Climate Science, 
Princeton University, Princeton, New Jersey; Knutson, Zeng, and 
wittenberg—NOAA/Geophysical Fluid Dynamics Laboratory, 
Princeton, New Jersey.

DOI:10.1175/BAMS-D-16-0138.1

A supplement to this article is available online (10.1175 
/BAMS-D-16-0138.2)
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For the sliding trends, we require at least 33% areal 
coverage in the region for at least the start year of 
the trend (Knutson et al. 2013), resulting in the gaps 
shown. The global mean analysis shows a pronounced 
observed warming, consistent with CMIP5–ALL yet 
statistically distinct from CMIP5–NAT, for all start 
years before about 1990. While the CMIP5–ALL 
runs occasionally are inconsistent with observed 
global trends through 2012 (at least for recent trends 
beginning in the 1990s), now that the record has 
been extended to 2015, we find that CMIP5–ALL 

trends beginning in the late 1990s now are generally 
consistent with observations. 

For the Niño-4 region (Fig. 2.2b), we compare 
results from three different observational datasets. 
The ERSST.v4 shows the strongest indication of a 
detectable warming, consistent with the CMIP5–ALL 
runs but inconsistent with the CMIP5–NAT runs for 
start years up to around 1960. In contrast, the Had-
ISST1.1 estimated trends are hardly distinguishable 
from the CMIP5–NAT runs, and also inconsistent 
with the CMIP5–ALL runs through most of the pe-
riod. The observed seasonal mean time series (SON) 

Fig. 2.1. (a),(b) Annual time series of the fractions of available global area with the top three warmest (red curve) 
and coldest (blue curve) annual mean temperatures in the available record (a) to that date and (b) to the entire 
record through 2015. (c) Annual mean surface air temperature anomalies (°C) for 2015 (relative to the 1961–90 
base period) from the HadCRUT4v4 dataset. (d) Colors identify grid boxes with annual mean anomalies that 
rank 1st (dark red), 2nd (orange-red), or 3rd (yellow-orange) warmest in the available observed record. Only 
colored and gray areas have sufficiently long records, defined here as containing at least 100 available annual 
means, which require at least four available months. (e)–(g) Annual mean surface temperature anomalies (°C) 
for the globe, Niño-4 region, and southern India/Sri Lanka (SON). Red (CMIP5–ALL) and blue (CMIP5–NAT) 
curves indicate ensemble mean simulated anomalies through 2015 and 2012, respectively, with each available 
model weighted equally; orange curves indicate individual CMIP5–ALL ensemble members. Black curves indi-
cate observed estimates from HadCRUT4v4 (solid) and NOAA NCEI (dotted). All time series are adjusted to 
have zero mean over the period 1881–1920. For the Niño-4 region, alternative observed anomalies from the 
ERSST.v4 and HadISST1.1 reconstructions and the ensemble anomalies for CMIP5–ALL are shown with +2.5°C 
and −2.5°C offsets from zero for display purposes.
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over southern India/Sri Lanka (Fig. 2.2c) shows a 
pronounced warming, consistent with CMIP5–ALL 
regardless of trend start year, and detectable relative 
to CMIP5–NAT for start years up to the 1970s. 

Overall, the trend analysis using the CMIP5 mod-
els shows a long-term warming over the globe and 
southern India/Sri Lanka (very likely attributable in 
part to anthropogenic forcing), and long-term trend 
results for the Niño-4 region that strongly depend on 
observational data uncertainties.

Model-based attributable risk assessment for the 2015 
extreme warm anomalies. Considering the anomalies 

and new record-breaking temperatures in 2015, there 
are many regions that could have been selected for the 
fraction of attributable risk (FAR; Stott et al. 2004) 
analysis. The major regions of records include global, 
eastern Pacific, western Atlantic, Indian Ocean, 
Europe, and south of Greenland (cold record). For 
our report, we chose to compute the FAR for global 
temperature, the Niño-4 region (with the prominent 
El Niño in 2015), and southern India/Sri Lanka 
(SON). The FAR compares the event tail probabilities 
(P) between the CMIP5–NAT and CMIP5–ALL 
runs (FAR = 1 − Pnat / Pall). Forced responses are 
derived from the multimodel ensemble means of the 

Fig. 2.2. (a)–(c) Sliding trends as a function of starting year, with ending year 2015 (black solid line) or 2012 
(black dashed line) [°C (100 yr)−1] for the globe, the Niño-4 region, and southern India/Sri Lanka. Black, red, and 
blue curves depict observations, CMIP5–ALL ensemble mean, and CMIP5–NAT ensemble mean, respectively. 
Black line/dots, green line/circles, and black line/stars depict observed trends from HadCRUT4, ERSST, and 
HadISST, respectively. Red (blue) lines depict the mean of trends from the CMIP5–ALL (CMIP5–NAT) runs, 
while pink (blue) bands depict the 5th–95th percentile range for an individual realization chosen randomly from 
the simulations, with equal representation for each model. Purple shading indicates the overlap of the pink and 
blue region. (d) Estimates of the FAR of exceeding the first- (2015) and second-ranked observed temperature 
anomaly thresholds from the CMIP5 multimodel ensemble (large red and orange circle, respectively); black 
solid circles correspond to the FAR estimated from the eight paired CMIP5–ALL and –NAT runs from individual 
CMIP5 models, for the second-ranked observed anomalies. (e) Histogram of the Niño-4 region variances for 
non-overlapping 155-year epochs of the eight individual model control runs, along with estimates from three 
observational datasets from which the model-estimated forced response has been removed (1861–2015).
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CMIP5–ALL and CMIP5–NAT simulations, while 
the impact of internal variability on the modeled 
trend distributions was estimated using the CMIP5–
CONT runs (Knutson et al. 2013). Our FAR estimates 
use the first- (2015) and second-ranked observed 
positive anomaly as the extreme event thresholds 
(Fig. 2.2d). For extremely large anomalies, the FAR 
can be particularly difficult to estimate, as it is based 
on a ratio of very small areas under the distribution 
tails (Kam et al. 2015). Therefore we used the second-
ranked observed anomalies as the threshold values for 
our primary FAR estimates, as these anomalies are 
not quite as extreme as the top-ranked ones. 

According to the HadCRUT4v4, the second-
ranked anomalies over the globe, southern India/
Sri Lanka, and the Niño-4 region occurred in 2014, 
2010, and 1888, respectively, while the ERSST.v4 
and HadISST1.1 datasets show the second-ranked 
anomalies over the Niño-4 region occurred in dif-
ferent years (2002 and 1987, respectively). Based 
on the HadCRUT4v4, the simulated probabilities 
of exceeding the second-ranked anomalies for the 
globe, southern India/Sri Lanka, and the Niño-4 
region are 58% (0.005%), 23% (0.3%), and 32% (1.5%) 
for the CMIP5–ALL (CMIP5–NAT) runs, respec-
tively. Sensitivity tests for the Niño-4 region using 
the second-ranked anomalies from the ERSST.v4 and 
HadISST1.1 datasets are consistent with the results 
from the HadCRUT4v4 (not shown). The FAR esti-
mates are 0.99, 0.98, and 0.95 for the globe, southern 
India/Sri Lanka (SON), and the Niño-4 regions, re-
spectively. Uncertainties in the FAR estimates were 
explored by computing the spread of FAR estimates 
across individual CMIP5 models (Fig. 2.2d). These 
sensitivity tests show that, using the second-ranked 
year threshold values, the estimated FAR is above 0.9 
for seven, five, and five out of eight individual models 
for the globe, Niño-4 region, and southern India/Sri 
Lanka, respectively (See Supplemental Material).

A crucial assumption of our study is that the in-
ternal variability simulated by the models represents 
the real-world variability adequately. The modeled 
variability is used as the null hypothesis for explain-
ing trends, and if it is underestimated (overestimated) 
this makes it too easy (difficult) to detect significant 
trends and too difficult (easy) for model simulations 
to be consistent with observations (Knutson et al. 
2013). Therefore, we evaluated the decadal variability 
of temperature anomalies over the Niño-4 region by 
comparing a derived observed variability with CMIP5 
control run variability. Variability comparisons for 
other regions have been previously summarized in 

Knutson et al. (2013), and plots similar to Fig. 2.2e 
for global temperature and the southern India/Sri 
Lanka region are shown in the supplemental material. 

To isolate the decadal variability, we apply a low-
pass filter with a half-power point at nine years. For 
the observed internal variability temperature esti-
mate, we subtracted the grand ensemble mean of the 
CMIP5–ALL runs from observations to attempt to 
remove the forced component of the observed varia-
tions. We have not adjusted the forced component es-
timate to better fit the observations as done in Mann 
et al. (2014) and Steinmann et al. (2015), which would 
be a further refinement beyond the scope of this 
study. As a sensitivity test for Niño-4, we compared 
the modeled variability (8 GCMs shown in Fig. 2.2e 
and 23 GCMs in the Supplemental Materials) with 
that estimated from three different observational 
datasets. To estimate the model internal variability, 
we compute the temperature anomaly variance using 
each model’s entire control run. Details for these cal-
culations, and control run lengths used, are described 
in Knutson et al. (2013). The eight GCM control runs 
show a wide range of the simulated decadal variances, 
between 0.025° and 0.08°C2. The analogous estimates 
of the unforced component of the variance from the 
observational reanalyses are 0.048°C2 (ERSST.v4) and 
0.051°C2 (HadCRUT4v4), both of which are located 
near the center of the intermodel histogram of the 
control run decadal variances, while the HadISST1.1 
shows a somewhat larger decadal variance (0.068°C2) 
which is greater than that from five of the eight 
models. The sensitivity tests for observed decadal 
variances, and our earlier sliding trend analyses, 
indicate that for the Niño-4 region, observational 
uncertainties significantly obscure the detection and 
attribution of past trends or recent extreme events. 

Conclusions. For 2015, the tendency for a greater ra-
tio of global area covered by extreme annual-mean 
warm versus cold events, as seen in recent decades, 
has continued. According to the CMIP5 models, the 
risk of events exceeding the extreme (first- or second-
ranked) thresholds for the globe, the Niño-4 region, 
and southern India/Sri Lanka is almost entirely attrib-
utable to anthropogenic forcing, with the ensemble 
mean FAR above 0.9, and with strong agreement re-
garding relatively high FAR estimates among the eight 
GCMs that provided natural-forcing simulations. 
The strongest model-based evidence for detectable 
long-term anthropogenic warming, and the highest 
confidence in a large fraction of attributable risk, 
was found for the global mean and southern India/
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Sri Lanka (SON). In the Niño-4 region, confidence in 
long-term trend assessment and in the FAR estimates 
is limited, due to uncertainties in the observational 
data and a wide range of simulated decadal variances 
from the control runs.  

ACKNOWLEDGEMENTS.  We thank the 
WCRP’s Working Group on Coupled Modeling, 
participating CMIP5 modeling groups, for making 
available the CMIP5. This study was partly funded 
by NOAA grant NA14OAR4320106.

Huang, B., and Coauthors, 2014: Extended Recon-
structed Sea Surface Temperature version 4 (ERSST.
v4): Part I. Upgrades and intercomparisons. J. Cli-
mate, 28, 911–930, doi:10.1175/JCLI-D-14-00006.1.

Kam, J., T. R. Knutson, F. Zeng, and A. T. Wittenberg, 
2015: Record annual-mean warmth over Europe, the 
northeast Pacific, and the northwest Atlantic dur-
ing 2014: Assessment of anthropogenic influence [in 
“Explaining Extreme Events of 2014 from a Climate 
Perspective”]. Bull. Amer. Meteor. Soc., 96 (12), S61–
S65, doi:10.1175/BAMS-D-15-00101.1.

Knutson, T. R., F. Zeng, and A. T. Wittenberg, 2013: 
Multimodel assessment of regional surface tempera-
ture trends: CMIP3 and CMIP5 Twentieth Century 
simulations. J. Climate, 26, 8709–8743, doi:10.1175 
/JCLI-D-12-00567.1.

—, —, and —, 2014: Multimodel assessment of 
extreme annual-mean warm anomalies during 2013 
over regions of Australia and the western tropical 
Pacific [in “Explaining Extreme Events of 2013 from 
a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95 
(9), S26–S30.

Mann, M. E., B. A. Steinman, and S. K. Miller, 2014: 
On forced temperature changes, internal variability, 
and the AMO. Geophys. Res. Lett., 41, 3211–3219, 
doi:10.1002/2014GL059233.

Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. 
Jones, 2012: Quantifying uncertainties in global 
and regional temperature change using an en-
semble of observational estimates: The Had-
CRUT4 data set. J. Geophys. Res., 117, D08101, 
doi:10.1029/2011JD017187.

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Fol-
land, L. V. Alexander, D. P. Rowell, E. C. Kent, and 
A. Kaplan, 2003: Global analyses of sea surface tem-
perature, sea ice, and night marine air temperature 
since the late nineteenth century. J. Geophys. Res., 
108, 4407, doi:10.1029/2002JD002670.

Steinman, B. A., M. E. Mann, and S. K. Miller, 2015: 
Atlantic and Pacific multidecadal oscillations and 
northern hemisphere temperatures. Science, 347, 
988–991, doi:10.1126/science.1257856.

Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human 
contribution to the European heatwave of 2003. 
Nature, 432, 610–614, doi:10.1038/nature03089.

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An 
overview of CMIP5 and the experimental design. 
Bull. Amer. Meteor. Soc., 93, 485–498, doi:10.1175 
/BAMS-D-00094.1.

REFERENCES



S9DECEMBER 2016AMERICAN METEOROLOGICAL SOCIETY |

3. WHAT HISTORY TELLS US ABOUT 2015 U.S. DAILY 
RAINFALL EXTREMES

Klaus wolter, Martin hoerling, Jon K. eisCheid, and linyin Cheng

Introduction. Three extreme rainfall events occurred 
over the contiguous United States in 2015 associated 
with damages in excess of $1 billion (U.S. dollars):1 
1) drought-ending May rains and f lash f loods in 
Texas1,2,3 and surrounding states (Wang et al. 2015), 2) 
near land-falling Hurricane Joaquin in early October 
associated with catastrophic f looding in South 
Carolina,1,4  and 3) unseasonable December rains that 
inundated the Mississippi basin.1,5 Recognizing the a 
posteriori nature of case study selections, we present 
a large-scale assessment of extreme daily rainfall 
events (≥ 20-yr return threshold exceedances) over 
the entire contiguous United States during 2015. Our 
evaluation facilitates broader discussions on heavy 
daily precipitation by placing the 2015 high-impact 
events into both a national and historical context.   

The contiguous United States has experienced 
a statistically significant upward trend in heavy 
precipitation over the last century (e.g., Karl et al. 
1995; Groisman et al. 2004, 2005; Kunkel et al. 2012, 
2013). Much of the long-term increase has occurred 
during recent decades, consistent with early model-
ing evidence that heavy precipitation events increase 
in response to doubled CO2 (e.g., Noda and Tokioka 
1989; Gregory and Mitchell 1995; Cubasch et al. 1995; 
Mearns et al. 1995), a finding confirmed also in mod-

1www.ncdc.noaa.gov/billions/events
2ww.wired.com/2015/05/texas-floods-big-ended-states-drought/
3http://today.tamu.edu/2015/11/04/historic-rains-pound-texas 

-and-more-may-be-coming
4https://en.wikipedia.org/wiki/October_2015_North_American 

_storm_complex/
5https://en.wikipedia.org/wiki/Late_December_2015_North 

_American_storm_complex

els used for the Intergovernmental Panel on Climate 
Change AR5 (IPCC 2013). 

Here we discuss U.S. aggregate occurrences of ex-
treme daily rainfall events observed in 2015 compared 
to century-long trends. While not providing an attri-
bution of impacts by human-induced climate change, 
the history of extreme daily rainfall since 1901 offers 
insight into whether such events could have been 
anticipated from a long-term change perspective of 
altered likelihoods. We specifically ask whether 2015 
recorded an unusual frequency of extreme daily rain-
fall over the United States as a whole. And, we ask if 
the regionality and seasonality characterizing 2015 
extreme daily rainfall events were consistent with 
corresponding attributes of long-term trends.  

Data and Methods. We utilize 987 meteorological 
stations extracted from GHCN-D (Menne et al. 
2012) having at least 100 years of nonmissing daily 
observations during 1901–2014, as well as mostly 
complete data in 2015. While the coverage is not 
homogenous, it is much more complete than outside 
the United States, rendering a global analysis more 
problematic. Two extreme indices, RX1day (max 
1-day precipitation) and R99p (extremely wet days), as 
defined by Sillmann et al. (2013), are computed at each 
station for all annual cases (base period 1901–80). The 
RX1day index is calculated for bimonthly seasons 
as well. We applied the generalized extreme value 
(GEV) distribution, known as the block or annual 
maxima approach for analysis of 20-yr precipitation 
events (e.g., Coles 2001; Ferreira and de Haan 2015), 
using the Matlab NEVA package (Cheng et al. 2014), 
and described further in the Supplemental Material. 
We validated these results against the empirical 
estimates of the 20-yr events by ranking the annual 
and seasonal maxima at each station. About 90% of 
the empirical estimates lie within the 95% credible 
interval of the 20-yr return levels estimated using the 
Bayesian-GEV approach, reassuring the robustness 

The United States experienced above-normal daily rainfall extremes in 2015, consistent with national 
upward trends. However, the most abundant regional extremes were not foreshadowed by 

co-located long-term seasonal trends.  

AFFILIATIONS: wolter, eisCheid, and Cheng—Cooperative 
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Colorado; hoerling—NOAA/Earth System Research 
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of our results. This is important since there is 
considerable variability across the United States in 
terms of the shape of daily precipitation distributions, 
in particular its tails (Kharin and Zwiers 2005; 
Cavanaugh et al. 2015). The lower confidence bounds 
(2.5th percentile) of the GEV-estimated return level 
for 20-yr events are applied in order to include all 
cases that might be considered of that intensity. 

To provide long-term climate context, we refer to 
NCEI’s national to global mean temperature time 
series,62as well as the extended Multivariate ENSO 
Index7,8 (Wolter and Timlin 2011).

Results. a. National Scale—Annual Highlights. During 
2015, the contiguous United States had its third 
wettest year since 1895.6 This was anchored by 
6www.ncdc.noaa.gov/sotc/national/201513
7www.esrl.noaa.gov/psd/enso/mei.ext/index.html
8www.esrl.noaa.gov/psd/enso/climaterisks/years/

record wetness in portions of the Great Plains,6 but 
counterbalanced by California’s fourth consecutive 
drought year (Fig. 3.1a). Consistent with the overall 
wetness, 143 of 910 reporting stations in 2015 
registered daily 20-yr events, or 15.7% (Fig. 3.1b). 
This 20-yr event coverage of daily extremes was the 
fifth highest on record (Fig. 3.2a), consistent with a 
long-term upward trend that has clustered all five 
most extreme years after 1989. Our time series of 
national coverage (Fig. 3.2a) correlates at +0.54 (0.53) 
with the global (Northern Hemisphere) surface 
temperature time series for 1901–2014, consistent with 
previous results (e.g., Kunkel et al. 2013), compared 
to +0.21 with just the U.S. temperature time series.6 
Removal of linear trends in all time series lowers these 
correlations to +0.27 (0.27) and −0.02, respectively, 
showing a rather modest linkage between year-to-

Fig. 3.1. (a) (center top) Annual precipitation anomaly compared to 1901–80 in 2015 for 910 stations in 
conterminous United States. (b) Annual 2015 daily extremes in excess of the GEV-lower estimate for 20-yr 
events (Cheng et al. 2014). (c)–(e) Bimonthly 2015 daily extremes in excess of the GEV-lower estimate for 20-
yr events for Jan–Feb, Mar–Apr, and May–Jun. (f)–(h)  As in (c)–(e), but for Jul–Aug, Sep–Oct, and Nov–Dec. 
Regions of interest are outlined in green for May–Jun (Texas/Oklahoma), Sep–Oct (Texas/Louisiana, and South 
Carolina), and Nov–Dec (central United States).
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year variations of global (northern hemispheric) 
temperatures and extreme U.S. rainfall.  

b. National Scale—Seasonal Highlights. Stations 
recording at least one 20-yr extreme event in 2015 
are highlighted by red dots for each of the six 
bimonthly seasons in Figs. 3.1c–h. The percentage 
of all reporting U.S. stations that experienced a 20-

yr event is also plotted. These 
fractional coverages are placed 
into a historical context in Fig. 3.2 
and in the supplemental material. 
The long-term average (1901–80) 
coverage of such extreme rainfall 
events is around 9% during each 
season. This was far exceeded in 
May–June (Fig. 3.1e; 4th ranked 
since 1901 with 15.3%) and 
November–December (Fig. 3.1h; 
highest ranked for any season 
on record with 29.0%), discussed 
further in the next subsection.

The third highest coverage 
occurred in September–October 
(13.6% in Fig. 3.1g), due to the 
aforementioned South Carolina 
flooding in early October, as well 
as yet another record-breaking 
wet month (October) in and 
around Texas,3 both analyzed 
further in the supplementa l 
material. The remaining seasons 
January–February, March–April, 
and July–August (Figs. 3.1c,d, 
f ) did not feature exceptional 
coverage nor any $1 bi l l ion 
flooding disasters.

Because 2015 saw not only 
t he  w a r m e s t  g l o b a l  m e a n 
temperatures since 1880,6 but also 
El Niño conditions from March 
onwards93that became extreme 
late in the year, we examined 
the linear relationships between 
extreme precipitation events and 
ENSO. Prior to our analysis, this 
relationship has been mainly 
studied for the winter season 
(e.g., Zhang et al. 2010; Feldl and 
Roe 2011; Cannon 2015). During 
that season, El Niño appears to 
increase the likelihood of the 

most extreme daily totals for much of the contiguous 
United States (Zhang et al. 2010; Cannon 2015), but 
with notable exceptions (see in particular Feldl and 
Roe 2011, for the southwestern United States). Our 
own analyses show weak correlations (r < 0.2) on a 

9www.noaanews.noaa.gov/stories2015/20150305-noaa-advisory 
- elnino-arrives.html 

Fig. 3.2. (a) Time series of annual 20-yr event counts (percent of available 
stations in any given year) since 1901, with an average percentage of 9.0% for 
1901–80 (solid red line) and a standard deviation (sigma) of ±−2.2% (stippled 
red lines). (b) Texas/Oklahoma annual 20-yr event counts (percentages of 
available stations), with an average percentage of 9.0% and a sigma of 4.5%. 
(c) Texas/Oklahoma seasonal May–Jun count of 20-yr events (percentages 
of available stations), with an average of 9.0% and a sigma of 6.5%. (d) As in 
(b), but for the central United States, with an average of 8.9% and a sigma 
of 3.2%. (e) As in (c), but for the central United States, with an average 
of 8.9% and sigma of 6.7%. A red dot marks 2015 in all five time series, 
denoting a record year in (b) and (e).
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national scale for all seasons, both with the full time 
series and the detrended versions.  

c. Regional Scale—The Two Most Extreme Events. For 
the Texas/Oklahoma region (see outline in Fig. 3.1e), 
we document the historical 20-yr daily extreme 
rainfall fractional coverage for annual and May–June 
data in Figs. 3.2b and 3.2c, respectively. The annual 
event analysis reveals 2015 to be the most extreme 
year on record (33.7% of all stations reporting in 
this region), consistent with a significant (r = 0.31) 
upward trend for 1901–2014, as well as a modest 
positive correlation with the extended multivariate 
ENSO index (MEI; r = 0.24). The May–June analysis 
indicates the tally of daily extremes (29.5%) did 
not quite reach the record set in 1908 (35.3%). 
Furthermore, the annual trend is not symptomatic 
of that season’s negligible trend preceding neither 
the 2015 spring nor a noteworthy correlation with 
the seasonal MEI (both < 0.2). The abundance of 
extreme spring rain events would thus not have been 
anticipated from a historical perspective, though for 
the year as a whole more extreme rainfall events than 
the 1901–80 mean could have been expected.

For the central U.S. region (see outline in Fig. 
3.1h), we document the historical 20-yr daily extreme 
coverage for annual and November–December events, 
in Figs. 3.2d and e, respectively. The annual coverage 
for this region is high in 2015 (ranked 8th), matching 
a significant long-term trend that also correlates at 
+0.45 with the 1901–2014 global annual temperature 
time series, as well as a modest relationship with 
ENSO (r = 0.25). The November–December cover-
age registered at an astonishing 47%, far above the 
previous record for this season in 1909. This record-
setting number of 20-yr events was not preceded by a 
significant upward trend. Nor does the historical time 
series of extreme rainfall events exhibit a significant 
relationship with the MEI (both < 0.2). Thus, one 
could again view this event as a “climate surprise” not 
obviously related to the two most important climate 
drivers examined here.

Discuss ion and Conclus ions .  In answer to our 
introduction’s first question, 2015 experienced a 
high frequency of extreme daily rainfall events 
over the contiguous United States, consistent with 
a well-known national upward trend (e.g., Fischer 
and Knutti 2014; Hoerling et al. 2016), ending up 
in the top 5 of all years since 1901. This elevated 
number of occurrences in 2015 appears unusual only 
when viewed in the context of a stationary climate. 

However, it was not that unusual if one considers the 
upward trend that relates strongly to global mean 
temperatures, and the fact that 9 out of the top 10 
years of most extensive extreme daily rainfall event 
coverage occurred since 1990. Not only is the long-
term trend of such events upwards, the spatial pattern 
of 2015 extremes is congruent with trend maps for 
1901–2014 (c = 0.56; Supplemental Fig. S3.1). Though 
no formal attribution was done, an interpretation that 
climate change forcing is likely a major contributor to 
the upward trend in U.S. extreme daily rainfall events, 
and thus likely also contributed to its high count in 
2015, is consistent with the body of literature cited 
in the introduction. That relation also appears more 
compelling as a causal effect for the outcome in 2015 
than the occurrence of a strong El Niño event.

In answer to the introduction’s second question, 
neither of the two most remarkable extreme events 
that occurred in May and December over Texas/Okla-
homa and the central United States, respectively (each 
linked to $1 billion disasters), were foreshadowed by 
any obvious seasonal upward trend in extreme daily 
rainfall. While both the greater Texas and central 
U.S. regions have upward trends in the annual tallies 
of 20-yr daily rainfall extremes, those events have 
tended to occur in other seasons. The least anticipated 
event, from a perspective of the region’s climate time 
series of extreme rainfall might very well have been 
the October South Carolina flood that came about 
despite no prior seasonal or annual trends (Supple-
mental Fig. S3.2).
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4. AN ASSESSMENT OF THE ROLE OF ANTHROPOGENIC 
CLIMATE CHANGE IN THE ALASKA 

FIRE SEASON OF 2015

JaMes l. partain Jr., sharon alden, uMa s. bhatt, peter a. bienieK, brian r. brettsChneider,  
riCK t. lader, peter Q. olsson, t. sCott rupp, heidi strader, riChard l. thoMan Jr.,  

John e. walsh, alison d. yorK, and robert h. Ziel 
 

Introduction. The 2015 Alaska fire season burned 5.1 
million acres, the second largest burned area since 
1940, exceeded only by the 2004 Alaska fire season 
when 6.2 million acres burned (Fig. 4.1a). Despite 
a below normal end-of-winter snowpack and an 
unseasonably warm spring with earlier snowmelt, 
which dried fuels early in the season, scattered 
showers and cool temperatures kept 2015 fire activity 
near normal through early June. During the first 
half of June, several days of maximum temperatures 
exceeded 30˚C, relative humidity (RH) values were 
in the teens, and long daylight hours quickly dried 
surface and subsurface (duff) forest-floor fuels.

Beginning June 19, a period of vigorous thunder-
storm activity resulted in an unprecedented weeklong 

lightning event with 36 000 strikes in three days. 
During this period, 65 000+ strikes in Alaska gave 
rise to nearly 270 ignitions of the preconditioned 
fuels. Burned acreage increased by 3.8 million acres 
(Fig. 4.1b) in the two and a half weeks following those 
starts (Fig. 4.1c). Lightning ignitions caused 99.5% of 
the acreage burned in Alaska in 2015. A westerly shift 
in upper-level winds by mid-July brought cool and 
damp weather that curtailed fire growth, and most 
extant fires burned little acreage after July 15. 

This pattern highlights a significant difference 
between Alaska’s top two fire seasons: 2004 burned 
significant acreage in July and again in August dur-
ing extended warm and dry late summer weather, 
while 2015 saw the bulk of fire activity concentrated 
from mid-June to mid-July. These different pathways 
to large fire seasons demonstrate the importance of 
intraseasonal weather variability and the timing of 
dynamical features. Yet, underlying each case are the 
common requirements of: heat, extremely dry fuels, 
and ignition. One question that arises is whether the 
extremely warm and dry, yet convective, conditions 
of 2015 might be driven by anthropogenic climate 
change. This attribution study is a model-based test 
of the hypothesis that anthropogenic climate change 
increases the likelihood of fire seasons as extreme as 
2015 through increasing flammability of fuels.  

Measuring Fire Risk through the Buildup Index. This 
assessment uses the Buildup Index (BUI; Lawson and 
Armitage 2008), which is part of the Canadian For-
est Fire Danger Rating System’s Fire Weather Index 
system and represents potential fuel availability and 
flammability, based on cumulative scoring of daily 
temperature, relative humidity, and precipitation. 

The 2015 Alaska fire season burned the second largest number of acres since records began in 1940.  
Human-induced climate change may have increased the risk of a fire season of this severity by 34%–60%.

AFFILIATIONS: partain— NOAA/National Centers for 
Environmental Information, Anchorage, Alaska; alden and 
strader—Alaska Interagency Coordination Center and Alaska 
Fire Service, Fort Wainwright, Alaska; bhatt—Department 
of Atmospheric Sciences, College of Natural Science and 
Mathematics, University of Alaska–Fairbanks (UAF), and UAF/
Geophysical Institute, and NOAA/Cooperative Institute for Alaska 
Research, Fairbanks, Alaska; bienieK, brettsChneider, and walsh—
UAF/International Arctic Research Center (IARC), Fairbanks, 
Alaska; lader—UAF/Department of Atmospheric Sciences, UAF/
Geophysical Institute, and IARC, Fairbanks, Alaska; olsson—
Alaska State Climate Center, University of Alaska–Anchorage, 
Anchorage, Alaska; rupp—IARC, and UAF/Scenarios Network for 
Alaska and Arctic Planning, Fairbanks, Alaska, and Alaska Climate 
Science Center, Anchorage, Alaska; thoMan—NOAA/National 
Weather Service, Alaska Region, Anchorage, Alaska; yorK—
Alaska Fire Science Consortium, IARC, and UAF, Fairbanks, 
Alaska; Ziel—Alaska Interagency Coordination Center, Alaska 
Department of Natural Resources–Division of Forestry, and UAF/
Alaska Fire Science Consortium, Fairbanks, Alaska

DOI:10.1175/BAMS-D-16-0149.1

A supplement to this article is available online (10.1175 
/BAMS-D-16-0149.2)



S15DECEMBER 2016AMERICAN METEOROLOGICAL SOCIETY |

High BUI values generally represent periods of high 
fire danger (Ziel et al. 2015). BUI is often derived from 
meteorological station observations; however, gridded 
downscaled data (i.e., Bieniek et al. 2016) are used 
here because observations in Alaska are temporally 
and spatially spotty.

BUI is well suited for describing most fire seasons 
in northern boreal regions so is widely used by man-
agers in Canada and Alaska. BUI begins to increase 
after the snowmelt, reaches its peak in June–July, and 
declines thereafter. Figure 4.2a displays BUI trends 
(April–September) for the Alaska boreal forest region 
(<600 m elevation) from 1979–2015. The BUI values 
represent the number of days (averaged over forest 
grids) that BUI exceeded 60, which marks the thresh-
old for high fire danger in Alaska (Ziel et al. 2015). 
As an integrated metric, BUI effectively captures 
seasonal fire danger in Alaska, as per the large areas 
burned in 2004, 2015, and 2005. The exception is 2013, 
which, despite an extremely high BUI, had low fire 
activity because of few lightning strikes, highlighting 
ignitions as a necessary prerequisite for fires. 

Modeling Wildfire Probability in Alaska. The attribution 
assessment was based on dynamical downscaling over 
the Alaska region by a regional model, the Advanced 
Research (ARW) version of the Weather Research and 
Forecasting (WRF) Model (Skamarock et al. 2008). 
An optimized configuration of the WRF model 
physical parameterizations for Alaska (Zhang et al. 
2013) was employed. The downscaling covered a 262 x 
262 grid-point domain that encompassed all of Alaska 
and portions of eastern Russia and northern Canada 
at 20 km spatial resolution with 49 vertical model 
levels. The European Centre for Medium-Range 
Weather Forecasts (ECMWF) interim reanalysis 
(ERA–Interim) data was downscaled for the 1979–
2015 historical period (Bieniek et al. 2016), and a 60-
year downscaling of the Geophysical Fluid Dynamics 
Laboratory Climate Model, version 3 (GFDL CM3) 
was completed to address the present climate and 
counterfactual (preindustrial) climate. Specifically, 
the GFDL CM3 was downscaled using WRF for a 
60-year period (1986–2045) centered on 2015 based 
on historical (1986–2005) and RCP8.5 (2006–2045) 
simulations from CMIP5.

A 60-year subperiod (1986–2045) of a GFDL CM3 
prescribed constant CO2 (280 ppm) and aerosol 
concentrations (Donner et al. 2011) simulation 
represented the counterfactual or preindustrial world 
without anthropogenic climate change. Monthly 
difference fields between the two 60-year means 

Fig. 4.1. (a) Annual time series of acres burned in Alaska 
and (b) averaged daily cumulative acres burned for 
specific high-fire years compared to the climatological 
25th and 75th percentile (1994–2015) levels. The other 
above-75th percentile years of 1997 and 2002 are not 
shown for clarity because they lie close to the 75th 
percentile. (c) Displays fire perimeters for 2015 (red) 
and for the historical period of 1940–2014 (yellow). 
The area burned in 2015 is 7% of that which burned in 
the previous 75 years. 
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(present-day minus preindustrial) show that the 
spring–summer climate of Alaska has warmed (by 
1°–3°C) and become wetter (2–10 mm mo-1 additional 

precipitation in May–July, with the largest increase 
in June, not shown). In nature, Alaska temperatures 
display a statewide warming of about 1°C in the 
annual mean and about 1.5°C in May–July since 1920; 
precipitation trends over the same period are mixed 
(Bieniek et al. 2014; see also NOAA’s Climate at a 
Glance, www.ncdc.noaa.gov/cag). Possible reasons 
for differences in modeled-versus-observed trends in 
precipitation are discussed in the online supplemental 
material.

 The model-derived differences were used to 
compute two 60-year time series of the BUI averaged 
over the Alaska boreal region from 1986–2045: one 
that included the influence of anthropogenic climate 
change [based on the original downscaled WRF out-
put (i.e., using anthropogenic forcing)] and the other 
for the preindustrial control [based on the original 
downscaled WRF output adjusted by the differences 
between the GFDL monthly means for the two 60-
year periods (i.e., not using anthropogenic forcing)]. 
The precipitation adjustment factors were the ratios 
of the two 60-year means to avoid negative values.

The GFDL-derived time series of BUI captures 
the observed (ERA–Interim) annual variability in 
BUI shown in Fig. 4.2a (comparison of observed 
BUI with GFDL BUI values not shown); however, 
the downscaled GFDL precipitation amounts are 
generally higher than the downscaled ERA–Interim 
for 1986–2015. Consequently, the downscaled GFDL 
BUI values were smaller than those obtained from 
downscaled ERA–Interim values. Therefore, all 
GFDL-derived BUI values were multiplied by 2.4, the 
ratio of the mean ERA-derived BUI for 1986–2015 to 
the corresponding GFDL-derived mean. This adjust-
ment does not affect the percentile ranks that form 
the basis of our attribution assessment below. 

Results. The anthropogenic contribution to the 
likelihood of a fire season of 2015’s severity based on 
BUI was assessed using the fraction of attributable 
risk metric (Stott et al. 2004; National Academies 
2016). Figure 4.2b shows the cumulative frequency 
distributions of the April–September integrated 
BUI values for observed and modeled scenarios. 
The 2015 observed value of nine days with BUI > 60, 
indicated by the black horizontal bar, was exceeded 
by 3 of 60 values (P1 = 3/60 = 0.05) in the GFDL-
simulated present climate (red) and by 2 of 60 values 
in the GFDL-simulated preindustrial (counterfactual) 
(dark blue) (Po = 2/60 = 0.033), yielding a fraction 
of attributable risk to climate change of FAR = 1 − 
0.033/0.050 = 0.34. Noting that two additional points 

(a)

Fig. 4.2. (a) Number of days when the BUI index 
exceeds 60 when computed from the ERA-driven 
dynamical downscaling over the boreal forest region 
of Alaska and (b) cumulative frequency distribution 
of the number of days that BUI exceeds 60 when 
computed from the 1986–2045 GFDL-driven dynamical 
downscaling (red), the preindustrial (counterfactual) 
(blue), the 1986–2045 GFDL-driven downscaling in 
which only precipitation differs from the preindustrial 
(green), the 1986–2045 GFDL-driven downscaling in 
which only temperature differs from the preindustrial 
(orange), and observations based on the downscaled 
ERA–Interim reanalysis (cyan). The number of days 
of BUI greater than 60 for the 2015 fire season is 
marked on the plot with the horizontal black line and 
corresponds to approximately the 95th percentile of 
the model’s present-day (present) distribution.
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on the GFDL present-climate curve (red) are nearly 
identical to the 2015 observed value, an alternative 
estimate of FAR based on the number of years in 
which the 2015 value was essentially matched or 
exceeded (five) is FAR = 1 − 0.033/0.083 = 0.60. With 
the caveat that it is based on one ensemble member 
from one climate model, we conclude from this 
experiment that climate change has increased the risk 
of a fire year as severe as 2015 by 34%–60%. 

Several sources of uncertainty are inherent in these 
estimates of increased risk of a severe fire season in 
Alaska. First, the sample size of events is small, as the 
number of fire years more severe than 2015 is 2 and 3 
(for a total of 5) in the modeled preindustrial and the 
modeled present, respectively. Nevertheless, although 
there may be such uncertainty in the exceedance of 
the 2015 threshold, the results clearly indicate that the 
present climate (red line in Fig. 4.2b) has increased 
the risk of days with BUI > 60 relative to the prein-
dustrial (dark blue line). Second, the results are based 
on only one model, GFDL CM3 (downscaled using 
WRF). While the GFDL model is one of the better-
performing global models for Alaska (www.snap.uaf 
.edu/methods/models), simulated changes of temper-
ature and precipitation since the preindustrial period 
vary among models. Third, our evaluation focused 
on an index (the BUI) of climate-driven potential for 
summer wildfire, not on the shorter-term weather 
variables of wind, humidity, and temperature that 
affect the rate of wildfire growth. 

Sensitivity tests (orange and green lines) shown 
in Fig. 4.2b highlight the competing effects of 
temperature and precipitation as climate changes. If 
precipitation does not change within the model, the 
postindustrial warming increases the severity of the 
fire years in the upper half of the distribution (orange 
line). An increase of precipitation, in the absence of 
any temperature change, decreases the severity of 
the uppermost half of the distribution (green line). 
The impact of increased temperatures outweighs the 
impact of increased precipitation in the change from 
the preindustrial. For the future, annual average 
temperatures in Alaska are projected to increase 
by 1°C to 2°C above present values by 2050, while 
precipitation is projected to increase by 15%–30% by 
the end of the century (Chapin et al. 2014). 

Conclusion. The 2015 fire season in Alaska was 
remarkable for its early-season total acres burned, 
which resulted from 1) fuel flammability due to the 
warm and dry conditions of May and June, and 2) 
lightning-induced ignitions in June. The rains of 

mid-summer likely prevented a new record for area 
burned in Alaska in 2015. An attribution analysis 
indicates that 2015’s fuel conditions reached a level 
that is 34%–60% more likely to occur in today’s 
anthropogenically changed climate than in the 
past. The major uncertainty in such an attribution 
assessment is the as-yet unknown relationship 
between climate change and the major lightning 
events that ignite widespread fires. 

This study’s conclusion is consistent with the 
similar finding by Yoon et al. (2015) for wildfires in 
California, where an increased wildfire risk relative to 
the preindustrial climate emerged in the 1990s. Simi-
lar model-derived results were found for the western 
United States (Luo et al. 2013; Yue et al. 2013), Canada 
(Flannigan et al. 2015), and Alaska (Young et al. 2016).
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5. THE 2014/15 SNOWPACK DROUGHT IN WASHINGTON 
STATE AND ITS CLIMATE FORCING

boniFaCe o. Fosu, s.-y. siMon wang, and Jin-ho yoon 
 

Introduction. The state of Washington declared a 
drought emergency in May 2015 following a drastic 
decline in snowpack over the adjoining Cascades 
(Fig. 5.1a). Unlike past droughts that were mainly 
caused by precipitation deficits (e.g., the 2005 
drought; Anderson et al. 2006), the 2014/15 cold 
season (November–March) produced near-normal 
precipitation statewide (Fig. 5.1b). In what has since 
been nicknamed the “snowpack drought” of 2015 
(www.ecy.wa.gov/drought/), the drought was more 
a result of unprecedented warmth (Fig. 5.1c) that 
caused cold-season precipitation to fall as rain rather 
than snow on the mountains. A small change in 
temperature can alter the water balance by reducing 
the precipitation falling as snow, which results 
in declined snow water equivalent and summer 
streamflow (Mote 2006; Stewart et al. 2004). This 
2014/15 situation thereby sets an example for the 
known effect of atmospheric warming on reducing 
mountain snowpack in the Pacific Northwest (PNW), 
a known risk that has been reported by a sizable body 
of research (e.g., Stoelinga et al. 2010; Mote et al. 2014; 
Abatzoglou et al. 2014). 

Reduction in the PNW snowpack also increases 
the risk of wildfires, the latter of which is evidenced 
by the remarkable 2015 wildfire season, the largest 
in the state’s history. A Washington Department 
of Agriculture report (http://agr.wa.gov/FP/Pubs 
/docs/104-495InterimDroughtReport2015.pdf ) 
estimates the 2015 drought alone has caused more 

than $335 million (U.S. dollars) of loss for the state’s 
agricultural industry. In this study, we investigate 
the role natural climate variability played in the 2015 
Washington state drought and situate it in the context 
of anthropogenic climate change.

Data and Model Sources. The observed mean surface 
air temperatures and precipitation were obtained 
from monthly records of PRISM’s high-resolution 
spatial climate data (https://climatedataguide.ucar 
.edu). For the analysis of northern Pacific climate 
variability, NOAA’s extended reconstructed sea 
surface temperature (SST) v4 was used (Huang et al. 
2015). Circulation patterns were based on stream-
function (Ψ) derived from the NCEP–NCAR global 
wind reanalysis (Kalnay et al. 1996). NCEP’s daily 
two-meter (T2m) air temperature dataset (Kristler et 
al. 2001) and CPC’s unified gauge-based analysis of 
daily precipitation were used for the estimation of 
snow-precipitation ratio (S/P) and snow frequency 
(SF); the latter was also used to characterize dry spells 
following Gillies et al. (2012). Precipitation was fully 
classified as snow at T2m ≤ 0°C. Because the majority 
of Washington’s snowpack is stored in the Cascades, 
we focused on the cold season of November–March 
over the mountain ranges outlined in Fig. 5.1a (i.e., 
all time series were area-averaged from the domain 
referred to as the Cascades).

Historical and future simulations with the 
Community Earth System Model version 1 (CESM1) 
(Hurrell et al. 2013) were analyzed to examine 
external climate forcing to drought variability 
in the region and to project possible long-term 
changes. Thirty ensemble members produced by 
CESM1 with a spatial resolution of 0.9° longitude × 
1.25° latitude through the Large Ensemble Project 
(Kay et al. 2015) were used. The simulations cover 
two periods: 1) 1920–2005 with historical forcing, 
including greenhouse gases, aerosols, ozone, land-use 

The 2014/15 snowpack drought resulted from exceedingly high temperatures notwithstanding normal 
precipitation—a drought type that may reoccur due to accelerated anthropogenic warming and 

aggravated by naturally driven low precipitation. 
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Fig. 5.1. (a) Topographical map of Washington; the yellow box delineates the study domain. (b),(c) Domain 
averaged time series of normalized cold season precipitation and temperature, both in gray, and their respective 
15-year low-pass curves in black. (d) 15-year sliding correlation between P and T, in black. The gray lines show 
the sliding correlation curves for different windows ranging from 7 to 21 years in 2-year increments. Years on 
the x axis represent the central year of the sliding window. (e) 15-year running mean (black) of the NP index 
(gray), constructed from the area-weighted sea level pressure over the region 30°–65°N, 160°E–140°W. The NPI 
sign has been flipped so that positive refers to a deepening of the Aleutian low, which also will correspond to 
positive PDO phase. The red dots are intense dry spells and their duration (days). (f) Composite differences in 
cold season circulation (250 mb Ψ in contours, interval: 0.3 106 m2 s−1) and SST (shading) between 31 low and 31 
high snow frequency years selected between 1950 and 2014. (g) The observed SST and 250 mb streamfunction 
anomalies for 2014/15 cold season. (h) A linearly regressed reconstruction of SST and 250 mb streamfunction 
anomalies related to the NPI, from the 1949/50 cold season to 2013/14, weighed against the strength of the 
NPI in the 2014/15 season NPI. (i) Same as (h) but for the NPO. (j) Difference between (g) and (h),(i) (i.e., the 
leftover not linearly explained by the NPI).
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change, solar, and volcanic activity, and 2) 2006–80 
with RCP8.5 forcing that represents a high-emission 
pathway (Taylor et al. 2012). The ensemble spread of 
initial conditions is generated by the commonly used 
“round-off differences” method (Kay et al. 2014). 
 
Result and Discussion. To examine the unique 
combination of high temperatures (T) and near-
normal precipitation (P) experienced in 2014/15, we 
computed the correlation between observed P and 
T over the Cascades. The simultaneous correlation 
between P and T in the past century has been weak 
(r < 0.1); however, the coherency between P and T 
appears to f luctuate over time. Figure 5.1d shows 
the sliding correlation (SCORR) between P and T 
within various windows ranging from 7 to 21 years, 
revealing a cyclical pattern in the coherency of P 
with T on interdecadal timescales. The correlation 
between P and T was mostly positive during the first 
third of the century, after which negative correlations 
prevailed until the late 1970s, then the correlation 
pattern reversed back to positive. Even though 
the correlation coefficients are only marginally 
significant at the peaks and troughs (for the 15-year 
window the significant SCORR at the 95% interval is 
.48), the SCORR pattern bears a visual similarity to 
the low frequency variations within the North Pacific, 
expressed in Fig. 5.1e by the North Pacific index (NPI; 
Fig. 5.1e). Calculated from the area-weighted sea level 
pressure over the region 30°–65°N, 160°E–140°W, the 
NPI measures the intensity changes of the Aleutian 
low, which affects cyclone frequency and passages 
over the PNW (Trenberth and Hurrell 1994). The 
SCORR pattern mimics the timing of major shifts in 
the sign of the NPI; a negative regime from 1947–76, 
with positives dominating from 1925–46 and from 
1977 through the present. Since the NPI and the 
Pacific decadal oscillation (PDO) are significantly 
correlated, the PDO has a similar interdecadal 
coherence with P and T (not shown). Here, we focus 
on the NPI because the PDO is deemed an oceanic 
response to integrated atmospheric forcing (Newman 
et al. 2016) and, strictly speaking, should not be 
directly regarded as a climate driver of the PNW. In 
Supplemental Table S5.1, we list an array of climate 
indices and their correlation coefficient with the P–T 
SCORR using the 15-year window, and both the NPI 
and PDO stand out as being significant at p < 0.01.

Next, the weather processes that encompass 
the NPI regimes and dry spells in the Cascades 
are examined. An extreme dry spell was defined 
as a prolonged period of at least 10 days without 

substantial precipitation accumulation (< 5 mm). As 
shown in Fig. 5.1e, more and prolonged dry spells 
(red dots) tend to occur in the positive NPI regime 
during which temperature and precipitation tend 
to be positively correlated. In the opposing phase, 
less intense dry spells are observed, with negative 
correlations between temperature and precipitation. 
A third scenario exists, whereupon a correlation 
of near zero exists between P and T. The 2014/15 
event falls under such zero correlation regime and 
is evidence that natural climate variability can drive 
years of extreme warmth and drought even when 
precipitation is normal. 

To understand the circulation and SST patterns 
associated with wet and dry spells along the Cascades, 
Fig. 5.1f shows the 250 mb streamfunction and SST 
differences between low and high snow frequency 
years. Low snow years are associated with a SST 
pattern that is analogous to the positive phase of 
the PDO (or to the interdecadal Pacific oscillation, 
which has a stronger tropical signal), with a warm 
tongue of water situated off the coast of California 
accompanied by an anomalous ridge over the 
PNW. The 2014/15 circulation anomalies (Fig. 5.1g) 
produced a similar yet amplified pattern, including 
the high pressure over the West Coast and a low 
pressure over northeastern North America. This pair 
of circulations echo the dipole pattern associated with 
the 2013/14 California drought (Wang et al. 2014, 
2015; Funk et al. 2015) that occurred again in 2015. 
The circulation anomalies associated with the NPI 
(Fig. 5.1h) resembles the low snow frequency situation, 
as was previous documented (e.g., Mote 2006). 
By comparison, the 2014/15 circulation also bears 
resemblance to the pattern of North Pacific oscillation 
(NPO; Rogers 1981) (Fig. 5.1i), with a similar (yet 
shifted) high pressure ridge over the western United 
States and warm SST anomalies in the northeastern 
Pacific. However, the 2014/15 SST anomalies feature 
an area of much warmer water around the PNW coast, 
referred to as a “blob” of warmer water consolidated 
into the PDO’s region of ocean fluctuation that was 
strengthened by the stagnation of high pressure in 
the Gulf of Alaska (Bond et al. 2015). 

To analyze further the collective effects of NPI 
and NPO on the 2014/15 circulation anomalies, 
we computed t he regression coef f icients of 
streamfunction and SST anomalies with the NPI 
and NPO from 1949/50 to 2013/14 and weighted 
the coefficients against the observed values of the 
2014/15 season; this led to a statistical estimate of 
the anomalies that are individually attributable to 
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each mode. Then, a linear “attribution” analysis was 
carried out by removing the combined regressed 
patterns of the NPI and NPO from the 2014/15 
anomalies (the NPO signal was “regressed out” from 
the NPI). The residual (Fig. 5.1j) shows a weak swath 
of warmer SST across the North Pacific with some 
patches of cool waters, suggesting that the key SST 
feature in the 2014/15 situation near the PNW has 
been considerably reduced. The drought-inducing 
ridge engulfing the West Coast (Fig. 5.1g) was also 
reduced by more than one half with a displaced center. 
The residual SST could be explained by possible 
warming effects of anthropogenic greenhouse gases, 
as was argued by Weller et al. (2015). Because the 
Cascades’ surface air temperature is significantly 
correlated with the offshore SST (Supplemental 
Fig. S5.1), these results hint a collective effect from 
anthropogenic warming and combined NPI–NPO 
modulation on the 2014/15 anomaly that led to low 
snowfall.

The limited length of observational data poses a 
challenge in verifying the inferred NPI modulation 
on the fluctuating P–T relationship. We note that the 
CESM1’s 30-member ensemble appears to capture 
the NPI in both the historical and future runs (using 
the same definition as in the observation), without 
any noticeable trend in the RCP8.5 runs (Fig. 5.2a). 
Likewise, the model does not suggest any perceptible 
future deviation from the SCORR pattern between 
P and T (Fig. 5.2b) either. This result suggests that 
the P–T SCORR and the NPI modulation are natural 
variability that are not projected to change. Addition-
ally, the spectral coherence between the observed NPI 
(15-year low-pass) and the 15-year SCORR between 
P and T was computed. To address uncertainty in 
the coherence at low frequencies/long periods, we 
computed the spectral coherence for two periods: 
101 (Fig. 5.2c) and 59 (Fig. 5.2d) years. The spectral 
coherency reveals dominant periodicities at 30–50 
years, which is consistent with the NPI’s periodicity. 
The low frequency band should be interpreted with 
caution owing to the limited data length. Nonethe-
less, both the historical (Fig. 5.2e) and future (Fig. 
5.2f) simulations of the CESM1 reproduced this 
30–50-year spectral peak of the coherency. This per-
formance is in line with the CESM1’s noted ability in 
reproducing the broad North Pacific SST variability 
(Yoon et al. 2015) and the supposed stationarity of the 
NPI (Fig. 5.2a). Under the future scenario, the model 
projects an amplified spectral coherency of SCORR 
with NPI while the frequency remains unchanged. 
However, the increase in spectral coherency only 

marginally passes the red noise spectrum (not shown) 
and therefore does not suggest confidently that global 
warming would change the correspondence between 
the P–T regime and the NPI.  

In spite of these results, anthropogenic warming 
continues to pose a threat to the Cascades snowpack 
as shown in Supplemental Fig. S5.2a. The post-1970 
increase in observed T coincides with the rising trend 
of simulated T, and these correspond to the expected 
decreasing trend in the projected S/P (Supplemental 
Fig. S5.2b). However, the accelerated increase in 
observed temperature and the record warmth in 
2014/15 could be an early indication that, even 
though precipitation in the PNW does not change 
in the future, the persistent warming will increase 
the likelihood of a normal P and high T situation 
like 2014/15 or worse, a high T and low P scenario as 
suggested in the negative SCORR regime of Fig. 5.1d. 
In terms of risk assessment, these results suggest that 
any superimposition of a high T with low P would 
exacerbate drought, making it potentially more 
severe than the 2014/15 situation with normal P. The 
CESM1 projections lend support to such a possibility 
in the future.

Summary. In the winter of 2014/15, the average 
temperature along the Cascades was the highest on 
record and occurred in tandem with the emergence 
of extremely positive SST anomalies that developed 
off the coast of the PNW. The high pressure ridge 
increased the PNW temperatures to a record level 
while reducing the snow frequency. Diagnostic 
analysis suggests that a significant portion of the 
circulation patterns associated with the 2014/15 
snowpack drought can be explained by the North 
Pacific climate variability in the form of the NPI 
with a modulation from the NPO. Even though the 
effect of North Pacific climate variability on the 
PNW is well known (Stoelinga et al. 2010, Mote et al. 
2014, Abatzoglou et al. 2014), this study uncovered 
a unique cyclical relationship between temperature 
and precipitation that is apparently driven by the 
low frequency variability of the NPI. This process 
is especially concerning in light of recent findings 
that despite little long-term trend in average West 
Coast precipitation, precipitation may be falling in 
more concentrated bursts (Prein et al. 2016) due 
to changes in certain circulation patterns (Swain 
et al. 2016; Lehmann and Coumou 2015). Under 
the warming climate, increasing air temperature 
embedded in stagnated ridge systems off the West 
Coast (Diffenbaugh et al. 2015) can reduce snowpack 
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even without an apparent precipitation deficit—a 
situation that was realized in the 2014/15 snowpack 
drought of Washington.  
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6. IN TIDE’S WAY: SOUTHEAST FLORIDA’S SEPTEMBER 2015 
SUNNY-DAY FLOOD

williaM v. sweet, Melisa MenendeZ, ayesha genZ, Jayantha obeyseKera,  
Joseph parK, and John J. Marra

The Flood Event. High tides on 27 September 2015 
f looded several Miami-region communities with 
0.57 m of ocean water. The flooding was concerning 
because of the sunny-day conditions and awareness 
that trends of such events are accelerating within 
U.S. Atlantic Coast cities from rising seas (Sweet et 
al. 2014; Ezer and Atkinson 2014; Sweet and Marra 
2016). It was the sixth largest flood measured by the 
National Oceanic and Atmospheric Administration 
(NOAA) tide gauge in Virginia Key, Florida (Miami 
region), since its 1994 installation (Fig. 6.1a). The five 
higher floods were in response to hurricanes. 

The f lood had substantial astronomical under-
pinnings (Fig. 6.1b); it occurred during spring tides 
and near the peak of the seasonal mean sea level 
(MSL), the lunar 8.8-year perigee, and the 18.6-year 
nodal cycles. These factors explain the 0.24-m NOAA 
tide prediction relative to mean higher high water 
(MHHW) tidal datum that delineates typical tidal 
inundation (Schureman 2001; Parker 2007). Yet, tide 
forcing alone was insufficient to produce the observed 
impacts as minor “nuisance” flooding begins in ex-
cess of 0.4 meters in this region (Sweet et al. 2014). 

Other dynamics were at play. A nontidal sea level 
anomaly (Fig. 6.1b, green line), which exceeded 0.15 
m for a month starting September 22, reached 0.33 
m during the flood and even higher for weeks after-
wards. Strong high pressure over Eastern Canada 
(Fig. 6.1c) with >15 m s−1 northeasterlies offshore of 

the mid-Atlantic Bight (not shown) drove an Ekman-
related setup along much of the U.S. East Coast. Dur-
ing the flood, setup was >20 cm along the southeast 
Florida coast as modeled by NOAA’s extratropical 
surge and tide operational forecast system (Funakoshi 
et al. 2013). Local winds, however, were calm (<3 m 
s−1; http://tidesandcurrents.noaa.gov/met), inverse 
barometer effects nonexistent (Fig. 6.1c), and dy-
namical wave effects minimal as inferred by the ~1 cm 
standard deviations during tide measurements (Sweet 
et al. 2015). Interestingly, Gulf Stream transport mea-
sured upstream in the Florida Current (FC) slowed to 
a monthly minimum of 23.4 Sverdrup (Sv; 1 Sv ≡ 106 

m3 s−1) on 25 September (Fig. 6.1d), which persisted 
through the flood. Transport slowdowns raise MSL 
along the US southeast (Zhao and Johns 2014; Ezer 
2016) and Florida coasts (Park and Sweet 2015) from 
adjustments to meridional Ekman transport (Lee and 
Williams 1988) and shelf-wave dynamics (Czeschel et 
al. 2012; Ezer 2016). Previous studies report a 0.5–1.5 
cm rise in coastal MSL per 1-Sv decline in Gulf Stream 
system transport (Ezer et al. 2013; Woodworth et al. 
2014; Goddard et al. 2015; Ezer 2016); when it slows, 
local tidal-flood risks increase (Sweet et al. 2009; Ezer 
and Atkinson 2014; Wdowinski et al. 2016).

Here, we derive a contemporary return period 
of the flood using a time-dependent extreme value 
statistical model. Then, we assess the degree that (i) 
seasonal variability, (ii) tide cycles, (iii) FC monthly 
transport minimums, and (iv) a multidecadal trend 
have independently affected Virginia Key’s extreme 
water level distribution and estimate their attribu-
tion during the f lood. We conclude by analyzing 
how the flood’s return period changes under future 
SLR projections for the Miami region forced by three 
representative concentration pathways (RCP).

Data and Methods. Verified 6-minute and monthly 
water levels, sampling standard deviations, and tide 

The probability of a 0.57-m tidal flood within the Miami region has increased by >500% since 1994 from 
a 10.9-cm sea level rise (SLR)-related trend in monthly highest tides. 

AFFILIATIONS: sweet—NOAA National Ocean Service, Silver 
Spring, Maryland; MenendeZ—Environmental Hydraulic Institute, 
E.T.S., Universidad de Cantabria, Santander, Spain; genZ—
University of Hawaii, Honolulu, Hawaii; obeyseKera—South Florida 
Water Management District, West Palm Beach, Florida; parK—
National Park Service, Everglades National Park, Homestead, 
Florida; Marra—NOAA National Centers for Environmental 
Information, Honolulu, Hawaii.

DOI:10.1175/BAMS-D-16-0117.1

A supplement to this article is available online (10.1175 
/BAMS-D-16-0117.2)



S26 DECEMBER 2016|

predictions are used for NOAA tide gauge Virginia 
Key (http://tidesandcurrents.noaa.gov). Daily FC 
transport is available from www.aoml.noaa.gov 
/phod/f loridacurrent. We analyze monthly high-
est water levels using a generalized extreme value 
(GEV) model to assess flood height probabilities and 
decompose independent time-dependencies in the 
model’s location parameter. We follow methods of 
Menendez and Woodworth (2010) described in the 
online supplemental information.

Return level interval curves (Coles 2001) are 
constructed on a monthly and a 2015-annualized 
(12-month integrated) basis. Monthly return interval 
curves are vertically shifted by the time-dependent 
location parameter components (equation 2 in the 
online supplemental information) to assess climate 

variability and trend effects on the f lood’s return 
period. We use the classic (annual scale) curves to 
compute future projections for annual relevancy pur-
poses. Return periods are approximated as −1/ln(Fz), 
where F is the cumulative probability of a flood with 
height z, instead of the traditional 1/(1−Fz) method 
(Beran and Nozdryn-Plotnicki 1977; Coles 2001) to 
better estimate shorter return periods (e.g., <1 year).

 
What role did climatic variability and trends play in the 
September 2015 flood? Our model estimates that a 
0.57-m flood has a 6-year return period (black curve 
in Fig. 6.2a) during Septembers assuming conditions 
(e.g., nodal cycle, FC transport) match those during 
September 2015. The flood has a 3-year return period 
when considering (integrating across) all months 

Fig. 6.1. (a) Highest monthly water levels (m) since 1994 at NOAA tide gauge Virginia Key, FL, indicating the 
local “nuisance” flood level; (b) hourly water levels (m) in Sep and Oct 2015 showing tidal and nontidal anomaly 
components highlighting the 27 Sep flood; (c) 5-day composite (www.esrl.noaa.gov/psd) of SLP (hPa) anomaly 
during the flood showing location of the tide gauge and FC measurements; and (d) scatterplot between monthly 
minimum FC transport (Sv) and monthly maximum water level (WL; m) highlighting Sep–Nov months (yel-
low) and the Sep 2015 event (red).
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during 2015 (red curve in Fig. 6.2a), reflecting the 
peak seasonal location parameter during Octobers 
(Fig. 6.2b, green line). Highest water levels occur 
September–November (Fig. 6.1d, yellow dots), typi-
cally during Octobers. If a 0.57-m flood occurred in 
February 2015 when the seasonal location parameter 
is minimum (21.1 cm lower than in September), a 
higher (less probable) water level would be required; it 
would have a >100-year return period. Our estimates 
(Fig.6. 2a) are based upon a 22-year data record with a 
sample size 7 times longer than the flood’s annualized 
return period, which results in low GEV-parameter 
estimate uncertainties (Fig. 6.2a). We note our return 
periods agree with those from a 50-year record from 
the nearby historic Miami NOAA gauge (http://
tidesandcurrents.noaa.gov/est; Zervas 2013) and our 

seasonal location-parameter range of 23.9 cm matches 
its 23.7-cm MSL cycle (Zervas 2009). 

The 18.6-year lunar nodal cycle is estimated as 
having a 6-cm location-parameter range, which 
was near-peak during the f lood (Fig. 6.2b). If at 
its minimum (and all other factors the same), the 
return period of this flood occurring in a September 
would have been 16.5 years instead of 6 years (>150% 
probability increase). The periodicity of the lunar 
perigee, which amplifies the tidal range on a ~4.4-
year cycle (Haigh et al. 2011), was included in our 
model but found to be insignificant. Similarly, had 
the flood occurred during a September with higher 
FC transport (e.g., 33.1 Sv in September 1997 and a 
9-cm location parameter decrease shown in Fig. 6.2b), 
the return period would have been 29 years instead 

Fig. 6.2. (a) GEV-estimated return level interval curves from monthly maximum WL (m) at Virginia Key for Sep 
2015 (black curve) and annualized for all months in 2015 (red curve) indicating the 27 Sep flood level (dots) and 
GEV model parameter standard errors. (b) Time-varying location parameter (black line) and its components 
(plotted to scale but with arbitrary values) with component magnitudes (m) during the 27 Sep flood (circles) 
and their total ranges in parenthesis. (c) Annual MSL (m) at Virginia Key since 1994 overlaid upon local RCP-
based SLR projections of Kopp et al. (2014). (d) Return periods by decade of the Sep 2015 flood height (0.57 m 
above MHHW) in response to SLR projections.
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of 6 years (>350% probability increase). Our model 
estimates a 17-cm total range in location parameter 
due to co-variability with FC transport minimums, 
equating to a 0.9 ± 0.2 cm increase for every 1-Sv 
decline, which agrees with previous estimates. Lastly, 
our model estimates a long-term trend in the location 
parameter of 0.5 ± 0.1 cm year−1 (10.9 cm rise since 
beginning of 1994), which closely matches the trend in 
MSL (~11 cm in Fig. 6.2c). If the flood had occurred in 
September 1994, its return period would have been 39 
years instead of 6 years (>500% probability increase)

.
What does the future hold in terms of more September 
2015 flooding? The logical question is how much more 
frequent will these kinds of floods become in the future? 
To answer this question, the September 2015 flood is 
assessed in terms of its annualized return period (3 
years; red curve in Fig. 6.2a), although flood frequen-
cies will likely remain most prevalent during the fall 
(e.g., Fig. 6.1d). It is assumed that future changes in 
tidal flooding will occur only in response to local SLR, 
though variability (shown here) is significant. We use 
the 50th and 95th% SLR projections for Virginia Key 
forced by RCPs modeled by Kopp et al. (2014), which 
correspond to global SLR of 0.5–1.21 m by 2100. An 
overlay of Virginia Key’s annual MSL (Fig. 6.2c) shows 
a current trajectory between the 50th and 95th% of the 
RCP 8.5 SLR projections. By 2030, the flood is likely 
to become a 0.6-year event (~twice a year) under the 
median RCP 2.6, 4.5, and 8.5 projections (Fig. 6.2d) 
and a 0.2-year event (≥5 times a year) under the 95th% 
of the RCP 8.5 projection. With 0.2 m more local SLR, 
which is exceeded under all local SLR projections 
between 2040–2050, the flood will occur >10 times a 
year (<0.1 year return period). 

Conc lus ion .  Our t ime-dependent GEV model 
disentangles and probabilistically decomposes 
independent contributions from concurrent processes 
attributing to the Miami-region f loods during 27 
September 2015. Seasonal and tide cycles are quite 
predictable, whereas FC transport variability is less 
so (e.g., DiNezio et al. 2009). In terms of decades-
old infrastructure, two major factors were at play: a 
9-cm increase from FC variability and a 10.9-cm rise 
from a climate-related SLR trend since 1994 of which 
a fraction (~0.05 cm year−1) is downward vertical 
land motion (Zervas et al. 2013; Kopp et al. 2014) 
common to south Florida. There is a decreasing trend 
(significant at the 99% level) in monthly minimum 
FC transport of 2.3 Sv since 1994, which likely 

contributed ~2 cm to the SLR-related trend (Fig.6.2b, 
blue line). 

A decline in the large-scale Gulf Stream trans-
port, which is expected this century (Yin 2012) to 
exacerbate flooding along the mid-Atlantic (Hall et 
al. 2016), is not well resolved for the FC locally within 
the SLR projections (Kopp et al. 2014). Because of this, 
and since we use a parametric extreme distribution 
to quantify the transition to a more recurrent event 
better estimated empirically (Sweet and Park 2014), 
our flood-frequency projections should be considered 
conservative underestimates. In closing, flooding on 
27 September inundated 0.57 m of normally dry land 
(~2 feet; https://coast.noaa.gov/slr) and capped a week-
long event in which daily high tides exceeded the local 
nuisance flood threshold (Fig. 6.1b). Tidal floods of 
this magnitude occur only every few years now but 
will become commonplace in the coming decades.
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7. EXTREME EASTERN U.S. WINTER OF 2015 NOT 
SYMPTOMATIC OF CLIMATE CHANGE

laurie trenary, tiMothy delsole, MiChael K. tippett, and brian doty

Introduction. In late February 2015, a massive cold 
wave struck the entire U.S. eastern seaboard, bring-
ing record cold temperatures from Maine to Florida 
(NOAA 2015). Due to the persistent cold, February 
2015 ranked in the top ten coldest Februarys on re-
cord for a number of eastern seaboard states. Blizzard 
conditions accompanied the cold wave, placing the 
month among the top twenty snowiest for most of 
the northeastern United States (NOAA 2015). Col-
lectively, the heavy snowfall and frigid temperatures 
were responsible for more than $3 billion (U.S. dol-
lars) in insured losses and 87 deaths (Bevere et al. 
2016; NOAA 2016). 

The 2015 winter was the second in a row charac-
terized by extreme cold along the East Coast. These 
cold events have occurred even while human-related 
climate change has led to long-term global declines in 
extreme cold temperatures (Seneviratne et al. 2012). 
However, global warming has been hypothesized by 
some to not only shift the temperature distribution 
toward warmer temperatures, but also to increase 
the probability of cold extremes in certain regions 
by enhancing the meandering of the midlatitude 
jet stream (Francis and Vavrus 2015). Trenary et 
al. (2015), however, demonstrated that the variance 
of winter daily temperature along the U.S. eastern 
seaboard has been decreasing, suggesting a decrease 
in variability and in the likelihood of cold waves. 
Decreased variance combined with increasing mean 
temperatures indirectly indicates a reduction in the 
likelihood of cold extremes. In this study, we apply 
extreme value theory to directly quantify the intensity 

and duration of the eastern U.S. 2015 cold wave and 
long-term changes in the likelihood of cold extremes.

 
Data and Methods. Daily temperatures are estimated 
by averaging the minimum and maximum surface 
temperatures from station data from the Global 
Historical Climatology Network–Daily Database 
(Menne et al. 2012). Since the 2015 cold wave was 
concentrated in February, we analyze 1 January–31 
March (i.e., February and the two adjacent months) 
over the period 1950–2015. Area average time series 
are computed for the North, South, and mid-Atlantic 
United States. The spatial distribution of the February 
2015 temperatures is evaluated using NCEP/NCAR 
reanalysis and shown in Fig. 7.1a. 

We also analyze climate model simulations from 
phase 5 of the Coupled Model Intercomparison Proj-
ect (CMIP5; Taylor et al. 2012). Models with daily 
surface temperature data were selected (see Table 7.1 
for model list). Historical simulations for 1950–2004 
contain both anthropogenic and natural forcing, and 
the historical simulations were extended to 2015 using 
the representative concentration pathway experiment 
8.5. For consistency with our observational analysis, 
model data are area averaged over the North (40°–
48°N, 83°–65°W), the mid- (35°–40°N, 83°–72°W), 
and the South Atlantic (25°–35°N, 89°–75°W). 

Daily temperature anomalies are evaluated as 
departures from the mean seasonal cycle (a third 
order polynomial fit of the January–March daily 
temperature) for the period 1950–2015. 

The intensity of the 2015 cold wave is quantified 
by the minimum daily temperature anomaly during 
JFM of that year, and its corresponding return period 
is estimated from a generalized extreme value (GEV) 
distribution. Long-term changes are modeled as a 
linear trend in the location parameter of the GEV 
distribution (Coles 2001; Zwiers et al. 2011; Gilland 
and Katz 2011). The duration of the event is quantified 
by the number of days the temperature anomaly falls 

Despite severe cold waves and record-breaking extreme cold-day occurrences during 2015, no long-term 
increase in winter daily temperature extremes has occurred in the eastern United States—winters have 

become warmer and less variable.   
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below the tenth percentile. The return period for the 
2015 duration is estimated from a negative binomial 
distribution (Winkelmann 2008).

Results. Figure 7.1b shows the winter (JFM) daily 
minimum temperature anomalies in the North 
(green), South (red), and mid-Atlantic (black) regions 
for 1950–2015. The magnitude of the 2015 winter 
daily minimum temperature anomaly for each region 

is displayed next to the respective curve. Both the 
North (Fig 7.1b, large green dot) and mid-Atlantic 
(Fig 7.1.b, large black dot) regions experienced notably 
colder temperatures during 2015, where minimum 
daily temperatures were the 7th and 2nd coldest, 
respectively. It was the 13th coldest minimum daily 
temperature in the South Atlantic. According to 
the GEV fit, these minimum temperatures roughly 
correspond to 15-year return levels for both the North 

Fig. 7.1. (a) Feb 2015 average temperature anomaly (relative to 1950–2015). Colored state boundaries indicate 
regions analyzed here. (b) Minimum Jan–Mar daily temperature anomalies in the North, mid-, and South At-
lantic regions. North/South Atlantic time series are offset by +15° and −15°C, respectively. The gray lines show 
the 20-year return level, estimated from a GEV distribution in which the location parameter is fit as a linear 
function of time. (c) Number of days in which daily temperatures during Jan–Mar fall below the 10th percentile 
(relative to 1961–90) in the North, mid-, and South Atlantic. North/South time series are offset by +15°/−15°C. 
(d) Return period for the number of extremely cold days in the North Atlantic (blue circles) and fit to a nega-
tive binomial (solid blue line). The red dot shows the return level for 2015. The 95% confidence intervals for the 
negative binomial fit are shown as dashed curves. 
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and mid-Atlantic, indicating that the intensity of cold 
temperatures was not all that extreme. 

Trends in the 20-year return level for each region 
are shown as gray lines in Fig. 7.1b. A statistically 
significant trend was found only for the north 
Atlantic region. Because the 20-year return level 
has increased over the past 66 years, cold events 
considered normal by 1950s standards are now rare 
in a warming climate. 

The number of days with daily JFM temperature 
anomalies below the 10th percentile (“extremely cold 
days”) is shown for the three regions in Fig. 7.1c, and 
the number observed in 2015 is displayed next to each 
respective curve. The 2015 event in the North Atlantic 
broke last year’s record (Fig 7.1c, small green dot). In 
the mid-Atlantic, this quantity dropped relative to 
2014 but was still high, with 2015 having the 5th larg-
est number of extremely cold days in the region (Fig 
7.1c, large black dot). There is no systematic trend in 
the number of extremely cold days, thus no evidence 

to suggest that the frequency or persistence of cold 
events is systematically changing. We estimate the 
return period for the duration of the cold event by 
fitting the number of extremely cold days to a nega-
tive binomial distribution. We focus our analysis on 
the North Atlantic, where the duration of cold was 
record breaking. The negative binomial distribution 
(blue line in Fig. 7.1d) fits reasonably well the return 
times for the number of North Atlantic extremely cold 
days (blue circles in Fig. 7.1d) and indicates that the 
2015 event (red dot in Fig. 7.1d) was approximately 
a one-in-64-year event in terms of the number of 
extremely cold days.

Observational analysis alone is unable to isolate 
the relative importance of natural versus human 
forcing in driving the above changes. To do so, we 
estimate the trend in the location parameter of the 
GEV distribution fit to the minimum JFM daily 
temperature from a suite of CMIP5 climate experi-
ments. The location trends and corresponding 95% 

Table 7.1. Climate modeling centers and associated models examined in this study.   

CMIP5 I.D.
(Experiment)

Modeling Center

CanESM2 (r1i1p1)
Canadian Centre for Climate Modeling and Analysis – Canada

CNRM-CM5 (r1i1p1) National Centre for Meteorological Research – France

CSIRO-BOM0 (r1i1p1) Commonwealth Scientific and Industrial Research Organisation – Australia

HADGem2-CC (r1i1p1) Met Office Hadley Centre – United Kingdom

IPSL-CM5A-LR (r1i1p1) Institute Pierre Simon Laplace – France

IPSL-CM5A-MR (r1i1p1) Institute Pierre Simon Laplace – France

IPSL-CM5B-LR (r1i1p1) Institute Pierre Simon Laplace – France

MIROC5-ESM-CHEM (r1i1p1) CCSR/NIES/FRCGC – Japan

MRI-CGCM3 (r1i1p1) Meteorological Research Institute – Japan

NCC-NorESM1-M (r1i1p1) Norwegian Climate Centre – Norway

GFDL-ESM2G (r1i1p1) NOAA/Geophysical Fluid Dynamics Laboratory – United States

GFDL-ESM2M (r1i1p1) NOAA/Geophysical Fluid Dynamics Laboratory – United States
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confidence intervals for the historical simulations 
(black) and observations (red) are shown in Fig. 7.2. 
The observed trend in the North Atlantic is positive 
and statistically significant. Observed trends in the 
other two regions are not statistically significant and 
are not shown. Like observations, all of the climate 
models have an upward trend (warmer minimum 
temperatures) in the location parameters of the GEV 
for North Atlantic minimum JFM daily tempera-
ture anomaly, and this positive trend is statistically 
significant in more than half of the models. These 
results suggest that events like the 2015 cold wave are 
becoming less likely in response to climate change. 

Discussion. The 2015 cold wave that impacted the 
eastern United States can be described as a one-in-
15-year event in terms of intensity and a one-in-64 
year event in terms of duration. Only the magnitude 
of cold extremes in the North Atlantic United States 
shows significant long-term trend. Consistent with 
observations, the majority of climate models find that 
climate change has led to a shift in the distribution 
of winter daily minimum temperatures toward 
warmer conditions, and subsequently a decrease in 
the likelihood of extreme cold waves in the North 
Atlantic. This result contradicts the hypothesis that 
cold winter temperatures are becoming more extreme 
(Francis and Vaurus 2015). Rather we find observed 
trends toward a warmer, less variable climate, and 

a decrease in the likelihood of such cold winter 
extremes. 
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8. THE ROLE OF ARCTIC SEA ICE AND SEA SURFACE 
TEMPERATURES ON THE COLD 2015 FEBRUARY 

OVER NORTH AMERICA

oMar bellprat, François Massonnet, Javier garCía-serrano, neven s. FučKar, virginie gueMas, 
and FranCisCo J. doblas-reyes 

 

Introduction. North America (NA) has experienced 
a series of cold winters in the last decade that have 
repeatedly broken records (van Oldenborgh et al. 
2015; Hartmann 2015). The winter of 2014/15 was no 
exception. Montreal recorded the coldest February 
ever observed and the eastern North American 
region (ENA; land points only, black box in Fig. 8.1a) 
experienced the second coldest month since 1900 
(see Supplemental Fig. S8.1). The severe February 
anomaly was accompanied with several intense 
snowstorms leading to power outages and associated 
large economic losses (Munich Re, press release, 4 
January 2016). The record is surprising given that 
the region has experienced a 1.4°C warming since 
1900, compatible with global warming (Tebaldi et al. 
2013). Taking this warming into account (following 
van Oldenborgh et al. 2015), the return period of 
such an extreme cold event in 2015 is approximately 
1000 years, while in 1900 the same event would have 
occurred on average every 100 years.

Low temperatures over the Northeast in winter are 
generally associated with pronounced and station-
ary meandering of the jet stream that channels cold 
Arctic air into lower latitudes (Diaz and Quayle 1978).  

Although the winter yielded a persistent, strong posi-
tive North Atlantic Oscillation (NAO) 1, a wavy struc-
ture over NA prevailed in February 2015 as shown in 
Fig. 8.1b for the geopotential height at 500 hPa. The 
anomaly started to develop in the troposphere in 
January but intensified and became more meridional 
in February, concomitant with a strengthening of the 
polar vortex (Supplemental Fig. S8.2). We investigate 
in this article the potential drivers of both the surface 
cold anomaly and the anomalous meander of the jet 
stream in 2015 using an index which measures the 
meridional wind component at 500 hPa averaged over 
central North America (CAN; black box in Fig. 8.1b 
and time-series Supplemental Fig. S8.1).

Although these atmospheric conditions may be 
part of the natural atmospheric variability, their re-
currence during the last decade is striking (Francis 
and Vavrus 2012), and recent studies have proposed 
mechanisms to explain its prevalence. The most de-
bated cause points toward the Arctic amplification 
and the associated accelerated Arctic sea ice retreat 
(Overland et al. 2015). Reduced sea ice concentration 
(SIC) leads to strong heat release from the ocean that 
could modify the meridional temperature gradient 
and, thus, alter the jet stream and sea level pressure 
patterns at midlatitudes (e.g., Cohen et al. 2014). 
A direct, local atmospheric response to the Arctic 
surface warming could also force anticyclonic cir-
culation anomalies at the surface and project onto 
a wave-like structure at mid–upper-tropospheric 
levels (Kug et al. 2015). February 2015 Arctic sea ice 
conditions depicted in Fig. 8.1c show the third lowest 
extent since 1979.

A significant body of literature questions this 
relationship and argues that recent cold winter can 
1 The monthly NAO index based on Z500 reached 1.86, 1.79, and 
1.32 in December, January, and February, respectively (Source: 
NOAA/CPC). 

The cold spell of February 2015 in North America was predominantly internally generated; reduced 
Arctic sea ice and anomalous sea surface temperatures may have contributed in establishing and 

sustaining the anomalous flow. 
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Fig. 8.1. The cold Feb 2015 as observed in the ERA-Interim reanalysis (a)–(d) and simulated 2-m temperature 
with the atmosphere-only IFS model. (c) The red line shows the SIC climatology (1981–2000) while all other 
panels show the anomaly from the climatology 1981–2010. Model predictions show the ensemble mean of 100 
members starting on (e) 1 Feb and (f) 1 Jan. The amplitude of the model predictions is scaled to a smaller 
range than for the observations. (a) The black box denotes the ENA region and (b) the CAN region used to 
define the event.
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not be understood by Arctic sea ice decline (e.g., 
Barnes 2013) and find that these are an articulation 
of internal atmospheric variability (Sun et al. 2016). 
Hartmann (2015) relates the recent series of cold 
NA events to an oceanic internal anomaly of sea 
surface temperature (SST) prevailing over the east 
Pacific in 2015, and referred to as the North Pacific 
mode (NPM; Deser and Blackmon 1995). However, 
the NPM decayed to an almost neutral state at the 
beginning of 2015 (Supplemental Fig. S8.3), although 
a confined positive anomaly along the west coast 
of NA markedly remained (Fig. 8.1d and globally 
Supplemental Fig. S8.4). 

Reforecasting the cold February 2015. The aim of 
this study is to assess, using retrospective climate 
predictions, the contributions of the described 
anomalous SST pattern (of predominantly natural 
origin; Hartman 2015) and Arctic sea ice retreat 
(mainly attributable to anthropogenic climate change; 
Bindoff 2013) to the occurrence of the cold NA and its 
associated flow. The predictions rely on simulations 
using the atmosphere-only integrated forecast system 
(IFS; cycle 36r4) forced by SST and SIC from the ERA-
Interim reanalysis (Dee et al. 2011). Three types of 
retrospective predictions of February 2015 are carried 
out. A first experiment aims at reproducing the event 
using actual atmospheric conditions in 2015 as initial 
conditions and surface boundary forcings (hereafter 
referred to as INI). Two additional experiments test 
the sensitivity to either SST (using a 1981–2010 SST 
climatology instead of the 2015 state as boundary 
conditions, CLIMSST) or SIC (using a 1981–2000 
SIC climatology, hereafter CLIMICE, omitting the 
last decade in order to exclude Arctic sea ice decline 
in the climatology). Note that prescribing SSTs bears 
the risk of exaggerated ocean heat release due to the 
lack of coupling with the ocean and thus potentially 
overestimates the influence of anomalous SSTs.

Each experiment is initialized from observational 
estimates of the atmospheric state from ERA-Interim 
including singular vector perturbations (Buizza and 
Palmer 1994) to generate 100 ensemble members. 
The experiments are initialized on 1 January and 1 
February to assess timescales at which predictability 
of the event emerges. Furthermore, a hindcast set 
of the 1981–2010 period has been carried out using 
three-monthly predictions initialized each 1 January 
and 1 February with ten ensemble members in order 
to evaluate the reliability of the model to simulate cold 
events over North America and identify systematic 
biases in the mean for bias correction.

The ensemble-mean prediction starting in 
February (Fig. 8.1e) captures the event shown with 
a pronounced cold anomaly in the Northeast and 
a warming in the Southwest. Both experiments 
using either climatological SSTs or climatological 
SIC reproduce the event as well, demonstrating that 
the atmospheric initial state holds the main sources 
of predictability of the event. The ensemble-mean 
prediction starting in January (Fig. 8.1f ) shows 
much less pronounced temperature anomalies 
over the target region and does not reproduce the 
spatial pattern. This suggests that surface boundary 
conditions did not force the core of the event, neither 
did potential stratospheric precursors (Supplemental 
Fig. S8.5) or anomalies linked to sea ice conditions 
preceding the predictions (Kim et al. 2014). 

Attribution to surface boundary conditions. Retrospective 
predictions of the extreme cold February 2015 suggest 
that the atmospheric flow established in late January–
early February was mainly internally generated, yet 
surface boundary conditions could still have played 
a role in altering the probability that such an unlikely 
event occurred. To answer this question, we compare 
the probabilities to observe the recorded temperatures 
anomalies and their associated anomalous f low in 
the CLIMSST, CLIMICE, and INI experiments. The 
attribution relying on predictions starting in January 
and February is seemingly similar, but addresses a 
different question since the atmospheric anomaly is 
largely set in on 1 February. The attribution relying 
on the February and January predictions therefore 
quantifies how surface boundary conditions have 
contributed in sustaining or establishing the anomaly, 
respectively. The model ensembles are calibrated 
following Bellprat and Doblas-Reyes (2016), in order 
to correct for model limitations in representing 
this type of events (more details in the online 
supplemental material). 

The calibrated probability density functions 
(PDFs) of the 100 members of the model ensembles 
are shown in Figs. 8.2a,b (temperature) and Figs. 
8.2e,f (jet). The predictions starting in February 
are shifted towards the observed anomalies (black 
lines) while the predictions starting in January have 
almost no ensemble-mean anomaly as discussed in 
the previous section. The picture is overall consistent 
between temperature and the jet index. Changes in 
the surface boundary forcing reduce the ensemble 
variability in all cases, yet only significantly for the jet 
index (F-test at 5% significance level). The ensemble-
mean is slightly colder in CLIMSST, possibly linked to 
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Fig. 8.2. (a)–(d) Simulated Feb 2015 2-m temperature anomalies (°C) and (e)–(h) anomalies of 
the jet index (m s−1) with respect to the model climatology when starting the predictions in Jan 
(dashed) and in Feb (continuous). (a),(b) and (e),(f) compare the PDFs of the simulations with ob-
served conditions of SST and SIC to the one using climatological conditions CLIMSST (a),(e) and 
CLIMICE (b),(f) using kernel smoothed densities. The black line denotes the observed anomaly. 
(c),(d) and (g),(h) show a peak over threshold analysis of the ensemble tails comprising of a GPD 
for the Feb predictions. The lines show the central estimate with the 5%–95% confidence interval 
obtained by resampling the ensemble data with replacement.



S40 DECEMBER 2016|

advection of colder Arctic temperatures (compared to 
INI) due to larger ice coverage (Sun et al. 2016). The 
observed event represents a rare case, particularly 
for the temperature anomaly, and a generalized 
Pareto distribution (GPD) retaining 20% of ensemble 
data is used to estimate the event probability for 
predictions starting in February (Figs. 8.2c,d and 
g,h) and January (Supplemental Fig. S8.4). The return 
period of the temperature anomaly in the conditioned 
predictions (starting in February) is 100 years and 
around 1000 years in the unconditioned predictions 
(starting in January), consistent with the return time 
estimated from the observations as described in the 
introduction. 

Changes in event probabilities (intercept with 
the black line, Fig. 8.2) reveal lower probabilities in 
CLIMSST for both temperature and the jet index and 
lower probabilities for CLIMICE for the jet index 
compared to INI. For the temperature anomaly, sea 
ice conditions seem not to have played a role. The 
uncertainty ranges (determined by resampling) are 
overall large (95% confidence bounds, thin lines). 
Differences in probabilities are qualitatively consis-
tent with predictions starting in January. Overall we 
find that SST and SIC have increased the probability 
of establishing a meandering flow approximately by 
a factor 10 (January predictions, Supplemental Figs. 
S8.4e,f) and doubled the probability that the f low 
maintained its wavy structure (February predictions, 
Figs. 8.2g,h). The temperature anomaly would have 
been extremely unlikely if anomalous SSTs would 
not have persisted in February (Fig. 8.2c), yet the 
cold anomaly represents an extreme case without 
preconditioning the flow (Supplemental Figs. S8.4a–
d), regardless of the surface boundary forcing.

As a summary we conclude that reduced Arctic 
sea ice, which is linked to anthropogenic activity, and 
anomalous SSTs, mainly a consequence of natural 
variability, did not drive the core of the event, but 
they may have both contributed in establishing and 
sustaining the anomalous meander of the jet stream, 
and hence, could contribute in the near future to 
enlarge the probability of such extreme cold spells 
in the region. 
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9. THE 2015 EXTREME DROUGHT IN WESTERN CANADA

Kit sZeto, Xuebin Zhang, robert edward white, and Julian briMelow 
 

Introduction. Although drought is common over 
western Canada (Bonsal et al. 2011), the drought 
that affected the area during the spring and summer 
of 2015 (Fig. 9.1a) was unusual in terms of its sever-
ity, extent, and impacts. British Columbia (B.C.) and 
Alberta were the most severely affected provinces. 
Vast areas in southern B.C. were assigned the highest 
possible (Level-4) drought rating by the B.C. govern-
ment, several extreme-low streamflow advisories, and 
extreme wildfire risk ratings. Stringent water restric-
tions were in place by the end of June (AFCC 2016). In 
Alberta, conditions were even drier, and the Alberta 
government declared the province an Agricultural 
Disaster Area by early August. The extreme dry and 
warm conditions also created one of the most active 
and longest wildfire seasons for western Canada, and 
some rivers ran at their lowest recorded flows since 
measurements began 80 to 100 years ago (CMOS 
2016). The extreme heat and dryness the region ex-
perienced in 2015 have raised concerns as to whether 
or not anthropogenic climate change (ACC) has in-
creased the risk of extreme droughts in the area; this 
is the question we attempt to address in this paper. 

Hydrometeorological conditions. Because the drought 
affected a vast area that includes regions character-
ized by different climate conditions, this study focuses 
on southern B.C., among the worst-affected regions. 
Three critical factors need to exist for severe drought 
to occur in southern B.C.: 1) low snowpack near the 
end of winter, 2) dry spring (May–June), and 3) dry 
summer (July–August) conditions (BCMOE 2016). 
The winter preceding the drought was character-
ized by near-normal precipitation. Apart from the 

extremely low snowpack that was observed in south-
western B.C. throughout the winter, near-normal to 
slightly below-normal snowpacks were present near 
the end of winter across most of the province (BCRFC 
2015a). However, due to anomalously warm tempera-
tures in March and April (MA; Fig. 9.2a), record low 
snow water equivalent (SWE) was observed over most 
of southern B.C. by 1 May (BCRFC 2015b). A persis-
tent upper ridge off the west coast of North America 
(Fig. 9.1b) resulted in extraordinary warm and dry 
conditions from May through July (MJJ; Fig. 9.1c). 
The low SWE was compounded by the extreme dry 
conditions to create one of the worst droughts in the 
region. Time series of region-averaged standardized 
precipitation and evapotranspiration index (SPEI; 
Vicente-Serrano et al. 2010) for MJJ shows that the 
value for 2015 was the second lowest for the 1950–2015 
period (Fig.9.1d), reflecting the significant surface 
moisture deficit in the area.

Methods. Attribution for the 2015 event is carried out 
using CMIP5 results (Taylor et al. 2012). It is well-
known that coarse-grid climate models have very 
limited skills in simulating precipitation or SWE at 
regional scales. The preceding discussion suggests 
that it is justifiable to simplify the attribution analysis 
by limiting the drivers to the warm MA temperature 
(T34) that caused the enhanced and earlier than nor-
mal melt and subsequent low summer runoff, and 
the hot and dry MJJ weather that aggravated the 
conditions during the growing season. In addition, 
the intensity of the upper ridge, which is physically 
linked to the variability of both precipitation (P) and 
temperature (T) during MJJ, is used as proxy for both 
variables.

It is evident from the point correlation map of 
region-averaged MJJ P with geopotential heights (Z) at 
500 hPa (Fig. 9.1e) that dry (wet) conditions are related 
to positive (negative) upper-level height anomalies 
off the west coast. A parameter (H) is formulated to 
quantify the intensity of the upper-level ridge (see 

Analysis results indicate that the 2015 extreme drought in western Canada was likely an outcome of 
anthropogenically influenced warm spring conditions and naturally forced dry weather from May to July.    
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the online supplemental information for details):  

     H = 3<Z'>D − <Z'>AA' − <Z'>BB' − <Z'> CC'                    (1)
 
where the anomalies are relative to the 1971–2000 
climatology. Locations of the region D and transects 
used in the calculation of H are shown in Fig. 9.1e. 
H exhibits statistically significant correlations 
with precipitation over western Canada in general 

(Fig. 9.1f). Contemporaneous correlations between 
detrended H and P, T, and SPEI averaged over 
southern B.C. are −0.68, 0.74, and −0.76, respectively. 
Time series of H computed from reanalysis data (Fig. 
9.2c) shows that years of extreme positive values of 
H (e.g., above the 95th percentile—Hc = 60 m) also 
correspond well with extreme dry and warm years. In 
particular, both the driest and hottest MJJ and largest 
H occurred in 1958, and the value for 2015 is the third 

Fig. 9.1. (a) Jul 2015 drought conditions over western Canada (adapted from AAFC 2016). The rectangle over 
southern B.C. shows the study area where spatial averages of parameters are calculated. (b) MJJ height anomalies 
at 500 hPa from NCEP reanalysis (Kalnay et al. 1996). (c) 1950–2015 time series of normalized area-average 
MJJ precipitation and temperature anomalies computed from Environment and Climate Change Canada’s 
homogenized CANGRD monthly dataset (Vincent et al. 2015). (d) Time series (blue) and linear trend (red) 
of area-average MJJ SPEI obtained from the SPEI Global Drought Monitor (http://sac.csic.es/spei/map/maps 
.html).  (e) Map of correlations between the P’ time series in (b) and MJJ NCEP height at 500 hPa. Also shown 
are the region D and cross-sections used in the computation of H with Eq. (1). (f) Map of correlations between 
the time series of H computed from NCEP reanalysis with MJJ GPCP precipitation (Adler et al. 2012). 
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largest over the period. The other two high H years 
(1969 and 1992) were also exceptionally warm and 
dry, but the conditions improved in July, resulting in 
less extreme seasonal averages.

To determine how greenhouse gas (GHG) forcing 
influences T34 and the H-index, we compare the trends 
and other statistics of these variables as computed 
from observed or reanalysis data and ensembles of 
CMIP5 historical simulations with natural (NAT) or 
all (ALL) forcings. The list of 19 CMIP5 models used 
in the analysis is given in the online supplemental 
information. The change in likelihood of extreme 
droughts in southern B.C. from GHG forcing is as-
sessed by evaluating how the exceedance probabilities 
for these variables differ between the ALL and NAT 

ensembles. This is achieved by calculating the fraction 
of attributable risk (FAR; Allen 2003), as detailed in 
the supplemental information.

Results. We first investigate if ACC has increased the 
risk of reduced snowpacks at the end of winter. There 
is no detectable trend of December–March precipita-
tion in either the observations or CMIP5 results (not 
shown). There are, however, significant warming 
trends for T34 in both the observed and CMIP5-ALL 
ensemble-mean data, but not for the NAT runs (Fig. 
9.2a). No significant increasing trend is evident in 
the ensemble maximum T34 for either ALL or NAT. 
The best estimate (median) FAR calculated by using 
thresholds corresponding to the 96th percentiles of 

Fig. 9.2 (a) Time series of MA temperatures (T34) computed from CANGRD (blue) dataset and the ensemble 
mean T34 for experiments ALL (red) and NAT (green), along with linear trends for the corresponding series. Also 
shown are the time series of ensemble maximum for ALL (dashed black) and NAT (blue dashed). (b) Empirical 
distribution of FAR computed with thresholds set as the 96th percentiles of T34 from the individual ALL runs. (c) 
1950–2015 time series of the MJJ H-index computed from NCEP reanalysis (blue) and the ensemble minimum 
(green), median (black), and maximum (orange) of H for experiment ALL. Gray shading indicates the range 
between the 25th and 75th percentiles. The CMIP5 historical simulations end at 2005 and ensemble statistics 
for H from 2006 to 2015 are computed from the RCP4.5 projection results. (d) As in (b) but for the MJJ H-index 
and computed with thresholds set as the 96th percentiles of H from the ALL runs. 
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T34 in ALL runs (i.e., the same percentile for the T34 
observed for 2015) is about 0.49 (Fig. 9.2b). This sug-
gests that external forcing (mainly anthropogenic 
forcing) may have doubled the risk for the occurrence 
of the recent extreme high T34 that resulted in the early 
snowmelt, as evidenced by the early peak flows in the 
streamflow data (BCRFC 2015b). We note, however, 
that the FAR estimate has a large spread. 

How ACC might have affected the MJJ conditions 
is examined next. Figure 9.1c shows that both T and 
P increased between 1950 and 2015. Given that there 
is no trend in the area-average SPEI (Fig. 9.1d), it is 
likely that the effects of increasing P on surface wa-
ter balance could have been offset by the increase in 
evapotranspiration due to the warming temperatures 
during this time. Regardless of whether the increases 
in T and P were the result of ACC, the results suggest 
they currently do not have detectable influence on 
surface water balance in MJJ and thus drought risk 
in the region.

Next we assess whether GHG forcing has affected 
the upper ridge that creates the meteorological condi-
tions (i.e., low P and high T) that are critical for the 
development of extreme drought. The bounds of H 
computed from either the ALL or NAT ensembles 
are comparable to those exhibited in the H-index 
derived from the NCEP reanalysis, suggesting that 
the “observed” variability of H was reproduced by 
the models in these two experiments. No significant 
trend (at 5% level) is detected for either the NCEP H 
or ensemble statistics (median, extrema, etc.) for the 
two CMIP5 experiments (Fig. 9.2c; results are not 
shown for NAT), suggesting that GHG forcing has 
not produced detectable change in the intensity of the 
west coast upper ridge and the attendant increase in 
the risk of drought in the area.

Lastly, we examine if ACC has increased the risk of 
extreme H that are associated with extreme droughts. 
Results show that the exceedance probability for 
extreme H in ALL runs is similar to and perhaps 
somewhat smaller than that in NAT runs (Fig. 9.2d), 
suggesting that GHG forcing has not resulted in de-
tectable increase in the risk of extremely high H, and 
consequently the occurrence of intense stationary 
upper ridge and associated extreme warm and dry 
conditions. Similar results are also obtained for a 
parallel analysis that was carried out by constructing 
H based on the Z’ composited over the three driest 
MJJ during the 1950–2015 period. 

Concluding remarks. The multifaceted characteristics 
and forcings of droughts render attribution analysis 

of their causes a challenging task, particularly for a 
region where both cold- and warm-season processes 
are critical for drought development. Results from 
this study indicate that ACC likely played a role in 
causing the warm late-winter temperatures and the 
associated reduction in snowpack that set the stage 
for the 2015 drought. On the other hand, there is no 
detectable evidence that GHG forcing influenced the 
intensity or the likelihood of occurrence for the strong 
and persistent upper-air ridge off the west coast that 
brought the record heat and dryness in MJJ, which 
escalated the drought to an extreme event. The results 
thus suggest that the extreme drought was likely an 
outcome of anthropogenic effect that has increased 
the occurrence of extreme warm spring temperatures 
and natural climate variability that caused the per-
sistent upper ridge. The climate of western Canada 
is known to be inf luenced strongly by key Pacific 
climate variability modes on sub-seasonal to multi-
decadal time scales (Gan et al. 2007). For instance, 
the developing intense 2015–16 El Niño could have 
contributed to the extreme summer conditions. How-
ever, the question of whether or not El Niño played 
a role does not alter the conclusion that the extreme 
MJJ conditions were mainly a result of natural vari-
ability. Lastly, it is noteworthy that analysis of CMIP5 
projections suggests that both late-winter warming 
and the west coast upper ridge could be enhanced in 
response to GHG forcing during the latter part of this 
century. As such, effects of changes in warm-season 
precipitation and temperature on the surface water 
budget might not offset each other, or may even rein-
force each other in the future. The collective effects of 
these projected changes on future extreme droughts 
in western Canada are being investigated and the 
results will be reported elsewhere. 
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10. HUMAN CONTRIBUTION TO THE RECORD SUNSHINE 
OF WINTER 2014/15 IN THE UNITED KINGDOM

niKolaos Christidis, MarK MCCarthy, andrew Ciavarella, and peter a. stott

Observational data of sunshine duration since 1930 
from the Met Office National Climate Information 
Centre (NCIC; Perry and Hollis 2005) reveal that 
winter 2014/15 was the sunniest in the United 
Kingdom (Fig. 10.1a). The common perception of 
drab British winters is seemingly challenged by the 
increasing trend of 2.4 ± 0.7 sunshine hrs decade−1 
(mean ± standard deviation) during 1930–2015 
(Fig. 10.1a). With winters in the region projected to 
become warmer and wetter in a changing climate (van 
Oldenborgh et al. 2013), increasing sunshine would 
suggest longer sunny spells between heavier rainfall 
events. Brighter winters may also enhance solar 
energy production. Annual sunshine over western 
Europe was found to follow periods of dimming in 
the 1960–80s and brightening thereafter, while large 
positive seasonal trends are particularly evident in 
winter (Sanchez-Lorenzo et al. 2008). Contrary to 
the changes in Europe, a sunshine decline in recent 
decades has been observed in parts of the world where 
aerosol concentrations have been increasing, such as 
China and the Indian subcontinent (Wang et al. 2012; 
Liao et al. 2015; Niroula et al. 2015).

We attempt to formally establish the role of the 
overall anthropogenic forcing on the climate based 
on ensembles of simulations with and without 
anthropogenic effects produced with an atmospheric 
model. This well-established methodology (Pall et al. 
2011; Christidis et al. 2013) provides distributions of 
climatic variables in the actual (ALL forcings) and 
natural (NAT) climate, constructed with the two 
ensembles. Probabilities P1 and P0 of a threshold 
exceedance computed with the ALL and NAT 
simulations help assess the anthropogenic effect in 
terms of the fraction of attributable risk (FAR; Allen 

2003), defined as 1 − (P0 / P1). FAR values close to 
unity indicate prominent human influence on the 
event. Changes in the return time of extreme events 
(estimated from inverse probabilities) can also be 
examined.

As models do not provide a sunshine duration 
diagnostic, we employ the downward solar (SW) flux 
at the surface as a proxy (Fig. 10.1a). Observed winter 
sunshine hours and solar radiation averaged over the 
United Kingdom have a correlation of 0.9 over the 
common observational period, though individual 
years may differ in sign of anomaly (e.g., 2010). Cloud 
cover (correlation coefficient 0.3 for inverse variable 
estimated from observations) would be less suitable 
in our analysis, as it also incorporates a nighttime 
component. SW winter flux in 2014/15 is a joint re-
cord together with 2007/08, though flux observations 
cover a considerably shorter period than sunshine.

We employe d  t he  Had le y  C ent re  e vent 
attribution system (Christidis et al. 2013), built on 
the HadGEM3–A model, to generate the ALL and 
NAT simulations. A major upgrade of the model 
was recently undertaken within the EUCLEIA 
project (http://eucleia.eu/). As a result, our system 
now features the highest resolution model used 
in attribution studies, with 85 vertical levels and 
about 60-km horizontal resolution. Ensembles of 
15 simulations were produced for both the ALL and 
NAT experiments, which cover the period 1960–2013. 
Observed sea surface temperatures (SSTs) and sea 
ice data (Rayner et al. 2003) were used as boundary 
conditions in the ALL simulations. An estimate of the 
anthropogenic warming in the SSTs obtained from 
atmosphere–ocean coupled models (Stone 2013) was 
subtracted from the SST observations in the NAT 
simulations and the sea ice was adjusted accordingly 
(Christidis et al. 2013). Figure 10.1b depicts the 
modeled time series of the SW winter flux anomaly 
relative to 1961–90 corresponding to the ensemble 

Extreme winter sunshine in the United Kingdom, as observed in the record high 2014/15 season, has 
become more than 1.5 times more likely to occur under the influence of anthropogenic forcings. 
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mean of the two experiments, together with their ± 
2 standard deviation (SD) range. An increase relative 
to the natural world becomes evident after the 1990s. 
The 2014/15 f lux was 1.55 times above the mean 
during the observational period (1998–2012), which 
corresponds to an anomaly estimate of 4.1 W m−2 
(green line in Fig. 10.1b). This estimate is subsequently 
used as a threshold to calculate the probabilities of 
extreme events P1 and P0.

Modeled fluxes for the actual climate are evaluated 
against NCIC observations and data from the NCEP–
NCAR reanalysis (Kalnay et al. 1996). We select the 
common winters in the three datasets and using 
anomalies relative to the common period mean, 
we conduct two-sided Kolmogorov–Smirnov (KS) 
tests that show no significant difference between the 
simulated fluxes and the reanalysis or observational 
data (P values greater than 0.1; Fig. 10.1c). The good 

agreement remains when the model is evaluated over 
a longer period against the reanalysis (which includes 
more years than the observations).

Apart from the role of anthropogenic climate 
change, the possible contribution from the at-
mospheric f low in winter 2014/15 to the extreme 
sunshine will also be considered in our study (Fig. 
10.1d). Synoptic conditions are often crucial to the 
occurrence of extremes (Wallace et al. 2015; Deser et 
al. 2012). For example, a persistent southwesterly flow 
over the United Kingdom was a key factor to the ex-
treme rainfall in the winter before the one examined 
in this study (Christidis and Stott 2015). Figure 10.1d 
illustrates a predominantly zonal westerly f low in 
winter 2014/15 (also seen in the surface pressure pat-
tern and consistent with the observed positive phase 
of the North Atlantic Oscillation), which transports 
moist air over the United Kingdom and would not 

Fig. 10.1. (a) U.K. winter sunshine (orange), inverted cloud cover (gray), and solar flux (green) time series 
constructed with NCIC observations and normalized relative to the common observational period. (b) Time 
series of winter flux anomalies relative to 1961–90 from the ALL (red) and NAT (blue) experiments. The thick 
lines correspond to the ensemble mean, and the thin lines mark the ± 2 standard deviation range. The 2014/15 
anomaly estimate is shown in green. (c) Modeled flux anomalies in recent winters (histogram) and the ± 1 
standard deviation range from different datasets (whiskers). KS tests examine whether the modeled data are 
significantly different from the other datasets. (d) Winter mean geopotential height (red) and wind (blue ar-
rows) anomalies relative to 1961–90 at 500 hPa constructed with reanalysis data.
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generally be expected to provide favorable condi-
tions for sunshine. The warming ocean seen in SST 
observations would also not favor extreme sunshine, 
as it increases the amount of water vapor in the atmo-
sphere. The observed 2014/15 winter mean SST over 
the wider U.K. region is close to its mean value after 
1980 when the sunshine increases and is therefore 
unlikely to have influenced the event.

Results. We first estimate the return time correspond-
ing to the 2014/15 solar flux anomaly and investigate 
how it has changed in the present climate relative to 
the natural world, irrespective of the atmospheric 
circulation (i.e., under any synoptic conditions). 
We use the winters of the most recent simulated 
decade (2004–13) as a proxy of the present climate 
(i.e., 150 seasons for each experiment) and construct 
distributions of the solar f lux anomaly with and 
without human influence. Estimates of P1 and P0 are 
then obtained from the two distributions using the 
generalized Pareto distribution, while uncertainties 
are derived with a Monte Carlo bootstrap procedure 
(Christidis et al. 2013). In that way, we construct the 
return time (inverse probability) distributions shown 
in Fig. 10.2a. The results indicate that anthropogenic 
forcings lead to a marked decrease in the return time 
from 48 to 14 years (best estimates, defined as the 
50th percentile of the distributions). The distribution 
of the FAR is shown in Fig 10.2b. The best estimate 
of the FAR is 0.72, suggesting that human influence 
increases the chances of extreme events by a factor 
of 3.6 (5%–95% uncertainty range: 1.6–17.2). We also 
examine how the chances have changed in consecu-
tive decades since the 1960s (Fig. 10.2c). The return 
time decreases from over a century in the mid-1960s 
to about 15 years after the mid-1990s and remains well 
below the NAT estimates in the last 20 years.

To assess the effect of the atmospheric circulation, 
we adopt the approach of Christidis and Stott (2015), 
whereby we partition the simulated winters between 
those that resemble the reference flow pattern (Fig. 
10.1d) and those that do not. The grouping is based 
on the correlation coefficient over the wider U.K. 
region marked by the box in Fig. 10.1d. To separate 
the circulation effect from that of anthropogenic 
forcings, we only use the NAT simulations, which 
yield a total of 810 winters, 197 of which belong to the 
high-correlation group with correlation coefficients 
above 0.6. The mean f low of the highly correlated 
seasons resembles the reanalysis pattern, whereas 
the mean of winters with low correlations displays a 
weak easterly flow (see online supplemental material). 

The latter is associated with colder and drier 
continental air over the United Kingdom, which is 
more conducive to sunny conditions. Indeed, we find 
that winters with low-pattern correlations are about 
14 times more likely to break the 2014/15 flux record 
(5%–95% uncertainty range: 3.7 to >103). Our findings 
are not too sensitive to the choice of the correlation 
coefficient used to discriminate between seasons (see 
online supplemental material).

Conclusions. Evidence of human influence on winter 
sunshine extremes in the United Kingdom is shown 
here, consistent with an observed increasing trend in 

Fig. 10.2. (a) Normalized distributions of the return 
time of an extreme winter sunshine event in the United 
Kingdom, defined as an exceedance of the 2014/15 
solar flux anomaly. The distributions were constructed 
with (red) and without (green) anthropogenic climate 
change. (b) Normalized FAR distribution measuring 
how much human influence changes the likelihood 
of an extreme winter sunshine event. The change in 
probability is shown on the top x axis. (c) Change in the 
return time of extreme events with (red) and without 
(green) anthropogenic climate change in consecutive 
decades. The best estimate (50th percentile) is 
represented by the cross, and the 5%–95% uncertainty 
range is marked by the whiskers.
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sunshine hours in recent decades. This trend together 
with internal variability appear to have been key 
drivers of the 2014/15 record, which occurred within 
a meteorological context not typical of sunny condi-
tions. Changes in aerosol emissions constitute the 
component of the anthropogenic forcing most likely 
to affect sunshine (Sanchez-Romero et al. 2014). Un-
like winter, NCIC observations do not show a notable 
trend in summer sunshine, when one might expect 
the direct effect from reduced aerosol concentrations 
to be larger due to the decreased cloud amount. The 
discrepancy might be a result of the indirect effect 
linked to changes in cloud properties that could be 
stronger in winter, though this needs to be further 
investigated in future work.
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11. THE ROLE OF ANTHROPOGENIC WARMING IN 2015 
CENTRAL EUROPEAN HEAT WAVES

sebastian sippel, FriederiKe e. l. otto, Milan FlaCh, and geert Jan van oldenborgh 
 

Summer 2015 in Europe. The summer 2015 in Europe 
was highly unusual, as persistent heat and dryness 
prevailed in large parts of the continent. In central 
and eastern Europe, a combination of record-low 
seasonal rainfall (Orth et al. 2016) and record-high 
monthly July/August temperatures were observed 
over an area stretching from France to western Russia 
(Supplemental Fig. S11.1). The anomalous tempera-
tures were caused by a sequence of four intense heat 
waves that struck the region from the end of June 
to early September (e.g., Fig. 11.1a). It is precisely 
the few-day heat that causes problems with human 
health, especially when combined with high humidity 
(McGregor et al. 2010). We analyze seasonal maxima 
of 3-day mean temperature (Tair3d, max) and seasonal 
maxima of 3-day daily maximum wet bulb tempera-
ture (WBTX3d, max), a measure of human thermal dis-
comfort that combines temperature and humidity and 
is a proxy for heat stress on the human body (Fischer 
and Knutti 2013; Sherwood and Huber 2010).

The series of heat waves began with a strongly 
meandering jet stream, that is summertime “omega-
blocking” (Dole et al. 2011), and the advection of very 
warm subtropical air into central and western Europe 
(Supplemental Fig. S11.1). Later in the season, the 
jet stream was displaced to the north, so that stable 
high-pressure systems could prevail over central and 
eastern Europe bringing heat there. The first heat 
wave in early July was hence most pronounced in 
western parts of the continent, while south-central 
and east-central Europe experienced the highest 

temperatures in the subsequent heat waves later in 
the season (Fig. 11.1b). 

Anomalies in the hottest 3-day mean temperature 
reached up to +6°C relative to climatology (Figs. 
11.1c,d), and temperature records were broken, in-
cluding nationwide records (Kitzingen, Germany: 
40.3°C; https://weather.com/news/climate/news/eu-
rope-heat-wave-poland-germany-czech-august-2015), 
various station records stretching from France to 
the Balkan countries and southern Sweden (www 
.meteofrance.fr/actua l ites/26913226-episode 
-de-tres-fortes-chaleurs-en-france), nighttime tem-
peratures (Vienna, Austria: 26.9°C), record 3-day 
mean temperatures across central Europe (Fig. 11.1e), 
and inland water temperatures (e.g., Lake Constance). 
Europe experienced the hottest August ever recorded 
(NOAA 2016), and the entire summer season ranked 
third after the unusual summers of persistent heat in 
2003 and 2010 with hotspots in France and western 
Russia, respectively (Barriopedro et al. 2011; Stott et 
al. 2004). This extraordinary sequence of events raises 
the question to what extent human-induced climate 
change played a role in short-term heat waves beyond 
natural climate variability.

A potential anthropogenic contribution to the 
summer 2015 heat events had already been inves-
tigated in near–real time (www.climatecentral.org 
/europe-2015-heatwave-climate-change), and in the 
present paper we build upon and substantiate the 
previous analysis. We investigate two diagnostics 
(Tair3d, max and WBTX3d, max) at four locations in long-
term station-based observational records and in a 
large ensemble of consistently bias-corrected regional 
climate model simulations.

Methods and Data. First, we analyze long-term 
observational data (115 years of data for each station) 
from the ECA&D dataset (Klein Tank et al. 2002) 
of four central and eastern European stations that 

Station-based observations and bias-corrected model simulations show that the frequency of 
short-term heat waves in central Europe has increased, albeit quantitative estimates of risk ratios 

differ considerably between methods.   

AFFILIATIONS: sippel—Max Planck Institute for 
Biogeochemistry, Jena, Germany; otto—Environmental Change 
Institute, University of Oxford, Oxford, United Kingdom; 
FlaCh—Max Planck Institute for Biogeochemistry, Jena, Germany; 
van oldenborgh—Weather and Climate Modeling, Koninklijk 
Nederlands Meteorologisch Instituut, De Bilt, Netherlands

DOI:10.1175/BAMS-D-16-0150.1 

A supplement to this article is available online (10.1175 
/BAMS-D-16-0150.2) 



S52 DECEMBER 2016|

Fig. 11.1. (a) Time series of 3-daily mean temperatures in summer 2015 at the Jena site (gray shading 
denotes ±2-σ deviations relative to long-term interannual variability). (b) Day of seasonal temperature 
record in summer 2015. (c) Time series of seasonal maximum of 3-day mean temperatures (Tair3d,max) at 
the Jena site (summer 2015 is marked by a red dot). (d) Anomalies in Tair3d,max over Europe in summer 
2015 relative to 1981–2010. (e) Difference to previous heat records (1950–2014) in Tair3d,max in the 
EOBS dataset. Positive differences indicate a new heat record in JJA 2015. (f),(g) Return time plots of 
GEV fits for Tair3d, max and WBTX3d, max, respectively, at the Jena site. Red (orange) lines indicate the 
fit for 2015 climate, dark-blue (light-blue) lines indicate the fit for 1901 climate for a smoothed global 
mean temperature covariate (smoothed local summer temperature covariate).
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were affected by the heat waves in summer 2015 
(Table 11.1), using data from 1901 onward. For each 
station, annual time series of Tair3d, max and WBTX3d, 

max are calculated for July–August. WBTX3d, max is 
derived from daily maximum air temperature and 
vapor pressure (computed from relative humidity 
and daily mean temperature; www.srh.noaa.gov 
/epz/?n=wxcalc_rh) using an iterative procedure 
based on the psychrometric equation (Sullivan and 
Sanders 1974). Subsequently, generalized extreme 
value (GEV) statistical models are fitted to the data 
(Coles 2001) excluding the year 2015, using two 
different assumptions about changes in climate: 

1) A “local” station-based covariate to the location 
parameter of the GEV (21-year smoothed local sum-
mer temperatures, SLST) as a proxy for any changes 
to local climate;

2) A “global” covariate to the location parameter 
(21-year smoothed global mean temperatures, SGMT) 
as a proxy for anthropogenic influence on climate 
(van Oldenborgh et al. 2012). 

To avoid overfitting the relatively low number 
of data points, no dependence in the scale or shape 
parameter is assumed. Probability ratios (PR) based 
on the GEV as a metric to quantify human-induced 
change in the odds of extreme events (PR = pANT/pNAT; 
Fischer and Knutti 2015) were obtained by calculating 
the probability of an event as warm or warmer than 

the observed 2015-event in a 2015-climate (pANT), and 
in 1901 as a proxy for preindustrial climate.

Second, a model ensemble-based assessment us-
ing the global general circulation model HadAM3P 
(1.875° × 1.25° × 15-min resolution) and a dynami-
cally downscaled regional variant (HadRM3P, 0.44° × 
0.44° × 5-min resolution) is conducted to complement 
the empirical analysis (see Massey et al. 2015 for all 
details regarding the model setup). Initial condition 
ensembles are generated for an anthropogenic sce-
nario (ANT, n = 2286), in which the model is driven 
by observed (2015) sea surface temperatures (SSTs) 
and anthropogenic forcings in atmosphere-only mode 
for 1 year at a time (starting 1 December; Massey 
et al. 2015); and a natural scenario (NAT, n = 4414) 
with all anthropogenic forcings (i.e., greenhouse 
gases, aerosols, halocarbons, and ozone) set to pre-
industrial levels and 11 different estimates of natural 
SSTs (Schaller et al. 2014). For each of the four loca-
tions (centered over a 1° × 1° grid cell), a resampling 
bias correction strategy based on an observational 
constraint is applied to the model ensemble (Sippel 
et al. 2016) because the raw model output is notori-
ously too hot and dry (Black et al. 2015; Massey et al. 
2015), severely compromising attribution statements 
(Supplemental Fig. S11.2). The seasonal maximum 
21-day average temperature from the E-OBS da-
taset (Haylock et al. 2008) is used as a resampling 

Table 11.1. Location of meteorological stations and probability ratios estimated from 
observed and simulated data. Very large PR with a lower bound (5% confidence interval) 
exceeding 10 are reported as >10. PR from the model output are given as 5th to 95th 
percentile of 100 bootstrapped replicates (n = 1000). A PR range exceeding one would be 
significant at 95% confidence under a one-sided test. PR for the original model simulations 
(i.e., non-bias corrected) are indicated for comparison only. *The observed De Bilt series 
contains a well-known inhomogeneity in 1950, so the homogenized series from KNMI was 
used instead. **Humidity data was not available for Vienna and Minsk in the ECA&D dataset 
for the year 2015.

Station De Bilt* Jena Minsk Vienna

Country Netherlands Germany Belarus Austria

Location 52°06’N, 5°11’E 50°55.5’N, 11°35’E 53°52’N, 27°32’E 48°14’N, 16°21’E

Tair3d, max, 2015 (°C) 25.2 28.5 27.3 29.1

PRHadRM3P, BC-anom 1.2–1.4 1.1–2.5 1.7–2.5 1.8–2.9

PRHadRM3P, BC-anom, obs. trend 4.7–7.5 4.1–8.7 3.4–5.2 >10

PREOBS, GEV-GMT >10 >10 >10 >10

WBT3d, max (2015, °C) 22.9 24.3 n/a** n/a**

PRHadRM3P, BC-anom 1.3–1.8 1.5–3.1 n/a** n/a**

PRHadRM3P, BC-anom, obs. trend >10 2.7–7.7 n/a** n/a**

PREOBS, GEV-GMT >10 >8.6 n/a** n/a**
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constraint, and a percentile-based transfer func-
tion is calibrated for each station separately on the 
1986–2010 climatology using an identical model setup 
(Massey et al. 2015). Subsequently, both natural and 
anthropogenic simulations are resampled using the 
derived relationship (Sippel et al. 2016). In contrast to 
widely used methods like quantile–quantile mapping, 
resampling retains the full multivariate structure and 
physical consistency of the model output but reduces 
the available ensemble size and chooses colder and 
wetter ensemble members, therefore alleviating the 
hot and dry bias (Sippel et al. 2016). In the context 
of event attribution, it is applied for the first time in 
this paper (Figs. 11.2a–d; see next section). To avoid 
potential mean biases due to station location, the 
mean of the resampled ensemble is adjusted to the 
station mean (Supplemental Figs. S11.2c,d). Results 
are demonstrated exemplarily for one station (Jena), 
and probability ratios are reported for all stations.

Resu l t s  and D i scus s i on . 
The statistical analysis of 
est imated return t imes 
of Tair3d, ma x reveals that 
2015-like heat events occur 
i n  present  d ay c l i mate 
approximately ever y 27 
years in Jena with the one-
sided 5% lower confidence 
bound at 16 years (Fig. 11.1). 
Including both the local 
and global climate change 
covariates into the GEV fit 
demonstrates a profound 
increase in return times of 
those types of events relative 
to earlier years for both Tair3d, 

max and WBTX3d, max in Jena 
(Figs. 11.1f,g) and all other 
locations with probability 
ratios typically exceeding 
a value of 10 (Table 11.1). 
The intensity of heat waves 
increases by about 3°C in 
Tair3d, max but only 1.1°C in 
WBTX3d, max (Figs. 11.1f,g). 
In spite of this difference, the 
increase in the probability 
ratio is similar.

A simi lar ana lysis is 
conducted in a very large 
ensemble of model simula-

tions. The 21-day resampling constraint considerably 
improves the representation of short-term heat waves 
by avoiding physically implausible simulations (Figs. 
11.2a–d) and improving the simulated variability of 
heat waves (Supplemental Figs. S11.2c,d). The corre-
lation structure between the temperature constraint 
and short-term heat stress (WBTX3d, max) in the 
observations is reproduced in the resampled model 
ensemble but not in the original model ensemble 
(Figs. 11.2a,c). This indicates that robust attribution 
statements for impact-related, and thus multivariate 
quantities (such as WBTX3d, max), require a physically 
consistent bias correction of model output.

Consistent with the observations, the model-based 
assessment shows a shift in the return periods toward 
more frequent and more pronounced summer heat 
stress (Fig. 11.2b) in all locations (Table 11.1) and 
both bias-corrected and original simulations. The 
probability ratios derived from the bias-corrected 

Fig. 11.2. (a),(c) Correlation between 21-day seasonal maximum temperature 
(observational constraint for resampling bias correction) and impact-related 
quantities (Tair3d, max and WBTX3d, max, respectively). Pink dots correspond to 
1986–2010, the period used for calibration of the bias correction resampling 
function. (b),(d) Return time plots for original and bias-corrected model output 
for Tair3d, max and WBTX3d, max, respectively.
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model ensembles range from 1.1 to 2.9 (Tair3d, max) 
for the four locations (PR = 1.3 − 3.1 for WBTX3d, max 
in Jena and De Bilt), depending on the magnitude 
of the 2015 event, the model-simulated warming, 
and interannual variability. These estimates are thus 
lower than those estimated from the observations 
but can be largely explained by method- and data-
related differences. For instance, the statistical 
method assumes that the trend is caused fully by 
anthropogenic factors, while the model analysis is 
based on a “real counterfactual” scenario but tends 
to underestimate warming trends in temperature 
extremes in Europe (Min et al. 2013). The mean 
observed change across all locations between 2015 
and 1901 of 3.1°C (Tair3d, max) and 2.2°C (WBTX3d, 

max) is much larger than the original (+1.1°C in Tair3d, 

max and +0.5°C in WBTX3d, max) and bias corrected 
(+0.9°C in Tair3d, max and +0.5°C in WBTX3d, max) model 
simulations. Hence, replacing the model-simulated 
warming by the observed change between 1901 and 
2015 causes roughly a tripling of probability ratios 
for the bias-corrected simulations at all locations 
(e.g., 3.4–8.7 for Tair3d, max and 2.7 to exceeding 
10 for WBTX3d, max; cf., Table 11.1). Furthermore, 
uncertainties due to event selection (Christiansen 
2015), dependence on the spatial and temporal scale 
(Angélil et al. 2014), high nonlinearity in attribution 
metrics such as the probability ratio (Supplemental 
Fig. S11.2), and a slightly higher variability on sub-
monthly time scales in the model simulations than 
in the observations despite bias correction further 
contribute to model-data discrepancies and variability 
in the presented estimates of the probability ratios.

Conclusion. In conclusion, the multimethod analysis 
applied in this paper provides consistent evidence that 
human-induced climate change has contributed to the 
increase in the frequency and intensity of short-term 
heat waves and heat stress such as the central and 
eastern Europe 2015 event. 

However, quantitative estimates of the risk ratio 
at local scales can differ widely depending on the 
exact methodologies applied, thus highlighting large 
method- and data-related uncertainties. In this study, 
due to the large discrepancy between observed and 
modeled trends in temperature extremes, the model-
estimated probability ratios are lower than those 
estimated from the observations. 
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12. THE 2015 EUROPEAN HEAT WAVE

buwen dong, rowan sutton, len shaFFrey, and laura wilCoX 

Observations. An extreme summer heat wave set 
temperature records across Europe during June and 
July. On 1 July, London experienced its hottest July 
maximum temperature on record: 36.7°C. Paris 
recorded its second hottest day ever on 2 July, with a 
high temperature of 39.7°C, and Berlin experienced 
its highest temperature on record, 37.9°C, on 4 July 
(BBC News 1 July 2015; Liberto 2015). Averaged 
over central Europe (Fig. 12.1a), the seasonal mean 
(June–August) surface air temperature (SAT) 
anomaly was 2.40°C above the 1964–93 mean: 3.65 
standard deviations of the interannual variability. 
This magnitude of warming is comparable with 
previous hot summers in Europe, such as 2003 (e.g., 
Schaer et al. 2004; Christidis et al. 2015) and 2010 
(e.g., Barriopedro et al. 2011; Otto et al. 2012) when 
summer mean SAT anomalies over the same region 
were 2.38°C and 2.42°C (3.63 and 3.68 standard 
deviations), respectively. In addition to the very hot 
mean SAT, records over central Europe were set for 
some temperature extremes: the annual hottest day 
temperature (TXx), seasonal mean daily maximum 
temperature (Tmax), and diurnal temperature range 
(DTR) were 4.04°, 3.04°, and 1.53°C above the 1964–93 
mean. The 2015 summer extreme hot temperature 
occurred in the context of a decade of summer 
warming and increases in hot temperature extremes, 
and in fact, 2015 was the driest and the second hottest 
summer in recent decades (Figs. 12.1a,b). 

The observed spatial patterns of 2015 anomalies 
in SAT and temperature extremes, relative to 
the 1964–93 mean, indicate coherent positive 
anomalies over central Europe, but weak negative 
anomalies over northern Europe (Figs. 12.1c–h). 
These temperature anomalies are associated with an 

anomalous anticyclonic circulation (not shown) and 
reduced precipitation over central Europe and a weak 
increase over northern Europe (Supplemental Figs. 
S12.1b,g). Importantly, the magnitude of changes in 
Tmax and TXx is about twice that in seasonal mean 
daily minimum temperature (Tmin) and the annual 
hottest night temperature (TNx), suggesting an 
important role of land–atmosphere–cloud feedbacks 
associated with the precipitation deficit over central 
Europe in summer. This results in a reduction of 
evaporation and cloud cover associated with soil 
drying, enhancing Tmax and TXx more than Tmin 
and TNx through increased daytime downward 
shortwave radiation and decreased daytime upward 
latent heat f lux (Vautard et al. 2007; Fischer and 
Schär 2010; Mueller and Seneviratne 2012; Boé and 
Terray 2014; Miralles et al. 2014; Perkins 2015; Dong 
et al. 2016). Precipitation anomalies in the winter 
and spring seasons before summer 2015 were much 
smaller than in summer over central Europe (not 
shown). This implies the land–atmosphere–cloud 
feedback on the 2015 European heat wave was mainly 
through simultaneous precipitation deficit rather 
than a presummer deficit over central Europe.

What caused these anomalous summer conditions 
over central Europe in 2015? Relative to the 1964–93, 
warm sea surface temperatures (SSTs) were present 
in many regions (Fig. 12.1i), with a prominent warm 
anomaly (>1.2°C) in the tropical Pacific during the 
developing phase of the exceptionally strong 2015/16 
El Niño (WMO 2016). There were also SST anomalies 
along the Gulf Stream extension in the North Atlantic 
with a cooling to the north and warming to the 
south. Associated with this feature is an enhanced 
meridional SST gradient along the Gulf Stream 
extension. This might have favored a northward 
shift of the North Atlantic summer storm track 
(e.g., Ogawa et al. 2012; Dong et al. 2013a and 2013b; 
Duchez et al. 2016), which would result in reduced 
precipitation in summer 2015 over central Europe 
(Supplemental Fig. S12.1g). The large warming in the 

A heat wave swept across central Europe in summer 2015. Model experiments suggest that anthropogenic 
forcings were a major factor in setting the conditions for the development of the 2015 heat wave.
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Arctic might also be a factor for the 2015 summer heat 
wave (Coumou et al. 2015).  

Climate model experiments. Relative to 1964–93, 
there were significant increases in greenhouse gas 
(GHG) concentrations (e.g., WMO 2015) and also 

significant changes in anthropogenic aerosol (AA) 
precursor emissions with reductions from Europe and 
North America and increases from Asia (Fig. 12.1j;  
Lamarque et al. 2010 and 2011). A set of climate model 
experiments has been carried out to identify the 
relative roles of changes in SST/sea ice extent (SIE) and 

Fig. 12.1. (a),(b) Time series and (c)–(h) spatial patterns of summer or annual anomalies relative to 1964–93 
[black bar in (a)] climatology. (a),(b) Time series averaged over central Europe [45°–55°N, 0°–35°E, land only, 
blue box in (c)–(h)]. (c)–(h) Spatial patterns of 2015 anomalies in summer mean SAT, TXx, TNx, summer mean 
Tmax, Tmin, and DTR from the gridded E-OBS dataset (version 12.0; Haylock et al. 2008). (i) Spatial patterns 
of 2015 summer SST anomalies relative to 1964–93. (j) Changes in annual mean sulphur dioxide emissions (g 
m−2  yr−1) in 2015 relative to 1964–93. The units are °C for temperatures and mm day−1 for precipitation (Pr).
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anthropogenic forcings (GHG and AA) in shaping 
the 2015 European summer heat wave. In this study, 
we do not address the anthropogenic contribution to 
SST/SIE changes, but rather consider these changes as 
an independent forcing factor. We use the atmosphere 
configuration of the Met Office Hadley Centre Global 
Environment Model version 3 (HadGEM3-A; Hewitt 
et al. 2011), with a resolution of 1.875° longitude by 
1.25° latitude and 85 vertical levels. The CONTROL 
experiment is performed for the period 1964–93. 
Two other experiments, 2015ALL and 2015SST, are 
performed for the period November 2014 to October 
2015, use 2015 SST/SIE boundary conditions, but they 
differ in the specification of GHG and AA forcings 
(Table 12.1). All experiments are 27 years long, with 
only the last 25 years used for analysis (as an ensemble 
of 25 one-year members).

The CONTROL experiment reproduces both the 
mean and interannual variability of summer SAT 
over central Europe, despite the fact that there is no 
interannual variability in SST/SIE, GHG, and AA 
(Supplemental Fig. S12.1a). However, there are biases 
in the simulated seasonal mean precipitation and some 
temperature extremes in CONTROL (Supplemental 
Figs. S12.1b–e). Precipitation is overestimated by 0.23 
mm day−1 (~10% larger than observations), Tmax is 
underestimated by 1.5°C, and Tmin is overestimated 
by 1.5°C. As a result, seasonal mean SAT is similar 
to observations, but DTR is underestimated by about 
3.0°C in CONTROL (a common bias in AGCMs and 
RGCMs; e.g., Kysely and Plavcova 2012; Cattiaux et 
al. 2015).  The underestimation of Tmax, TXx, and 
DTR, and overestimation of Tmin and TNx (not 
shown) imply that the cloud cover over the region in 
the model might be overestimated, as suggested by 
the overestimation of area-averaged precipitation. 
Despite the mean biases in the temperature extremes, 

their interannual variability in the CONTROL 
experiment is in broad agreement with observations 
(Supplemental Figs. S12.1a–e). 

In response to all forcing changes (2015ALL), the 
area-averaged summer warming over central Europe 
is 1.6°C, compared to 2.4°C in observations (Fig. 
12.2a). This implies that about 2/3 of the observed 
summer warming might have been anticipated as a 
mean response to SST/SIE and anthropogenic forcing 
changes.  Spatial patterns of changes in SAT and tem-
perature extremes show some differences to observed 
changes (Figs. 12.1, and 12.2) with the large tempera-
ture changes in the model displaced eastward to east-
ern Europe. The model mean response shows warm-
ing and an increase in temperature extremes over 
both central and northern Europe (Figs. 12.2c–h), but 
does not capture the observed precipitation reduction 
over central Europe (not shown). Therefore, it is likely 
that the model is not capturing cloud and land surface 
feedbacks induced by precipitation changes, and thus 
underestimates the observed surface warming and 
changes in Tmax and TXx over central Europe by 
about 1/3, while simulated changes in Tmin and TNx 
are similar in magnitude to observations (Fig. 12.2a).  
The SST/SIE changes have a relatively weak effect 
on SAT and hot extremes but lead to a considerable 
increase in Tmin and TNx, likely related in part to 
water vapor feedback because increased water vapor 
in the atmosphere enhances the downward longwave 
radiation, which has a large impact on night tempera-
tures (Dai et al. 1999; Dong et al. 2016). Quantitatively, 
SST/SIE changes explain 22.5% of the area-averaged 
central European warming signal in the model, with 
the remaining 77.5% explained by GHG and AA 
changes with an assumption that the responses to dif-
ferent forcings add linearly (Fig. 12.2b), indicating a 
dominant role for the direct impact of anthropogenic 

Table 12.1. Summary of numerical experiments.

Experiments Boundary conditions

CONTROL

Forced with monthly mean climatological sea surface temperature (SST) and sea ice extent (SIE) aver-
aged over the period of 1964 to 1993 using HadISST data (Rayner et al. 2003), with greenhouse gas 
(GHG) concentrations averaged over the same period, and anthropogenic aerosol (AA) precursor 
emissions averaged over the period of 1970 to 1993 (Lamarque et al. 2010).

2015ALL
Forced with monthly mean SST and SIE from November 2014 to October 2015 using HadISST data, 
with GHG concentrations in 2014 (WMO 2015), and AA precursor emissions for 2015 from RCP4.5 
scenario (Lamarque et al. 2011).

2015SST As 2015ALL, but with GHG concentrations and AA precursor emissions the same as in CONTROL.
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forcings in changes of summer SAT and temperature 
extremes in the model mean response (Fig. 12.2b; 
Supplemental Fig. S12.2).

The various model experiments exhibit substantial 
internal variability in simulated precipitation and 
temperature extremes (Supplemental Fig. S12.1). One 
particular year in 2015ALL exhibits a decrease (rela-
tive to CONTROL) of the area-averaged precipitation 
that is as large as the observed anomaly (Supplemental 
Fig. S12.1b). The magnitudes, relative to CONTROL, 
of the area-averaged summer SAT and temperature 
extremes in this driest year are very close to the 
observed anomalies (Supplemental Fig. S12.1f). Fur-
thermore, the spatial patterns of simulated changes in 
SAT and precipitation also show good agreement with 

the observed patterns despite the eastward extension 
of large temperature anomalies in the simulation 
(Supplemental Figs. S12.1h,i). Interestingly, there are 
no such years in either the CONTROL or 2015SST 
simulation. This suggests that changes in SST/SIE 
and anthropogenic forcings set preconditions for an 
extremely dry year, such as summer 2015, to occur 
in the model simulation. The inability of the model 
to reproduce observed precipitation anomalies in the 
mean response, and the good agreement of changes 
in one particular year with observed anomalies in 
response to changes in all forcings, suggests that 
internal atmospheric variability might have played a 
significant role for the reduction in precipitation, and 
hence the severity of the 2015 European summer heat 

Fig. 12.2. (a) Observed and simulated 2015 anomalies for SAT, Pr (mm day−1), Tmax, Tmin, DTR, TXx, and 
TNx averaged over central Europe (land only) in response to changes in all forcings (2015ALL-CONTROL). 
Colored bars indicate central estimates and whiskers show the 90% confidence intervals based on a two-tailed 
Student’s t-test. (b) Model responses to different forcings. SST and SIE: Response to changes in SST/SIE 
(2015SST-CONTROL); GHG and AA: Response to changes in anthropogenic forcings (2015ALL–2015SST). 
(c)–(h) Spatial patterns of changes in temperature and temperature extremes (SAT, TXx, TNx, Tmax, Tmin, 
and  DTR) in response to all forcings (2015ALL-CONTROL). Only changes that are statistically significant at 
the 90% confidence level are plotted in (c)–(h). The unit is °C.  
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wave. Specifically, our simulations suggest internal 
variability contributed about 1/3 of the observed 
summer warming and increases in hot temperature 
extremes over central Europe, in line with attribu-
tions of the severity of the 2010 Russian heat wave 
(e.g., Dole et al. 2011; Otto et al. 2012). However, it 
is important to recognize that the quantitative par-
titioning of causes is potentially sensitive to model 
biases, such as the mean wet bias discussed earlier.

Conclusions. Summer 2015 was marked by hot and 
dry conditions over central Europe and significant 
increases in temperature extremes. Model experi-
ments indicate that high temperatures were caused 
by a combination of forced responses and internal 
atmospheric variability. Model simulations suggest 
that changes in SST/SIE and anthropogenic forcings 
explain about 2/3 (1.6°C) of the observed warming 
(2.4°C) and changes in hot temperature extremes 
over central Europe relative to 1964–93. Interestingly, 
when comparing 2015SST with 2015ALL simulations, 
the results indicate that the impact of anthropogenic 
forcings plays the dominant role. About 1/3 (0.8°C) 
of the observed summer mean warming and changes 
in hot extremes is not explained by the model mean 
response and consequently may have resulted from 
internal variability, principally through physical pro-
cesses associated with precipitation deficits. Thus, our 
results indicate that anthropogenic forcings set the 
conditions for the development of the 2015 heat wave 
in central Europe, but that internal variability was an 
important factor in explaining its extreme character.
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13. THE LATE ONSET OF THE 2015 WET SEASON IN NIGERIA

KaMoru a. lawal, abayoMi a. abatan, oliver angélil, eniola olaniyan, viCtoria h. olusoJi, 
philip g. oguntunde, benJaMin laMptey, babatunde J. abiodun, hideo shiogaMa, 

MiChael F. wehner, and dáithí a. stone 
 

Introduction. Nigeria experienced a delay in the onset 
of the wet season in 2015. Annually, the wet season 
in Nigeria starts with the steady advancement of 
the intertropical discontinuity [ITD—represented 
in this study by the average latitudinal position of 
15°C dewpoint temperature contour line between 
longitude 2°–15°E (www.cpc.ncep.noaa.gov/products 
/international/itf/itcz.shtml; Eldridge 1957; Buckle 
1996; Pospichal et al. 2010; Fig. 13.1a)] from the south 
to the north (Nicholson and Grist 2003; Omotosho 
and Abiodun 2007; Omotosho 2008). The season 
usually begins around March or April in the southern 
parts (4°–8°N) of the country, commencing almost 
one-and-a-half months later in the northern parts 
(8°N northward: Ati et al. 2002; Oguntunde et al. 
2014). In 2015, however, the northward progression 
of the onset of rainfall exhibited some anomalous 
behavior. In Apri l, the ITD did not advance 
substantially from March, being more than 2° south 
of its usual latitudinal position and also about 1° south 
of the 10th percentile of its southernmost latitudinal 
position based on the 1981–2010 climatological 
period (Fig. 13.1a). Consequently, almost the entire 
country experienced April rains that were 40% below 
normal (Fig. 13.1b). The situation improved in the 
month of May when the southern and central regions 

experienced almost normal rainfalls (i.e., ± 20%), but 
areas north of 10°N still experienced more than 40% 
rainfall deficits (Fig. 13.1c). Normal rainfall amounts 
arrived in the northern regions in June, even though 
the ITD remained about 2° south of its climatological 
latitudinal positions from April to July (Fig. 13.1a). 
According to reports from farmers (e.g., Daily Post 
[Nigeria], 21 June 2015; Okojie 2015) and personal 
conversations with some stakeholders, there were 
widespread crop failures resulting from continuous 
irregular rainfall (Agbo et al. 2015). Consequently, 
socio-economic activities, food production, and 
water resources were negatively affected during the 
year because the rainfall and growing seasons started 
much later than expected. Although the economic 
implications of the delay in the onset of the 2015 
wet season have not been quantified at the time of 
this report, the nation witnessed abrupt increases 
in the prices of food commodities, thereby affecting 
food security (www.foodsecurityportal.org/nigeria 
/indicators; Agbo et al. 2015). 

With the growing confidence of users in climate 
models (which are used for planning in order to 
mitigate the threat of climate variability and change; 
Abiodun et al. 2012; Olaniyan et al. 2015), a number 
of questions arise: Can simulations of current gen-
eration atmosphere–land climate models capture the 
late onsets such as occurred in 2015 in Nigeria? What 
is the role of anomalous sea surface temperatures 
(SSTs), as well as anthropogenic interference in the 
climate system (or non-anthropogenic interference) 
in altering the chance of the 2015 late onset of the 
rainy season over Nigeria? 
 
Data. In this study, we use daily rainfall and dew-
point observations from a network of more than 50 
meteorological stations of the Nigerian Meteoro-
logical Agency (NiMet; www.nimet.gov.ng). We also 
analyze simulations conducted with the CAM5.1 

We find no evidence that the delayed onset of the wet season over Nigeria during April–May 2015 was 
made more likely by anthropogenic influences or anomalous sea surface temperatures. 
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(Neale et al. 2012) and MIROC5 (Watanabe et al. 
2010) atmosphere–land climate models. CAM5.1 is 
run at ~1.0° spatial resolution, while MIROC5 is at 
~1.5°. Both models are run under the experimental 

protocol of the C20C+ Detection and Attribution 
Project (http://portal.nersc.gov/c20c; Stone 2013), 
with 99 and 100 simulations, respectively, run under 
observed (All-Hist) radiative, ocean surface, and 

Fig.13.1. (a) Observed mean monthly climatological and 2015 latitudinal positions of ITD over Nigeria; 
the gray shade represents the 10th–90th percentile range of the latitudinal positions of the ITD dur-
ing the 1981–2010 period. Rainfall anomalies (%) over Nigeria in (b) Apr and (c) May 2015; the dots 
represent the location of all the synoptic meteorological stations used in the study while the brown 
colors indicate rainfall deficit. SST anomalies (shade and contour; °C) over the Atlantic Ocean in (d) 
Apr and (e) May 2015.
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land use/cover boundary conditions, and another 98 
and 100 simulations, respectively, run under what 
those boundary conditions might have been in the 
absence of anthropogenic interference (Nat-Hist) 
(Angélil et al. 2016; Shiogama et al. 2013 and 2014). 
Nat-Hist anthropogenic forcings are set to circa year 
1850 values, while observed ocean temperatures and 
sea ice are cooled by spatially- and time-varying 
amount based on atmosphere–ocean models in the 
CMIP5 archive (Stone and Pall 2016, unpublished 
manuscript). In addition to substantial algorithmic 
differences, there are some distinctions in the setup 
between the models: MIROC5 uses prescribed aerosol 
precursor emissions, while CAM5.1 uses prescribed 
aerosol burdens, relevant here as simulated precipita-
tion over West Africa can be sensitive to the regional 
aerosol forcing (Tompkins et al. 2005; Rosenfeld et 
al. 2008 and 2014). In addition, MIROC5 uses year-
1850 land cover for the Nat-Hist simulations, while 
CAM5.1 uses present-day land cover; land cover/use 
change is understood to have significant effects on 
rainfall and atmospheric variables such as midtro-
pospheric wind speed, daily extreme temperatures, 
specific humidity, evapo-transpiration, etc., over 
Nigeria (Abiodun et al. 2008; Dirmeyer et al. 2010; 
Christidis et al. 2013). Given that monitoring of sea-
sonal climate and the impacts of its variability over 
Nigeria is based on precipitation, we focus on April 
and May precipitation here. Anomalies are calculated 
from the 1981–2010 precipitation climatology for all 
data sources. Furthermore, ITD are calculated from 
the dewpoint observations obtained from NiMet data 
archive and from output of the CAM5.1 and MIROC5 
simulations. Relative to the observed climatology, 
both models tend to have a northward bias in the 
ITD during the first half of the year, including the 
onset period, with the CAM5.1 ITD advancing a bit 
faster than observed during the onset season (Figs. 
13.2a,b). Beyond this bias, the positions of the ITD in 
both models closely follow the observed climatologi-
cal positions throughout the year, and the range of 
year-to-year variability is comparable to the observed 
range. Lawal (2015) found that CAM5.1 is capable 
of representing the dominant circulation processes 
during the wet season.

Results. The results from both models suggest that 
anthropogenic inf luences may have moderately 
(CAM5.1) or slightly (MIROC5) decreased the chance 
for low April rainfall and not altered the chances for 
low May rains (Table 13.1). The confidence intervals 
about these estimates however, are large, and the pos-

sible difference in April drought frequencies could 
have resulted from random sampling. The estimates 
of the risk ratio (the ratio of the probabilities in 2015 
between the All-Hist and Nat-Hist ensembles of being 
drier than the 10th percentile of the All-Hist simula-
tions during the 1981–2010 periods) are less than 1.0 
in April while the estimates are close to 1.0 in May 
(Table 13.1). In addition, the simulations suggest 
little spatial structure in the influence of anthropo-
genic emissions on the chance of low April–May 2015 
precipitation (Figs. 13.2c–f); low risk ratios in the 
northern regions in April are not robust due to the 
low rainfall usually experienced there. 

While anthropogenic inf luence may not have 
substantially affected the chance of the late onset, 
the influence of the naturally occurring anomalies 
in SSTs may be different. Figures 13.1d,e show that 
the observed SSTs (www.esrl.noaa.gov/psd/data 
/gridded/data.kaplan_sst.html; Kaplan et al. 1998;) 
over the Gulf of Guinea were warmer than normal 
during April–May 2015. Under these warmer-than-
normal SST conditions, it should have been possible 
to advect sufficient moisture to support precipitation 
(Zheng et al. 1999; Odekunle and Eludoyin 2008). It 
would also be expected that the moisture laden south-
westerly trade winds would have become more ener-
gized, buoyant, and capable of dynamically pushing 
the ITD deeply into the northern end of the country, 
thereby resulting in above-normal rainfall both at the 
coastal and inland parts of the country (Omotosho 
and Abiodun 2007). However, both models suggest 
that anomalous SSTs had little effect on the chance 
of low May 2015 precipitation while they indicate 
that anomalous SSTs might in fact have decreased 
the chance of low April 2015 precipitation over the 
country relative to amounts experienced during the 
previous eight years (risk ratio −PAll-Hist/P2007-2014, with 
the 2007–14 period used because of the availability 
of ~100-member ensembles with both models; Table 
13.1) and, in a statistically significant manner for 
CAM5.1, relative to the 1981–2010 climatology (not 
shown). This is consistent with the shift in ITD posi-
tion in CAM5.1’s All-Hist 2015 simulations relative 
to the 1981–2010 climatology (Fig. 13.2a). 

The results for soil moisture are similar to those 
of SSTs (not shown). Both models suggest that both 
the anthropogenic emissions and anomalous SSTs 
decreased the chance of dry soil (upper 10 cm) in May 
2015, but they are also consistent with no influence. 
This suggests little effect of temperature on Nigerian 
soil moisture in a warming climate. Three possible 
explanations for this are: firstly, if it has not yet rained, 
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then there is no moisture to evaporate from the soil; 
secondly, if the rains have arrived, then the air is too 
moist to support evaporation, so there is no warm-

ing effect on evaporation during these months; and 
lastly, the anthropogenic signal may be smaller than 
the internal variability of the soil moisture, that is, 

Fig. 13.2. Annual cycle of the ITD as simulated by (a) CAM5.1 and (b) MIROC5. The 10th–90th percen-
tile range of the 2015 All-Hist and Nat-Hist simulations are denoted by pairs of lines, with turquoise 
shade denoting the range from the 50 CAM5.1 and 10 MIROC5 simulations covering the 1981–2010 
climatological period; observed values are reproduced from Fig. 13.1a. (c),(f) The spatial structures of 
the risk ratio due to anthropogenic emissions for falling below the 10th percentile of 1981–2010 simu-
lated precipitation climatology in Apr and May 2015 over Nigeria from (c),(e) CAM5.1; (d),(f) MIROC5. 
Green colors indicate that the chance of a dry month has decreased due to emissions.
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low signal-to-noise ratio. This contradicts the no-
tion that mean warming dominates the impact of 
anthropogenic emissions on every extreme weather 
event (Trenberth et al. 2015).

Summary. The results from the climate models ex-
amined indicate that there is little or no evidence of 
anthropogenic emissions or anomalous SSTs on the 
delay in the onset of the 2015 wet season in Nigeria. 
In as much as the models do suggest an influence, the 
effect was, in fact, to make the late onset less likely 
and thus truly a fluke. The implication is that rainfall 
deficits observed over Nigeria during the April–May 
2015 onset period were the results of unforced internal 
variability of the tropical atmosphere (see analyses in 
Supplemental Materials). 
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14. HUMAN INFLUENCES ON HEAT-RELATED HEALTH 
INDICATORS DURING THE 2015 EGYPTIAN HEAT WAVE

daniel MitChell

Introduction. In August 2015, northeast Africa and 
the Middle East experienced a heat wave that caused 
high levels of human discomfort, even for countries 
particularly adapted to extreme heat. Reports suggest 
that more than 90 people died throughout Egypt, with 
the majority being elderly (Al Jazeera,  17 August 
2015). In and around Cairo, many of the deaths 
were blamed on overpopulation and cramped living 
conditions, notably including prisons and psychiatric 
centers, a problem that is not necessarily restricted 
to the developing world (Huffington Post, 15 August 
2015; Holt 2015). The local health ministry reported 
that persistently high humidity was at least partially 
to blame. In the previous year (2014), the region 
experienced an unprecedented drought (Bergaoui et 
al. 2015; Barlow and Hoell 2015), and combined with 
political tensions, the recent heat wave could enhance 
unrest in the region (Schleussner et al. 2016).

While direct attribution of climate change on 
mortality is possible (Mitchell et al. 2016a), the 
required observed mortality data are not easily 
obtained in this specif ic region. As such, the 
attribution study is performed on the wet bulb 
globe temperature (WBGT), a proxy for human 
discomfort. Note that Mitchell et al. (2016a) used a 
different heat stress metric, apparent temperature, 
because this could be used directly with the health 
impact assessment (HIA) model they employed. As 
this study does not use a HIA model, the WBGT is 
chosen so the study can be contrasted with a recent 
climate predictions study (Pal and Eltahir 2015). A 
comparison of the two different heat stress metrics 
is given in Willett and Sherwood (2012).

Methods. The WBGT is estimated using the following 
equation (Fischer and Knutti 2012):

 WBGT = 0.567T + 0.393e + 3.94
The water vapor pressure, e = f(T, RH), can be ap-
proximated using a derivation of the Magnus formula 
(Sonntag 1990; Sippel and Otto 2014), where the terms 
T and RH are temperature and relative humidity, 
respectively, and are available from model output 
and from the Met Office Integrated Data Archive 
System (MIDAS; Met Office 2012) station data. This 
study focuses on Egypt as a whole, but a subanalysis 
is also performed for Cairo (the most populated city 
in Egypt). A map of the station locations is given in 
Fig. 14.1a with Cairo marked in red.

Event attribution is performed using the weather@
home framework, which comprises a global atmo-
sphere-only driving model (HadAM3P; Massey et al. 
2015) and a 50-km regional model covering northern 
Africa and the Middle East (the setup is identical to 
Bergaoui et al. 2015). Approximately 2000 simulations 
of 2015 are run using perturbed initial conditions 
(actual scenario) and compared with ~2000 simula-
tions estimating a naturalized version of 2015 (natural 
scenario). The natural simulations employ solar and 
volcanic forcings fixed at 2015 levels with all other 
forcings set to preindustrial values. However, the 
actual scenarios employ all forcings at 2015 levels, 
which include the aforementioned natural forcings as 
well as greenhouse gases, aerosols, and land use. The 
model is spun up for 2 years before 2015 to equilibrate 
long-memory processes in the Earth–atmosphere 
system. The natural scenario simulations include 10 
estimates of possible natural sea surface temperatures 
(SSTs), which are estimated using coupled ocean– 
atmosphere models (Schaller et al. 2016). The model 
simulations are interpolated to each of the different 
station locations.

Results. The observed WBGT over Egypt (i.e., the 
average of all stations) is shown by the black line 

A combined modeling and observational assessment of the 2015 heat wave in Egypt found that human 
discomfort increased due to anthropogenic climate change.
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of Fig. 14.1b for 2015. The WBGT in August was a 
maximum for 2015 and was greater than the 5–95 
percentile range of previous years (1984–2014; blue 
region). Here, the heat wave is defined as starting 
when the 5–95 percentile in WBGT is exceeded for at 
least 5 days and ends when the WBGT drops below the 
5–95 percentile without exceeding it in the subsequent 
5 days. The heat wave event is marked with orange 
arrows on Fig. 14.1b. While the primary reason for 
the high WBGT is the high temperatures over this 
period, the high relative humidity levels (for the given 
temperature levels) were also important. Around 
half of the heat wave days had this combination with 
the other half having approximately average relative 
humidity levels for the respective temperature levels 
(Fig. 14.1c).

A reasonable hypothesis would be that this event 
was made more likely due to human-induced climate 
change because the observed August WBGT has 
a significant positive trend over Egypt (Fig. 14.1d, 

red line). To test this, model simulations of the 2015 
climate over the region are employed. The modeled 
bias in WBGT is first examined using ~100 ensemble 
members spanning 1987–2012 (Fig. 14.1c, black lines). 
This period is chosen because it is the length of time 
that the required observed SST forcing data are avail-
able for the model simulations. The multiensemble 
mean of the simulations shows a similar trend in 
WBGT to observations, as can be seen in Fig. 14.1d. 

Compared with the observed data, the model 
performs remarkably well for mean climate with 
the bias in WBGT over this period being 0.007°C. 
However, larger biases are observed in the mean 
temperatures with the model being 1.88°C too warm; 
and for relative humidity, the model is ~8% too dry. 
Therefore, the well-simulated mean WBGT in the 
model is partially due to compensating errors from 
the temperature and relative humidity being biased 
in opposing directions (as relevant for heat stress). 
The variance of daily temperature and WBGT are 

Fig. 14.1. (a) Station locations over Egypt from MIDAS. The red station marks Cairo International 
Airport. (b) The observed WBGT cycle over Egypt through 15 Jul to 31 Aug. The black line shows 2015; 
the light blue region is the 5%–95% range covering 1984–2014; and the dark blue line is the climatology. 
Orange arrows mark the beginning and start of the heat wave (see text). (c) A scatter plot of observed 
Aug daily temperatures against relative humidity levels (light blue) for all days over the 1984–2015 
period, and (dark blue) the days during the 2015 heat wave (first 19 days of Aug). (d) Aug averaged 
WBGT for (red) observations and (black) individual ensemble members of HadAM3P.
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also well reproduced (not shown) although there are 
large low biases in the variance of modeled-relative 
humidity (σobs / σmod = 1.89).

Before the event is assessed, the monthly mean 
and daily variability about the mean for temperature, 
relative humidity, and WBGT are corrected to match 
observations at each station location. For tempera-
ture, this has been performed in Hempel et al. (2013). 
Applying their procedure to relative humidity and 
WBGT also proves to be an adequate bias correction, 
perhaps, unsurprisingly, as both variables evolve in a 
similar fashion to temperature. (Note that calculat-
ing WBGT from the bias-corrected variables yields 
almost identical results as calculating WBGT from 
the raw variables and then bias-correcting. In this 
assessment, the latter method is used.)

To understand the 19-day event (e.g., Fig. 14.1b) 
more completely, the coevolution of temperature and 
relative humidity is contrasted with WBGT. Figure 
14.2 shows the 2D histograms of modeled, 19-day 
averaged, relative humidity, and temperature over 
Egypt for the actual scenario (Fig. 14.2a) and the 

natural scenario (Fig. 14.2b). Figures 14.2d,e show 
the same but for Cairo only. The black lines show the  
observed thresholds during the event, and hence 
model data that fall to the upper-right of these thresh-
olds are more extreme than the observed event. It 
is clear that more model data exceed the observed 
threshold in the actual scenario than in the natural. 
This is true for Egypt as a whole, and specifically for 
Cairo, and confirms the hypothesis that human-in-
duced climate change has made this event more likely. 

Performing the same comparison on the WBGT 
(Figs. 14.2c,f for Egypt and Cairo, respectively) 
supports this conclusion. To quantify the level of  
anthropogenic contribution to the event, the fraction 
of attributable risk (FAR) is used. This is defined, as in 
Allen (2003) as 1 − (PNat / PAct), where PNat is the prob-
ability of exceeding the event in the natural scenario, 
and PAct is the probability of exceeding the event in 
the actual scenario. 

Over Egypt and Cairo, the FAR values (with 2 
sigma errors) in WBGT are calculated as 0.69 (± 0.17) 
and 0.67 (± 0.07), respectively. (Note that if a shorter 

Fig. 14.2. Two-dimensional histograms of 19-day average relative humidity and temperature during 
Aug for (a),(d) the actual simulations and (b),(e) the natural simulations. (c),(f) One-dimension PDFs 
of the WBGT for (red) actual and (blue) natural simulations. (a)–(c) For Egypt; (d)–(f) for Cairo. Black 
lines show the observed value of the variable in question averaged over the first 19 days in Aug 2015. 
All plots are expressed as a density (i.e., they integrate to 1).
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averaging period is used, such as 7-day averages, the 
FAR values are similar for Egypt as a whole, although 
decrease for Cairo.) While the heat wave center of 
action was in the south of Egypt (e.g., Haaretz 2015), 
Cairo (in the north) experienced slightly higher 
temperatures due to the urban heat island effect (e.g., 
Heaviside et al. 2015). Luckily, like Cairo, most of 
Egypt’s population resides in the north, with 9 out of 
10 of the largest cities (by population) being located 
there. Had the heat wave been more focused over the 
north, the death toll could have been far higher.

Conclusions and discussions. In this study, an analysis 
of heat stress was undertaken for the 2015 Egyptian 
heat wave. It was found that over Egypt the event was 
made 69% (± 17%) more likely due to anthropogenic 
climate change, and this was a similar value of 67% (± 
7%) when only Cairo was considered. The principal 
driver of human discomfort was high temperature, 
but relatively high humidity levels for those given 
temperatures also played a role for around half of the 
heat wave. It is noted that the daily variance of relative 
humidity is bias-low in this region. This is especially 
relevant for the developing regions of the world, as an 
increased exceedance of critical thresholds (such as 
the temperature at which the human body can still 
transfer heat to the surrounding) will be among the 
most important impacts felt for society under climate 
change (Pal and Eltahir 2015). This is especially true 
for high-mitigation scenarios, such as those presented 
in the 2015 Paris Agreement, because impacts on so-
ciety will be largely felt through changes in extremes 
(Mitchell et al. 2016b). 

While assessing human health under climate 
change is of particular importance in this region, it 
also presents unique challenges. This analysis focuses 
only on a physical heat stress measure of human 
discomfort and does not take into account social 
aspects (e.g., Klinenberg 2002). To do this, a full epi-
demiological analysis is needed in the first instance 
(as in Mitchell et al. 2016a). However, while in the 
context of Africa, meteorological data over Egypt are 
surprisingly abundant, reliable, and freely available, 
epidemiological data (such as all-cause mortality) 
are not. Nevertheless, this study represents a step in 
understanding health impacts of climate change in 
the region, and it is hoped that this study and oth-
ers like it will prompt local governments to make 
national-level health data more widely available to 
the outside community. 
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15. ASSESSING THE CONTRIBUTIONS OF LOCAL AND EAST 
PACIFIC WARMING TO THE 2015 DROUGHTS IN ETHIOPIA 

AND SOUTHERN AFRICA

Chris FunK, laura harrison, shraddhanand shuKla, andrew hoell, diriba KoreCha, taMuKa 
MagadZire, gregory husaK, and gideon galu

Introduction. In northern Ethiopia (7°–14°N, 36.5°–
40.5°E, NE) during June–September (JJAS) of 2015 
and in southern Africa (13.5°–27°S, 26.5°–36°E, 
SA) during December–February (DJF) of 2015/16, 
main growing seasons rains were extremely poor. 
In Ethiopia, Climate Hazards Group Infrared 
Precipitation with Stations (CHIRPS) (Funk et al. 
2015c) and Centennial Trends (Funk et al. 2015b) data 
indicated one of the worst droughts in more than 50 
years (FEWSNET 2015). More than ten million people 
currently require humanitarian relief (FEWSNET 
2016a). SA rains were also extremely poor (FEWSNET 
2016b); in Mozambique and Malawi, February maize 
prices were more than twice the five-year average, and 
in Zimbabwe the president has declared a national 
disaster in view of the El Niño–induced poor rains 
and the escalating food insecurity situation. 

NE has been experiencing long-term rainfall de-
clines (Funk et al. 2008; Funk et al. 2005; Jury and 
Funk 2013; Viste et al. 2012; Williams et al. 2012). The 
eastern Ethiopian highlands have exhibited recur-
rent soil moisture and runoff deficits since the 1990s 
(Funk et al. 2015c). NE rains in 2015 were the driest 
on record, but station data density prior to 1950 is very 
sparse for Ethiopia (Funk et al. 2015b). SA rainfall 
does not exhibit a decline, but the 2015–16 drought 
was severe. The impact of ENSO on Ethiopian rainfall 
is well documented (Fig. S15.1; Camberlin 1997; De-
gefu 1987; Diro et al. 2011; Gissila et al. 2004; Korecha 

and Barnston 2007; Korecha and Sorteberg 2013; 
Segele and Lamb 2005): the warm phase of ENSO  is 
associated with suppressed rains during the main wet 
season (JJAS) over north and central Ethiopia. There 
have also been numerous papers documenting a nega-
tive teleconnection between El Niño and SA rainfall 
(Supplemental Fig. S15.1; Hoell et al. 2015; Jury et 
al. 1994; Lindesay 1988; Misra 2003; Nicholson and 
Entekhabi 1986; Nicholson and Kim 1997; Reason et 
al. 2000; Rocha and Simmonds 1997).

Is Anthropogenic Climate Change Causing More Extreme 
El Niños? Our attribution approach is similar to our 
2014 study (Funk et al. 2015a) examining boreal 
spring rainfall deficits in Kenya and southeastern 
Ethiopia. We first assess changes in Niño-3.4 SST 
extremes based on climate change simulations 
and then interpret these results using empirical 
relationships between Niño-3.4 SSTs and regional 
rainfall and air temperatures. Figures 15.1a,b examine 
JJAS and DJF Niño-3.4 SSTs (Huang et al. 2015) 
from observations (blue/red bars) and a multimodel 
climate change ensemble (red lines and blue shading; 
SST simulations from 19 model combinations and 34 
simulations; 2006–15 simulation values were based 
on the RCP8.5 experiment; for details see https://
climexp.knmi.nl) based on simulations from 1861 
through 2100. For each of the 34 simulations, for 
each year, the top six Niño-3.4 SST events from the 
surrounding 30 years typified El Niño. The heavy 
red lines depict the ensemble average of these values 
for each year. The thin red lines identify the 80% 
confidence interval associated with the ensemble 
spread. The climate change distribution agrees 
reasonably well with the observed increasing strength 
of moderate-strong Niño-3.4 events. The simulations 
predict increasingly extreme Niño-3.4 events, and 

Anthropogenic warming contributed to the 2015 Ethiopian and southern African droughts by increasing 
El Niño SSTs and local air temperatures, causing reduced rainfall and runoff, and contributing 

to severe food insecurity.
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this is what we see in the SST 
observations (Supplemental 
Figs. S15.1a,b): increasingly 
intense El Niño events.

To estimate radiatively 
forced changes in ENSO max-
ima, we subtracted the average 
1946–75 ensemble sea surface 
temperatures over the Niño-
3.4 region (temporal center 
point marked with the black 
vertical lines in Figs. 15.1a,b) 
from the 2000–29 Niño-3.4 
values (the last point on the 
thick red line). For DJF and 
JJAS, this gives us an estimat-
ed change of +1.2°C. Using 
the 80% confidence intervals 
for 2015–16 and repeating this 
calculation lets us establish a 
range of values ∆TDJF = +1.2° 
± 0.5°C and ∆TJJAS = +1.1° ± 
0.5°C. 

We next examine three 
atmospheric GCM simulation 
ensembles, drawn from the 
Earth Systems Research Labo-
ratory Facility for Climate As-
sessments (FACTS; see www 
.esrl.noaa.gov/psd/repository 
/alias/facts). Using FACTS, 
we examined differences be-
tween 1980–2015 and 1920–79 
moderate-to-strong El Niños, 
using atmospheric General 
Circulation Model (AGCM) 
simulations. Figures 15.1c,d 
show results for a single model 
for DJF. Supplemental Fig. 
S15.2 shows similar results 
for all three models for both 
seasons. Over the tropical Pa-
cific and Indian Oceans (Fig. 
15.1c), recent El Niños have 
been associated with much 
warmer conditions (> +0.8°C), 
consistent with Figs. 15.1a,b, 
but have also been potentially 
influenced by natural decadal 
variability (Wittenberg 2009).

Accompanying the warm-
ing is a very large (70%+) 

Fig. 15.1. (a),(b) Observed Niño-3.4 SST anomalies (bars) along with associated  
30-yr means (thick black line). SST simulations are from 19 model 
combinations and 34 simulations; 2006–15 simulation values were based on 
the RCP8.5 experiment (for details see https://climexp.knmi.nl). Thick and 
thin red lines show running 30-yr climate change ensemble El Niño SSTs 
(see www.esrl.noaa.gov/psd/repository/alias/facts). (c),(d) Changes in the DJF 
Geophysical Fluid Dynamics Laboratory Atmospheric Model version 3 near-
surface air temperatures and precipitation during 1980–2015 El Niño events 
versus 1920–79 El Niño events. Results based on the 17-member ensemble 
mean. (e),(f) Scatterplots between Niño-3.4 SST and observed NE and SA 
rainfall anomalies.
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increase in eastern Pacific rainfall (Fig. 15.1d), one 
measure of the strength of ENSO (Chiodi and Har-
rison 2010; Chiodi and Harrison 2015; Curtis and 
Adler 2000). The magnitude of El Niño precipitation 
increases over the eastern Pacific would strongly 
inf luence El Niño’s atmospheric forcing strength, 
and we find a precipitation decline (Fig. 15.1d) over 
southern Africa that is broadly consistent with our 
empirical analysis. Results from two other models and 
JJAS are similar (Supplemental Fig. S15.2).

 
Estimating Rainfall and Air Temperature Changes due 
to El Niño. Figures 15.1e,f show regressions between 
NE/SA rainfall and Niño-3.4 SSTs. Our study regions 
were chosen based on historical teleconnections 
(Supplemental Figs. S15.1e,f) and the pattern of the 
2015–16 deficits. In Ethiopia and southern Africa, 
Niño-3.4 SSTs explained 45% and 53% of the 1981–82 
to 2015–16 rainfall variance, respectively. While 
rainfall performance varied substantially during 

strong El Niños (the 1997–98 response was relatively 
modest in both regions), the observations suggest 
that a 1°C increase in El Niño-3.4 SSTs produces a 
79 mm and 62 mm decrease in NE and SA rainfall, 
respectively. These regressions slopes suggest that 
without anthropogenic Niño-3.4 warming, NE and 
SA rainfall would have been approximately 16% and 
24% greater, respectively.

ENSO teleconnections and warming trends were 
used to estimate anthropogenic air temperature 
changes of +0.9°C (Supplemental Material).  Using the 
lower bounds of Niño-3.4 SST change (TJJAS=0.6°C,  
TDJF=0.7°C) gives estimates of a 9% and 14% rainfall 
change and a 0.8°C and 0.7°C JJAS/DJF air tempera-
ture change in NE and SA, respectively. 

Contrapositive Hydrologic Experiment. We performed 
four hydrologic experiments using the variable 
inf i lt rat ion capacit y (VIC) model .  In these 
experiments, we drove the VIC model with (i) 

Fig. 15.2. Hydrologic sensitivity experiment results for runoff. (a),(d) The influence of anthropogenic rainfall 
reductions. (b),(e) The influence of local air temperature increases. (c),(f) Combines the effects of low rainfall 
and warm air temperatures. (a)–(c) NE experiments. (d)–(f) SA experiments. Each panel shows the change in 
runoff, in comparison with observed conditions, when rainfall and air temperatures are increased and/or cooled.
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observed weather forcings, (ii) weather forcing in 
which we increased NE/SA precipitation by 16% and 
24%, (iii) weather forcings with air temperatures 
cooled by +0.9°C/+0.9°C NE/SA, and (iv) weather 
forcings with both (i) and (ii) changes. Figure 15.2 
shows results for experiments (ii)  –(iv), expressed as 
anomalies from (i). Our contrapositive NE runoff 
changes, in our region of interest, for (ii)–(iv) were: 
+35%, +1%, +37%; for SA (ii)–(iv) changes were: +48%, 
+1%, +49%. Clearly, anthropogenic disruptions in 
precipitation, associated with the large increases in 
ENSO SST (Figs. 15.1a,b), provided the dominant 
contribution. As was the case for 2014 (Funk et al. 
2015a), we find that a ~1°C warming over the tropical 
Pacific can have a much greater impact than a ~1°C 
warming in local air temperatures.

Conclusions. Anthropogenic warming contributed 
substantially to the very warm 2015/16 El Niño SSTs, 
and this anthropogenic contribution likely reduced 
NE and SA rainfall by approximately 16% and 24%. 
The associated simulated runoff reductions were 
much larger, 35% and 48%, respectively. A ~1°C 
warming over the tropical Pacific appears associated 
with a large (>70%) increase in El Niño diabatic 
forcing (Fig. 15.1f), and modest (~20%) precipitation 
reductions over NE/SA. These “modest” rainfall 
reductions, acting to accentuate natural El Niño 
impacts, have contributed to substantial food crises. 

Recent El Niños appear to be more intense (Supple-
mental Fig. S15.2). During El Niños, warmer Indo-
Pacific SSTs, and associated rainfall changes, may 
be more influential than the direct impacts of local 
increases in air temperatures. The contrast between 
Figs. 15.2a,b and 15.2d,e tell us that, based on these 
hydrologic simulations, nonlocal warming in the 
tropical Pacific had a much stronger drought impact 
than did relatively small local air temperature im-
pacts. We feel this result is quite important, possibly 
indicating that a major mode of “climate change” may 
be associated with more extreme tropical SST and 
SST gradients. “Global warming” expressed as local 
increases in air temperatures may have less dramatic 
impacts. Assessments (Brown et al. 2015) of local 
temperature impacts on crop yields suggest relatively 
small yield reductions per degree of warming (~2% 
per °C). A degree of warming in Niño-3.4 SSTs, con-
comitant with a warm ENSO event, can have larger 
impacts due to teleconnected precipitation declines. 

Because runoff forms a relatively small fraction 
of the hydrologic balance, the influence of rainfall 
deficits can be amplified, potentially leading to severe 

hydropower shortages (Davison 2015; Onishi 2016) 
and even severe drinking water deficits (Gauette 
2016). These crises are just one aspect of the wide-
spread food insecurity related to the extreme 2015/16 
El Niño (Fig. 15.1), which is thought to have contrib-
uted to the severe food insecurity of 60 million people 
“primarily in the most vulnerable regions of southern 
Africa, East Africa, Central America, and the Pacific 
Islands” (OCHA 2016). If La Niña conditions follow, 
extreme warming in the western Pacific may lead to 
dry conditions over equatorial East Africa (Funk et al. 
2015a; Funk et al. 2014; Shukla et al. 2014), exacerbat-
ing food insecurity conditions.
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16. THE DEADLY COMBINATION OF HEAT AND HUMIDITY 
IN INDIA AND PAKISTAN IN SUMMER 2015

MiChael wehner, dáithí stone, hari Krishnan, Krishna aChutarao, and FederiCo Castillo 

Observations and Impacts. Andhra Pradesh, Telangana, 
and other southeastern Indian states suffered a deadly 
heat wave in late May and early June of 2015. Daily 
high temperatures exceeded 45°C in many places 
throughout India for several days in a row. In late 
June and early July, just a few weeks later, Pakistan 
also suffered from a deadly heat wave with similar 
daily high temperatures. Although the Pakistani heat 
wave occurred very soon after the Indian heat wave, 
they were distinct meteorological events. Ratnam 
et al. (2016) classify heat waves over India into two 
types, those that occur over north-central India 
and those that occur over coastal eastern India. The 
study finds that the former tend to be associated 
with anomalous blocking over the North Atlantic 
Ocean. Heat waves over coastal eastern India were 
found to be associated with westerly anomalies over 
the Indian landmass, thereby reducing the land–sea 
breeze along the coastal regions. Hence the Loo, a 
strong afternoon overland wind, brought hot and 
dry conditions to India (Fig. 16.1a). By late June, 
the Indian monsoon was well developed, curtailing 
these winds and terminating the heat wave (see www 
.tropmet.res.in/~lip/Publication/Scientific-Reports 
/RR-185.pdf). In Pakistan by this time, winds were 
onshore (Fig. 16.1b), and the unusually hot conditions 
were also unusually humid. The high numbers of 
deaths in both events are attributed not only to the 
weather conditions but also to institutional failures. 
Hospitals were overwhelmed with patients suffering 
from heat-related symptoms and at some point had 
to turn away patients (Salim et al. 2015). It is difficult 
to be precise about the ultimate number of fatalities 

associated with these heat waves, but upwards of 2500 
excess deaths are estimated to have occurred in the 
Indian heat wave (Ratnam et al. 2016) and at least 700 
alone in the Pakistani megacity of Karachi (Masood 
et al. 2015) with many more throughout the country.

To further characterize these heat waves, we have 
analyzed 1973–2015 subdaily (hourly and 3-hourly) 
temperature and heat index (Steadman 1979a,b) 
calculated from the HadISD v1.0.4.2015p quality 
controlled weather station dataset (Dunn et al. 2012). 
Heat index, one of several methods to measure the 
combined effect of temperature and humidity on 
human health, is a bicubic function of both variables 
intended to fit a model of a fully clothed adult (see 
Supplemental Material for its definition). Figures 
16.1c,d show the daily maximum instantaneous heat 
index (thick red lines) and the temperature (thick 
black lines) associated with it during the heat waves 
in Hyderabad (in the Indian state of Telangana, WMO 
station number 431280) and Karachi (the largest city 
in Pakistan, WMO station number 417800). The pen-
tadal averages of these daily maxima are shown with 
thin lines. Climatological averages over 1974–2014 
are shown with horizontal dotted lines for May in 
Hyderabad and June in Karachi to show the events’ 
relative severity. In Hyderabad, the daily maximum 
heat index was about 2°–4°C higher than temperature 
during the heat wave. In Karachi, this difference 
was about 7°–12°C, reflecting a much higher rela-
tive humidity. The first column of Table 16.1 shows 
representative values of temperature and heat index 
during the most severe periods of the 2015 heat waves 
drawn from Figs. 16.1c,d.

Figures 16.2a,b are scatterplots of relative hu-
midity against temperature at the time of the daily 
maximum heat index value over the observational 
record of 1973–2015. Colored dots show the official 
U.S. NOAA advisory heat index levels of caution, 
extreme caution, danger, and extreme danger. In 
such hot climates, the 1974–2014 average daily maxi-

We find that the deadly heat waves in India and Pakistan in 2015 were exacerbated by anthropogenic 
climate change. Although the impacts of both events were severe, the events themselves were 

not connected to each other. 
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mum heat index (indicated by the large black dot) is 
well within the advisory levels revealing that these 
U.S.-based statements were not developed for these 
regions. More widely applicable measures of the threat 
of severe heat wave to human health are not available 
(Wehner et al. 2016). Rare and dangerous events are 
along the upper-right edge of this two-dimensional 
distribution, which are not necessarily the highest 
temperatures. The 2015 heat waves are represented 
by asterisks. These figures reveal stark differences 
in both the heat waves and climatologies of the two 
cities. In Hyderabad, the 2015 heat wave was among 
the highest temperatures ever experienced but relative 
humidity was low, around 20%. In Karachi, the 2015 
heat wave was hot but not near record levels. However, 
because relative humidity was high (35%–70%), the 
daily maximum heat indices were among the highest 
ever experienced. These combinations of temperature 
and relative humidity were rare events as is evident 
by the proximity of the asterisks to the edge of the 
distribution in Fig. 16.2b.

Analysis of possible human inf luence. The annual 
maxima of the pentadal average of the daily maximum 
heat indices and associated temperatures exhibit 
increasing trends for both stations (thin red lines in 
Supplemental Figs. S16.1a,b). To account for this, we 
use a nonstationary peaks over threshold extreme 
value methodology (Coles 2001) to fit a generalized 
Pareto distribution in order to estimate time-
dependent return periods for high daily and pentadal 
values. To incorporate the effect of anthropogenic 
climate change, we used a time varying estimate of 
CO2 (see www.esrl.noaa.gov/gmd/ccgg/trends/) as 
the covariate in the Pareto distribution using a 95th 
percentile threshold and a 3-week declustering. Using 
the event magnitudes in the first column of Table 16.1, 
we find a strong time dependence of the temperature 
and heat index return periods (Supplemental Figs. 
S16.1c,d) for the pentadal values. Very little time 
dependence in the return periods for the daily values 
for the Karachi station over the duration of the 
observational record is found, consistent with the 

Fig.16.1. (a),(b) Afternoon 700 hPa wind vectors and speed from the ERA-Interim reanalysis on (a) 29 May 2015 
(Indian heat wave) and (b) same on 30 Jun 2015 (Pakistani heat wave). The purple dots indicate the location of 
the weather stations used in this study. (c),(d) Daily maximum heat index values and associated temperatures 
during (c) the Indian heat wave and (d) same for the Pakistani heat wave. Dotted horizontal lines are 1974–2014 
climatological averages for the month of the occurrence of the peak in the heat waves.
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absence of a significant trend in the extrema of daily 
maxima for that station (thick lines in Supplemental 
Fig. S16.2b). Return periods of high temperature 
and head index in Hyderabad exhibit strong time 
dependence for both the daily and pentadal values, 
also consistent with relative magnitude of the trends 
and variations of Supplemental Fig. S16.1a. The 2015 
values of return periods corresponding to estimated 
event magnitudes are shown in the second numeric 
column of Table 16.1. Because the CO2 covariate is 
clearly dependent on human activities, there is a 
statistically significant relationship between human 
influence and the heat index. However, because the 
statistical model does not consider that unforced 
natural variations may be coincidental with increases 
in atmospheric CO2, this statistical significance does 
not necessarily mean that an anthropogenic response 
has been detected by this analysis alone.

To more rigorously estimate a possible human 
inf luence, we utilize simulations drawn from the 
C20C+ Detection and Attribution Subproject 
(Folland et al. 2014). Temperature and relative 
humidity were extracted from the grid points nearest 
to the Hyderabad and Karachi airport weather 
stations from two 98-member ensemble simulations 
of the Community Atmospheric Model (CAM5.1) at a 
resolution of approximately 100 km (Risser et al. 2016, 
unpublished manuscript, available online at https://
arxiv.org/abs/1606.08908). Simulations from 1996–

2015 driven by observed sea surface temperatures and 
sea ice distributions represent the “world that was,” 
referred to here as “actual.” A counterfactual “world 
that might have been” set of simulations represents 
the climate system had humans not altered the 
composition of the atmosphere (Folland et al. 2014). In 
this case, an estimate of the human-induced changes 
to the sea surface temperature and sea ice distribution 
obtained from the CMIP5 models is removed from the 
lower boundary conditions and atmospheric trace gas 
and aerosol concentrations set to preindustrial values 
(Stone 2013). Comparison of model grid points to 
individual weather stations is performed with caution. 
Hyderabad Airport is located in the countryside well 
outside of the metropolitan area, and thus should be 
representative of temperature variations occurring 
on spatial scales resolved by the climate model. 
Karachi Airport is, however, located within the 
metropolitan area, and Karachi itself is a coastal city, 
so the climate model may not be properly resolving 
urban and coastal microclimate phenomena that 
are influencing weather at the airport. However, the 
pair of ensemble simulations use the same changes in 
land use and cover, so differences are predominantly 
a result of changes in atmospheric composition and 
ocean state rather than in the urban heat island. 
The model was determined to be fit for purpose by 
the tests outlined in Angélil et al. (2016a). Angélil et 
al. 2016b conclude that CAM5.1’s estimates of the 

Table 16.1. Estimates of observed daily maximum heat index and temperature (°C), its return period 
(years), the corresponding quantile bias corrected return value in simulations of the actual world, and 
similar simulated quantities of a counterfactual world, human-induced risk ratio and return value changes. 
Bias corrections of the simulated actual distributions are made at the quantile corresponding to the 
observed return period. The magnitudes of the quantile bias corrections are the differences between values 
in the column labeled “Simulated Actual RV” and “Observed Value.”  

Observed

Value 
(°C)

Observed

RP 
(years)

Simulated 

Actual

RV(°C)

Simulated 

Counter-

factual 

RP(years)

Simulated 

Counter-

factual 

RV(°C)

Simulated 

Risk Ratio
Simulated 

∆ RV

Heat Index

Hyderabad daily 46.9 1.9 42.5 23.6 40.7 12.1 1.7

Hyderabad pentad 45.7 2.8 42.0 92.3 40.3 32.8 1.7

Karachi daily 53.5 4.0 49.3 31.1 46.9 7.7 2.4

Karachi pentad 50.4 43.9 49.1 >>1000 46.6 >1000 2.5

Temperature

Hyderabad daily 44.0 2.7 43.4 9.6 42.5 3.6 1.0

Hyderabad pentad 41.8 1.8 41.7 3.3 40.8 1.9 0.9

Karachi daily 41.9 2.1 43.0 2.7 42.5 1.3 0.5

Karachi pentad 40.7 5.9 42.8 9.4 42.3 1.6 0.5
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1-in-1-year and 1-in-10-year anomalous thresholds 
for hot days over India/Pakistan are all consistent 
with estimates from current reanalysis products. 
Figures 16.2c,d show histograms approximating the 
simulations’ distribution of the pentadal average of 
the daily maximum heat index for the counterfactual 
world (blue) and actual world (red) during the month 
of the two heat waves’ peak intensity and reveal 
a pronounced shift toward higher values caused 
by the changes in forcing due to anthropogenic 
activities. Corresponding histograms for the daily 
maximum heat index and for both measures of 
extreme temperature are shown in Supplemental 
Fig. S16.2. For both locations, the models’ response 
in extreme temperature is less than in heat index but 
the profound difference in the daily and pentadal 
Karachi observational extremes revealed by changes 

in return period (Supplemental Figs. S16.1c,d) are not 
readily apparent in the simulations.

Utilizing the quantile bias correction method of 
Jeon et al. (2015), we estimate the changes in return 
period for corrected daily and pentadal values of peak 
temperature and heat index for both heat waves. This 
is used to define the “risk ratio,” the ratio of the prob-
abilities of reaching the corrected model estimates of 
the observed event in the factual and counterfactual 
simulations or, more simply, the inverse of the ra-
tio of the corresponding return periods. Shown in 
Table 16.1, we find a substantial human increase in 
the risk ratio of heat index for both the Indian and 
Pakistani heat waves. The heat index risk ratio is 
substantially larger for pentadal values than it is for 
daily values. This is particularly relevant to assessing 
human-induced changes in the heat wave-related risk 

Fig. 16.2. (a),(b) Scatterplots of observed temperature and relative humidity from 1973–2015 at the time of 
the daily maximum heat index at (a) Hyderabad, India, and (b) Karachi, Pakistan. The 2015 heat wave days are 
shown by the asterisks. Other observations are colored according to NOAA heat index advisory levels. The 
large black dots are the May/Jun climatological averages. (c),(d) Histograms of uncorrected maximum pentadal 
average of daily maximum heat index for the counterfactual (blue) and actual (red) simulations, (c) May 2015, 
Hyderabad and (d) Jun 2015, Karachi.
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to human health and mortality, as is it is the long-
term exposure to high heat that is most dangerous. 
Changes in simulated return values corresponding to 
the estimated observed return time are also shown in 
the last column of Table 16.1, revealing large human-
induced changes in the magnitude of heat waves of a 
fixed rarity for both cities.

We note that the climate model simulation (not 
shown) does not exhibit as large a trend in the esti-
mated return periods of temperature and heat index 
as some of the HadISD observational products. How-
ever, the sampling uncertainty of the observations, 
represented by the error bars in Supplemental Figs. 
S16.1c,d, is large and the model is not necessarily in-
consistent with the observations in this regard. Sam-
pling uncertainty is much lower in the model because 
of the size of the ensemble dampens the inherent 
natural variability. In the simulations, the human 
signal is larger for the heat index than for temperature 
over both the daily and pentadal extremal measures at 
both locations (Table 16.1). We also find that for heat 
index, the human influence is greater on the pentadal 
scales than on the daily scales but that it is about the 
same for temperature at both locations. The time 
dependence of the Karachi observations could also 
be described this way, although there is essentially 
no trend in the daily extrema (Supplemental Figs. 
S16.1b,d). The time dependence of the Hyderabad 
observations is also similar except for the large change 
in the daily temperature (Supplemental Figs. S16.1a,c). 

Jeon et al. (2015) demonstrated that risk ratio esti-
mates for heat waves could be relatively insensitive to 
uncertainty in observed event magnitude. Hence, the 
principal uncertainties in the estimates of risk ratio 
and return value changes for heat wave occurrence in 
Table 16.1 stem from the use of a single climate model 
as well as the single estimate of counterfactual ocean 
state rather than observational uncertainty.

Conclusion. The deadly heat waves of 2015 in India and 
Pakistan were distinct meteorological events without 
obvious connection despite the proximity in location 
and time. We find a substantial human-induced 
increase (~800% to > 100 000%) in the likelihood of 
the observed heat indices. Alternatively, we also find 
a human-induced increase (~2°C) in the heat indices 
of nonindustrial events of equivalent rarity to that 
estimated in 2015 (Table 16.1). This anthropogenic 
influence is found to be higher for pentadal than for 
daily measures of heat wave severity, with potential 
implications for human health and mortality because 
of their dependence on heat wave duration.

ACKNOWLEDGEMENT. Wehner’s and Stone’s 
contributions to this work are supported by the 
Regional and Global Climate Modeling Program of 
the Office of Biological and Environmental Research 
in the Department of Energy Office of Science under 
contract number DE-AC02-05CH11231. Castillo’s 
contribution is supported by the National Science 
Foundation grant No. 000237060 under the Earth 
System Model (EaSM2) program.

This document was prepared as an account of 
work sponsored by the U.S. government. While this 
document is believed to contain correct information, 
neither the U.S. government nor any agency thereof, 
nor the regents of the University of California, nor 
any of their employees, makes any warranty, express 
or implied, or assumes any legal responsibility for 
the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, 
or represents that its use would not infringe privately 
owned rights. Reference herein to any specific 
commercial product, process, or service by its trade 
name, trademark, manufacturer, or otherwise, does 
not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the U.S. government 
or any agency thereof, or the regents of the University 
of California. The views and opinions of authors 
expressed herein do not necessarily state or reflect 
those of the U.S. government or any agency thereof 
or the regents of the University of California.

Angélil, O., and Coauthors, 2016a: Comparing regional 
precipitation and temperature extremes in climate 
model and reanalysis products. Wea. Climate 
Extremes, 13, 35–42, doi:10.1016/j.wace.2016.07.001.

—, D. Stone, M. Wehner, C. J. Paciorek, H. Krish-
nan, and W. Collins, 2016b: An independent assess-
ment of anthropogenic attribution statements for 
recent extreme weather events. J. Climate, in press, 
doi:10.1175/JCLI-D-16-0077.1.

Coles, S., 2001: An Introduction to Statistical Modeling 
of Extreme Values. Springer Verlag, 208 pp.

Dunn, R. J. H., K. M. Willett, P. W. Thorne, E. V. 
Woolley, I. Durre, A. Dai, D. E. Parker, R. S. Vose, 
2012: HadISD: A quality controlled global synoptic 
report database for selected variables at long-term 
stations from 1973–2011. Climate Past, 8, 1649–1679, 
doi:10.5194/cp-8-1649-2012.

REFERENCES



S86 DECEMBER 2016|

Folland, C., D. Stone, C. Frederiksen, D. Karoly and J. 
Kinter, 2014: The International CLIVAR Climate of 
the 20th Century Plus (C20C+) Project: Report of 
the sixth workshop. CLIVAR Exchanges No. 65, 19, 
57–59.

Jeon, S., C. J. Paciorek, and M. F. Wehner, 2016: Quan-
tile-based bias correction and uncertainty quan-
tification of extreme event attribution statements. 
Wea. Climate Extremes, 12, 24–32, doi:10.1016/j 
.wace.2016.02.001.

Masood, I., Z. Majid, S. Sohail, A. Zia, and S. Raza, 
2015: The deadly heat wave of Pakistan, June 2015. 
Int. J. Occup. Environ. Med., 6, 247–248.

Ratnam, J. V., S. K. Behera, S. B. Ratna, M. Rajeevan, 
and T. Yamagata, 2016: Anatomy of Indian heat 
waves. Sci. Rep. 6, 24395, doi:10.1038/srep24395.

Salim, A., A. Ahmed, N. Ashraf, and M. Ashar, 2015: 
Deadly heat wave in Karachi, July 2015: Negligence 
or mismanagement? Int. J. Occup. Environ. Med., 6, 
249.

Steadman, R. G., 1979a: The assessment of sultriness. 
Part I: A temperature–humidity index based on 
human physiology and clothing science. J. Appl. 
Meteor., 18, 861–873.

—, 1979b: The assessment of sultriness. Part II: 
Effects of wind, extra radiation and barometric 
pressure on apparent temperature. J. Appl. Meteor., 
18, 874–885.

Stone, D., 2013: Boundary conditions for the C20C 
Detection and Attribution Project: The All-Hist/
est1 and Nat-Hist/CMIP5-est1 scenarios. Law-
rence Berkeley National Laboratory, 18 pp. 
[Available online at http://portal.nersc.gov/c20c 
/input_data/C20C-DandA_dSSTs_All-Hist-est1 
_Nat-Hist-CMIP5-est1.pdf.]

Wehner, M., F. Casti l lo, and D. Stone, 2016: Ex-
treme heat waves, health, and welfare in a chang-
ing c l imate .  Ox ford Research Encyclopedia , 
Natural Hazard Science, in press, doi:10.1093 
/acrefore/9780199389407.013.58.



S87DECEMBER 2016AMERICAN METEOROLOGICAL SOCIETY |

17. THE HEAVY PRECIPITATION EVENT OF DECEMBER 2015 
IN CHENNAI, INDIA 

geert Jan van oldenborgh, FriederiKe e. l. otto, Karsten haustein, and Krishna aChutarao 
 

Introduction. At the beginning of December 2015, the 
Indian state of Tamil Nadu experienced extensive 
f looding. November had been the second wettest 
month in Chennai (1049 mm) in more than 100 
years, but the main floods were caused by one day of 
extreme precipitation on 1 December. The commer-
cial center, Chennai (formerly known as Madras), re-
ported 24-hr precipitation from 0830 LT ranging from 
77 to 494 mm at 18 stations, with a citywide-average 
of 286 mm (Fig. 17.1a). The city was declared a disaster 
area on 2 December after many areas, including the 
airport, were flooded. Although in the satellite-based 
CMORPH analysis the largest precipitation amounts 
were recorded south of Chennai (Fig. 17.1b), we con-
centrate our analysis on this city because the impact 
was largest here. Damages were estimated to be as 
high as $3 billion (U.S. dollars; Wall Street Journal, 
11 December 2015). 

This part of India has its main rainy season during 
the northeast monsoon (Srinivasan and Ramamurthy 
1973; Yadav 2013) in October–December. Sea surface 
temperature (SST) in the Bay of Bengal typically 
exceeds the threshold for deep convection through-
out the year. Weak vertical shear during May and  
October–December (months prior to and imme-
diately following the southwest monsoon) makes 
conditions ideal for tropical storms and cyclones that 
make landfall on the southeastern coast of India. The 
extreme rainfall events have sizes of O(100) km. 

SST in the northern and western Bay of Bengal has 
hardly increased over the last 35 years, in contrast to 
most of the rest of the world (Fig. 17.1c). This is likely 
because of increased air pollution in the region, the 

“brown cloud,” that blocks more sunlight counteract-
ing the warming due to greenhouse gases, especially 
in premonsoon maximum temperatures (Padma 
Kumari et al. 2007; Wild 2012). The CMIP5 historical 
greenhouse gas (GHG) experiments without aerosols 
indeed indicate a larger trend in the Bay of Bengal (sea 
points in 10°–25°N, 80°–90°E), 1.6°C (100 yr)−1 over 
October–December from 1970 to 2005, than the his-
torical experiments, 1.3°C (100 yr)−1. This is still high-
er than the observed trend of 0.8°C (100 yr)−1. In line 
with this, SST anomalies were lower than elsewhere 
in the Indian Ocean in November–December 2015, 
although there was a warmer patch just off the coast 
of Chennai with 0.6°–0.8°C anomalies (Fig. 17.1d). El 
Niño was also very strong these months. 

Observational analysis. We analyze two datasets of 
daily station precipitation in the region. The public 
GHCN-D dataset (Menne et al. 2016) has 50 stations 
with at least 40 years of data in the area 10°–15°N, 
79.5°–81°E for a total of 3504 station-years. These 
coastal stations have similar climatologies of the wet-
test day of the year (RX1day). However, all but two 
of the series end in 1970. The India Meteorological 
Department (IMD) provided us with 19 nonpublic 
series with mean RX1day > 90 mm from the region 
for 1969–2013. Five of these did not have more than 
one or two years of valid data. One station had zeroes 
all through the wet season in a few years and was also 
discarded. Seven stations had monthly mean totals in 
2001–04 that were about a factor of 10 smaller than 
satellite data; these years were deleted. A few very 
high precipitation amounts (≥ 500 mm) were on dry 
or moderately rainy days at other stations or in the 
satellite record and did not show up in flood records, 
so they were removed (displaced decimal points are 
common). After this quality-control procedure, 407 
station years with at least 80% valid data in October–
December remained. Both datasets were analyzed 

Extreme one-day rainfall caused widespread flooding in Chennai, India, in December 2015. No effect of 
global warming was detected, likely caused by aerosols counteracting greenhouse gases up to now. 
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separately with a fit to a generalized extreme value 
(GEV) distribution that scales with time (cf. Vautard 
et al. 2015), or the (ERSSTv4) Niño‒3.4 index, assum-
ing all stations have identical rainfall distributions. 
The uncertainties were estimated using a nonpara-
metric bootstrap that takes spatial correlations into 
account with a 2D moving-block procedure analogous 
to the 1D one for temporal autocorrelations. 

Both datasets show that the 494 mm observed in 
the Tambaram suburb is a rare event, with return 

times of 600–2500 years (95% confidence inter-
val; GHCN-D, assuming a stationary climate) and 
300–4000 years (IMD; current climate, red lines in 
Fig. 17.2a) respectively. This means that the odds of 
receiving such extreme precipitation at a givenstation 
are less than 0.2% each year. The chance of such an 
amount occurring at any station in the region is high-
er. The rainfall in this area has around 5 degrees of 
freedom, so the return time for such a high amount in 
any rain gauge is five times lower. In fact, there is one 

Fig. 17.1. (a) Rain gauge observations from 0830 LT of 1 Dec 2015 to 0830 LT of 2 Dec 2015 (mm day−1). 
The city of Chennai is visible in gray around the stations Nungambakkan and DGP Office in the city 
center. (b) Analyzed precipitation on 0000–2400 UTC 1 Dec 2015 (mm day−1; CMORPH, Joyce et 
al. 2004), the box indicates the region of panel (a). (c) Observed SST trend (°C yr−1) over the Bay of 
Bengal 1981–2015 (SST OI v2, Smith et al. 2008). The box indicates the region of panel (b). (d) Ob-
served anomalies (°C) in Nov–Dec 2015. The blue box denotes the region investigated, the land area 
in 10°–15ºN, 79.5°–81ºE.
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event in the GHCN-D dataset with higher precipita-
tion: 500 mm at Vedaranayam on 18 November 1918.

The GHCN-D dataset (mainly up to 1970) shows 
no trend, whereas the IMD dataset shows a nonsig-
nificant negative trend starting in 1969, see Figs. 
17.2a,b. We conclude that there is no observational 
evidence for a positive trend. The 95% range is a 
factor 0.14–2.2 increase in probability since 1970. A 
similar analysis using the Niño‒3.4 index as covariate 
rather than time shows that there is a slight increase 
during El Niño, which is not significant at p < 0.1 
(one-sided). Total November–December precipitation 
is very weakly correlated with the Niño‒3.4 index (r 
= 0.18, correlations reach r > 0.4 further south along 
the coast). There is a stronger connection between 
mean precipitation and SST in the Bay of Bengal 
(10°–25°N, 80°–95°E, r = 0.30), which supports our 
hypothesis that the lack of trend in this area over the 
last 40 years is responsible for the lack of trend in 
extreme precipitation. 

Global coupled climate models. We analyzed the rainfall 
extremes in a relatively high-resolution ensemble of 
model runs, 16 historical/RCP 8.5 experiments us-
ing the EC-Earth 2.3 model (Hazeleger et al. 2010) at 
T159, about 150-km resolution. This model shows a 
strong positive trend in SST over the Bay of Bengal of 
about 0.2°C (10 yr−1) over 1975–2015, which contra-
dicts the observed trend. We therefore do not consider 
its modeled increase in the probability of high RX1day 
by a factor 1.6–6 (95% CI). 

The CMIP5 ensemble contains many models with 
a hard upper boundary of rainfall in the grid box cor-
responding to Chennai, in contrast to the observed 
probability distribution function (PDF; Fig. 17.2b), 
hence we could not use it either.

Regional climate model. We furthermore analyze the 
rainfall extremes in the regional atmosphere-only 
general circulation model HadRM3P, used in the 
weather@home distributed computing framework 
(Massey et al. 2015). The regional model over the 
CORDEX South Asian region (Giorgi et al. 2009) 
was employed at a 0.44° × 0.44° resolution with a 
5-min time step is driven by the Hadley Centre model 
HadAM3P at 1.875° × 1.25° × 15-min resolution. The 
initial conditions of the global model are perturbed 
at the first of December 2014 of every 13-month 
simulation to derive a set of very large ensembles of 
possible weather in the region of interest. Three dif-
ferent ensembles are simulated: 

1) Simulations of the 13 months from December 
2014 to December 2015 driven by observed (2015) 

Fig. 17.2. (a) Maximum precipitation in Oct–Dec at 19 
stations from 1969 to 2014 with a GEV fit in which the 
position parameter (thick red line) and scale param-
eter (difference between red lines) depend exponen-
tially on time with their ratio constant. (b) Return time 
plot of these data with the GEV fit for 1970 (blue) and 
for 2015 (red) and 95% uncertainties, the observations 
are also shown twice, shifted up (blue) and down (red) 
with the fitted trend. (c) Return times of maximum 
land grid box precipitation in the region 10°–15ºN, 
77°–82ºE in the SST-forced regional model in the 2015 
SST forced ensemble (red), the 2015 counterfactual 
world without anthropogenic emissions (blue) and the 
1985–2014 climatology (green).  
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SSTs and greenhouse gas concentrations (n = 2900), 
2) Simulations of the same time frame in a coun-

terfactual simulation (n = 6960) under preindustrial 
greenhouse gas and aerosol forcing and natural SSTs 
constructed by subtracting 11 different estimates of 
the human-induced warming pattern from the 2015 
observed SSTs (Schaller et al. 2016), and

3) Climatological simulations of the years 1985–
2014 with observed forcings to evaluate the reliability 
of the model as well as estimating the influence of the 
2015 SSTs on the likelihood of the rainfall extremes.

Quantile-quantile assessments of the modeled 
precipitation reveal a small overestimation of the ab-
solute values of precipitation but good representation 
of the overall distribution. Pressure over the region of 
interest is consistently underestimated. Because the 
biases in the model seem to be mainly an offset and we 
are comparing the model with itself in terms of mag-
nitudes, we refrain from applying a bias correction. 
The SST difference between actual and preindustrial 
situations in the Bay of Bengal is about 0.5°C (Schaller 
et al. 2016, their Supplemental Fig. S17.3), in line with 
the observed trend. 

To derive results comparable to the statistical 
analysis of the 19 stations described previously, we 
analyze daily maximum grid box precipitation in 
the October to November period over the region 
10°–15°N, 77°–82°E. 

Comparing the two ensemble simulations for 2015 
(Fig. 17.2c), we find again a nonsignificant negative 
change in the likelihood of extreme precipitation 
events with a return time above 100 years due to an-
thropogenic emissions. Comparing the simulations 
of 2015 with an ensemble of simulations of daily 
extreme rainfall from 1985 to 2014 reveals a small 
positive influence of the observed SST patterns on 
the likelihood of extreme rainfall. The analysis does 
not allow us to estimate the influence of the observed 
El Niño, only the global SST patterns. Qualitatively, 
the results are robust under different possible ways 
of characterizing the event spatially and temporally, 
by excluding the westernmost parts of the region or 
analyzing monthly data.

 
Discussion and conclusions. The observational analysis 
found no signal for a positive trend in extreme one-
day precipitation at the southeastern coast of India 
over 1900–70, nor over 1970–2014. Coupled models 
show more extreme one-day precipitation events 
from 1970–2015, but a large ensemble of SST-forced 
models again shows no increase in the probability of 
extreme one-day precipitation due to anthropogenic 

emissions. A plausible factor is the lack of increase 
in SST in the western Bay of Bengal over the last 
40 years, which is not reproduced correctly by the 
coupled models but is more realistic in the SST-forced 
model. This precludes an attribution of the floods to 
anthropogenic factors, probably to a large extent due 
to the two main pollutants, greenhouse gases and 
aerosols, having opposing effects. Over land this op-
position is discussed by Padma Kumari et al. (2007) 
and Wild (2012).

There is a small but clear increase in probability 
of extremes in the SST-forced regional model, asso-
ciated with El Niño and other SST anomalies. In the 
observations, the ENSO signal is also present but not 
statistically significant. 
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18. ATTRIBUTION OF EXTREME RAINFALL IN SOUTHEAST 
CHINA DURING MAY 2015

Claire burKe, peter stott, ying sun, and andrew Ciavarella 

Introduction. The prerainy season in southern China 
usually starts in April with a rainbelt forming along 
the Indochina Peninsula. The rainbelt moves north-
ward across eastern China throughout the rainy 
season, which generally lasts from May to August 
(Ding and Chan 2005). In 2015, the prerainy season 
began in early May, about a month later than normal. 
After the rainbelt was established, the rainfall was 
exceptionally heavy with the total precipitation in 
some southern provinces more than 50% greater than 
the 1971–2000 average (CMA 2016). The rain fell in 
a series of heavy storms, causing severe flooding in 
many cities with impacts that included loss of life.

We examine the change in the character of rainfall 
during May in terms of the number of consecutive 
days of rain, total rainfall over a period of n days (n-
day totals), and rainfall intensity. Using these metrics, 
we estimate the regional change in probability of 
extreme precipitation due to anthropogenic climate 
forcing.
 
Data. We use model data from a pair of multidecadal 
ensemble experiments using the latest Met Office 
HadGEM3-A-based attribution system. Each 
ensemble comprises 15 members spanning the 
period 1960–2013, one set with both anthropogenic 
and natural forcings (ALL) and the other with natural 
only (NAT).  The system is an upgrade to that used in 
a number of previous studies described by Christidis 
et al. (2013) to higher resolution (N216 L85, 0.56° x 
0.83° horizontally), the latest operational dynamical 
core (ENDGame; Wood and Stainforth 2010), and 
land surface model (JULES; Best et al. 2011), as well 
as an updated forcings set consistent with the CMIP5 

generation (Jones et al. 2011).  Members differ from 
one another solely through the stochastic physics 
and share atmospheric initialization from ERA–40 
at 0000 UTC 1 December 1959.

We use observed daily precipitation data for 1961–
2015 provided by the Climate Data Center of China 
National Meteorological Information Center (NMIC). 
This dataset uses quality controlled data from 2419 
stations and is the best daily dataset available for 
climate study in China. Yang and Li (2014) show that 
most of the daily precipitation series are homogeneous 
and lack pronounced discontinuities resulting from 
instrumental changes or station relocation. 
 
Methods. We divide the f lood-affected area of 
southeast China into 12 regions of 3° × 3° areas with 
spatially coherent rainfall patterns and variability. 
Region locations and corresponding time series of 
total monthly rainfall for May are shown in Fig. 
18.1. Monthly totals show no clear trends outside of 
interannual variability (see Supplemental Material 
for linear fits).There is also no clear separation 
of expected changes in monthly rainfall under 
anthropogenic and natural forcings. Given the large 
interannual variability of monthly totals and the 
nature of the f loods in May 2015 being related to 
several large daily rainfall totals, we instead look at 
changes in intensity and duration of rainfall events.

For the month of May, we count the number of 
consecutive wet days (daily total rainfall >= 1 mm) 
(n_days) and record the total rainfall during each 
n-day event (n_day_tot). We then calculate the mean 
intensity of rainfall in mm day−1 for each event (in-
tens). Using this metric, any given month can have 
several rainfall events.

For each 3° × 3° region in southeast China, the 
mean of the observed station data and the mean of 
the grid cells for the model data are calculated for 
each day. This daily area-mean for each region is then 
used to calculate n_days, n_day_tot, and intens. We 

Anthropogenic climate change increased the probability that a short-duration, intense rainfall event would 
occur in parts of southeast China. This type of event occurred in May 2015, causing serious flooding.               
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use all the available stations in each 3° × 3° grid box, 
generally 40–60 stations, though the number of sta-
tions varies from year to year. 

Model verif ication. We assess the capability of the 
models to represent daily rainfall characteristics and 
extremes by comparison of time series and rainfall 
intensity distributions between the model ensemble 
and the observations.

We plot observed and model time series total 
monthly rainfall for May, total number of rainy 
days, and maximum intens for each of 12 regions in 
Fig. 18.1 and Supplemental Fig. S18.1. The observed 
interannual variability of the time series clearly falls 
within the ensemble variability of HadGEM3-A, with 
the exception of region 6, which we exclude from fur-
ther analysis. Linear fits to the observed and modeled 

Fig. 18.1. (a) Regions of China examined in this study including total rainfall for May 2015. (b) Monthly 
total precipitation anomaly time series for regions 1–12:  observed totals (black lines), HadGEM3-A 
model mean (thick red lines), model ensemble 5th–95th percentile (dark red shading), and total model 
ensemble range (light red shading). Anomalies for both observations and models are with respect to 
1961–90 climatology.
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time series produce similar results albeit with low-fit 
significance (see Supplemental Material).

Supplemental Fig. S18.1 plots daily rainfall inten-
sity distribution for the regions of southeast China. 
We perform a Kolmogrov–Smirnoff test (KS) for each 
region to determine how well the observed distribu-
tion of daily rainfall is reproduced by the ensemble 
mean—the results of this are indicated in the supple-
ment.  Nine of the 12 regions showed more than 95% 
likelihood of the observed and modeled distributions 
being drawn from the same population; an additional 
two regions showed 86%. Region 10 showed only 72% 
likelihood and was excluded from further analysis.

The model can reproduce the mean and extremes 
of precipitation totals, intensities, number of rainy 
days in a month, and numbers of consecutive days 
of rain sufficiently well for the attribution study 
intended here.

Results. We select the top 10% of n_day_tot rainfall 
to be defined as extreme events and examine the 
change in intens and n_days over which this rain 
fell. The values for observed n_days, n_day_tot, and 
intens are shown in Supplemental Fig. S18.2 for all 
years including 2015. Following Christidis and Stott 
(2015), we take the most recent 15 years of model data 
(1999–2013) as representative of current climatology 
to produce probability distribution functions (PDF) 
for intens and n_days. The PDF is calculated by fit-
ting a gamma function to the normalized model 
histogram of the rainfall metric examined; we test 
the appropriateness of this fit in the supplement. PDFs 
allow the calculation of fraction of attributable risk 
(FAR; Allen 2003), defined as FAR = 1 − (P(NAT) / 
P(ALL)) for individual regions. 

We calculate FAR for intensity of events greater 
than the May 2015 observed maximum, providing 
an estimate of the extent to which human influence 
has increased the risk of high-total-rainfall events 
with daily intensity as high as observed in May 2015. 
We also calculate FAR for the number of consecutive 
days of rain less than the maximum value observed 
for May 2015, providing an estimate of the extent to 
which human influence has increased the risk of hav-
ing high-total-rainfall events with duration as short 
as in May 2015.

To calculate the error on FAR, we bootstrap 
resample (with replacement) the top 10% of n_day_tot 
for the all-forcings and natural-forcings models then 
refit the PDFs 1000 times for both intens and n_days. 
The standard deviation of the FAR from the 1000 
bootstrapped samples gives the error on FAR.

We exclude regions 6 and 10 from analysis (see 
model verification) and report results for the remain-
ing 10 regions. We find positive FAR in 4 out of 10 and 
9 out of 10 regions for intens and n_days, respectively. 
The four regions for which intens showed positive 
FAR—7, 8, 11, and 12—are all spatially adjacent to 
each other; these and all the coastal regions show 
positive FAR for n_days. The spatial contiguity of 
regions with positive FAR makes it more likely that 
these results are physically caused rather than a sta-
tistical fluke.

 Three regions show positive FAR at 2σ in one 
metric and 1σ in the other; we focus our analysis 
on those. We find positive FAR at 2σ confidence for 
increase in intens and 1σ confidence for decrease 
in n_days in regions 7 and 12. We find positive FAR 
at 2σ confidence for decrease in n_days and 1σ con-
fidence for increase in intens for region 11. We also 
find positive FAR for regions 8 and 9 at 1σ confidence 
for n_days. We present results for regions 7, 11, and 
12 in Fig. 18.2. For the top 10% of n_day_tot, we find 
anthropogenic climate change has increased the 
likelihood of intense rainfall, greater than or equal 
to that observed in May 2015, by 64% ± 17%, 23% ± 
12%, and 66% ± 19% for regions 7, 11, and 12, respec-
tively. For the same regions, we find anthropogenic 
influence increases likelihood by 12% ± 11%, 39% ± 
14%, and 23% ± 14%, respectively, of a decrease in the 
number of consecutive days over which the rain fell 
with respect to the maximum number of consecutive 
days observed in May 2015.

Some studies show that the Pacific sea surface 
temperature anomaly (SSTA) is an important fac-
tor affecting the early rainy-season precipitation 
in southern China (e.g., Qiang and Yang 2013). We 
tested for the effect of El Niño on our results and find 
no obvious correlation between ENSO‒3.4 index and 
any of the three indices we examine from May 2015.

Conclusion. During May 2015, large daily rainfall totals 
were recorded over much of southeast China. While 
no clear trends are seen in the monthly total rain for 
this region, we find that the character of the rainfall 
has changed, such that the same total amount of rain 
falls in shorter more intense storms. We have shown 
that for the month of May, anthropogenically forced 
climate change has increased the probability of this 
kind of intense, short-duration rainfall (as occurred 
in 2015) for some regions of southeast China. In the 
future, we might expect more occurrences of short, 
intense rainfall events in these regions, increasing the 
likelihood of flooding.
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19. RECORD-BREAKING HEAT IN NORTHWEST CHINA  
IN JULY 2015: ANALYSIS OF THE SEVERITY AND           

UNDERLYING CAUSES

Chiyuan Miao, Qiaohong sun, dongXian Kong, and Qingyun duan

 

Introduction. In July 2015, northwest China experi-
enced an unusually long and intense heat wave, es-
pecially in Xinjiang Autonomous Region (Fig. 19.1a). 
Maximum daily temperatures (TMX) exceeded 40°C 
on a record-breaking number of July days in 50 out of 
88 counties in Xinjiang, and historical TMX records 
were broken in 28 counties. The highest TMX was 
47.7°C in Turpan. This year also smashed the histori-
cal records of heat wave duration in 51 counties. 

Our paper poses three questions: How extreme was 
the heat in Northwest China in July 2015 in a histori-
cal context? What factors led to the record-breaking 
heat? Did human-induced climate change increase 
the odds of abnormally high July heat in Xinjiang? 

Data and methods. We collected the July TMX from 
National Meteorological Information Center (NMIC; 
http://data.cma.cn). The NMIC has conducted data 
quality control, including extreme value control, 
consistency check, and spatial consistency test (Liu 
and Li 2003). We used the data at the 53 stations with 
continuous July TMX records throughout the period 
of 1961–2015. We defined the extreme threshold as the 
90th percentile of area-averaged July TMX between 
1961 and 1990 (Mazdiyasni and AghaKouchak 2015). 
Heat wave duration was defined as the total number 
of days within July that TMX exceeded the threshold 
(Meehl and Tebaldi 2004). 

Simulations from 10 global climate models 
(GCMs) from the Coupled Model Intercomparison 

Project Phase 5 of (CMIP5; Taylor et al. 2012) were 
used to assess the contribution of human influences 
on the observed July TMX (Supplemental Table S19.1 
for the model list). The simulations driven by prein-
dustrial control setting, natural forcing, all forcings, 
and anthropogenic greenhouse gases (GHG) forc-
ing were assessed. As compared to the usual 2005, 
these 10 models extend the historical and natural 
simulations to 2012. However, we focused the GCM 
simulation analysis on the period 1961–2015 to enable 
comparison with observations. We used the TMX 
projection from the Representative Concentration 
Pathways 4.5 (RCP4.5) scenario to extend the time 
series of all forcings simulations through 2015, similar 
to Zhou et al. (2014) and Sun et al. (2014). For each 
GCM, only one member (r1i1p1) run was employed 
in this study. We used several statistical techniques 
to assess the severity and causes of the extreme heat: 

1) To estimate the univariate return period, we 
selected the generalized extreme value (GEV) distri-
bution for parametric fitting. This allows more stable 
estimates of return periods for extreme events occur-
ring in the upper tail of the distribution (Fig. 19.1b). 
We used the Kolmogorov–Smirnov (K–S) goodness-
of-fit test to verify the distribution (Wilks 2006). 

2) We focused on the concurrence of July mean 
TMX anomaly and the duration of the heatwave (Fig. 
19.1c). To estimate the concurrent extreme return 
period, we used the concept of copulas designed to 
model the dependence between multiple variables 
(Nelsen 2007). We used the Akaike information 
criterion (AIC; Akaike 1974) to identify the Gumbel 
copula as the most appropriate: smaller AIC values 
indicate a more reliable joint distribution (Supple-
mental Table S19.2). 

3) To evaluate the impact of external forcing, 
we estimated scaling factors using the regularized 
optimal fingerprinting (ROF) method (Ribes et al. 

The record-breaking heat over northwest China in July 2015 was linked directly to atmospheric general 
circulation indices and anthropogenic forcing. The latter increased the risk of extreme heat by three-fold. 
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2013). Two categories were assessed: anthropogenic 
variations in GHG and natural forcing (Fig. 19.2b). 
Uncertainty ranges (5–95%) for the scaling factors 
were evaluated via Monte Carlo simulations. If 
the scaling factor for a forcing simulation was 
significantly greater than zero, then the influence of 
that forcing on the variable (i.e., July TMX) is detected 
(Zhang et al. 2013). 

4) To analyze the attributable risk, we employed 
the conventional fraction of attributable risk (FAR = 
1− Pnat/Pall) method (Stone and Allen 2005; Stott et al. 
2015). We compared the probability of the observed 
2015 July mean TMX anomaly occurring in the all 
forcing (Pall) and natural forcing (Pnat) simulations to 
ascertain the contribution of anthropogenic climate 
change. Bootstrapping (with replacement) was per-
formed 1000 times per period to estimate the FAR 
uncertainty (Fig. 19.2c).

5) To test causality, we applied Granger causality 
analysis (GCA; Granger 1969). We examined the im-
pact of the El Niño–Southern Oscillation (ENSO) on 

the monthly mean TMX during the period of 1961–
2015 (Supplemental Fig. S19.1). The fundamental 
concept in GCA is that if the prediction of X (monthly 
mean TMX) is improved by including Y (here, the 
monthly ENSO index) as a predictor, then Y is said to 
be Granger causal for X (significance determined by 
F-test; p < 0.05; Sun et al. 2016). In addition, a contour 
map for the South Asia high (SAH) was generated to 
explore its coincidence with the heat events.

Results. A. Observed 2015 July TMX in historical context. 
Figure 19.1a shows that the July mean TMX in 2015 
(32.76°C) was the highest during the past 55 years and 
was 2.87°C higher than the mean TMX during the 
baseline period (1961–90). The gray and red lines in 
the embedded figure in Fig. 19.1b correspond to July 
mean TMX anomaly during 1961–2014 and in 2015, 
respectively, relative to the baseline period. The K–S 
test shows that the GEV distribution was not rejected 
at p < 0.05 level. The 2015 July heat was close to a 
1-in-166-year event. Because only 55 years of observed 

Fig. 19.1. (a) Time series of observed area-averaged Jul TMX over Xinjiang Autonomous Region, China, 
from 1961–2015. (b) Return period for Jul mean TMX. The univariate distribution was fit with a GEV 
function. Maximum likelihood estimates (MLEs) were used to obtain the location parameter µ, scale 
parameter σ, and shape parameter k. (c) Return period for concurrent Jul mean TMXs and heat wave 
durations. The bivariate joint distribution was fit with the Gumbel copula function. The numbers on 
the contour lines indicate the compound return period. (d) Spatial distribution of changes in July mean 
TMX anomaly (°C) and heat wave duration (%), relative to the average for each individual station during 
the baseline of 1961–90.
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data were used, the 166-year return period can be 
considered as a lower bound. The blue and red dots in 
Fig. 19.1c indicate the return periods for concurrent 
July mean TMX and heat wave duration during the 
period 1961–2014 and in 2015. The July 2015 concur-
rency was a 1-in-200-year event. We also found that 
the most severe changes from baseline in 2015 July 
mean TMX and heatwave duration were mainly in 
the middle and northeastern areas of Xinjiang. The 
heat wave duration was approximately double that of 
the baseline period (Fig. 19.1d).
 
Results. B. Analysis of the attributable risk. We com-
pared the likelihood of the July mean TMX anom-
aly occurring in different CMIP5 experiments (Fig. 
19.2a). When anthropogenic forcing was included, 
the probability density function (PDF) shifted to 
the right, indicating an increased likelihood of high 
temperatures. The scaling factor for the GHG-forcing 

simulation, estimated by the regularized optimal 
fingerprinting method, was 0.41 [90% confidence 
interval (CI): 0.09–0.76; Fig. 19.2b], suggesting that 
the changes in area-averaged July mean TMX were 
responsive to the anthropogenic greenhouse-gases 
forcing. It was estimated that all PDFs assumed a 
GEV distribution. When the 2015 July mean TMX 
anomaly (2.87°C) was marked as the threshold, the 
equivalent FAR value was 0.68 (90% CI: 0.51–0.81; Fig. 
19.2c), indicating that 68% of the risk of such event 
is attributed to anthropogenic climate change. This 
translates to about three-fold (90% CI: 2.04–5.32) 
increase in the probability of 2015 July mean TMX 
anomaly occurring due to anthropogenic influence. 
The RCP4.5 experiments indicated that the risk from 
human-induced climate change increases with time, 
while uncertainty reduces with time (Fig. 19.2c, 
embedded figure). We also attempted to find other 
factors that contributed to the extremely high TMX 

Fig. 19.2. (a) PDFs for Jul mean TMX anomaly (relative to 1961–90) for the all forcing (red) and natu-
ral forcing (blue) simulations; (b) Attribution analysis based on the TMX time series under different 
forcing conditions, (c) PDFs for estimated FAR focused on all forcing (1961–2015) and natural forcing 
(1961–2012). The blue histogram was generated by bootstrap resampling; the red line is the median. 
The embedded figure shows estimated FAR results (median and 25th–75th percentiles) from the all 
forcing simulation for different 30-year periods against the natural forcing simulation for 1961–2012. 
The x-axis indicates the starting year of the 30-year moving window. (d) The geopotential height 
anomaly field (m) for Jul 2015 at 100 hPa (baseline period: 1980–2009) estimated with the NCEP-DOE 
Reanalysis 2 datasets.



S100 DECEMBER 2015|

in July 2015. The 2015 ENSO was one of the strongest 
since 1960. GCA showed that there was no significant 
(p = 0.35) causal relationship between area-averaged 
mean TMX and ENSO index (Supplemental Fig. 
S19.1a). However, for 10 stations in central Xinjiang, 
significant causal relationship (p < 0.05) was detected 
between TMX changes and ENSO (Supplemental Fig. 
S19.1b). The extreme heat events in July 2015 might 
be also related to the movement of the South Asia 
high (SAH), which is the most intense and persistent 
anticyclone system in the upper troposphere and 
lower stratosphere over southern Asia during boreal 
summer (Mason and Anderson 1963). Less precipita-
tion and heat events usually occur in the region where 
the SAH moves in (Chen et al. 2011). According to the 
geopotential height anomaly field in July 2015 at 100 
hPa, the SAH center moved northward (Fig. 19.2d) 
and dominated the weather of the entire Xinjiang 
region, coinciding with the extreme heat events in 
northwest China. 

Conclusions. Our analysis of July TMX records over the 
last 55 years indicates that the record-breaking heat 
observed over Northwest China in 2015 was at least 
a 1-in-166-year event. The return period increased to 
~200 years if heat wave duration was also taken into 
account. CMIP5-based FAR analyses suggest that an-
thropogenic climate change increased the likelihood 
of such an extreme event by three-fold. The extreme 
heat event is related to the ENSO and SAH. This study 
is an important step toward a comprehensive under-
standing of the record-breaking 2015 heat in Xinjiang.
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20. HUMAN INFLUENCE ON THE 2015 EXTREME HIGH 
TEMPERATURE EVENTS IN WESTERN CHINA

ying sun, lianChun song, hong yin, Xuebin Zhang, peter stott, botao Zhou, and ting hu 
 

Introduction. The 2015 summer (June–August) was 
historically the hottest in western China (west of 
105°E), setting new records for the regionally aver-
aged seasonal mean temperature, annual maxima 
of daily maximum (TXx), and daily minimum 
(TNx) temperatures. Many stations set new record 
high temperatures as well. During the period of 12 
June–10 August, the daily high temperature above 
38°C covered an area of about 753 000 km2, with the 
highest temperature of 47.7°C recorded in Dongkan 
station (42.83°N, 89.25°E) of Turpan. The long-lasting 
extreme high temperature events exerted serious 
impacts on agriculture and other sectors, resulting in 
severe heat damage for different crops such as corn, 
wheat, and fruit trees (CMA 2016).

Data and Methods. The observational data were ex-
tracted from the national dataset of homogenized 
daily temperatures for 1958–2015 with 492 stations 
in western China (see Fig. 20.1a for a map of station 
locations) available for the analyses. Even though the 
station density is poor in some areas, the available 
station observations represent the region reasonably 
well because extreme warm events are of fairly large 
spatial scale. These data were quality controlled and 
homogenized with RHtest (Xu et al. 2013) by the 
China National Meteorological Information Center. 
Two indices representing the hottest day and night 
temperatures in the summer season, TXx and TNx, 
were first calculated for individual stations. Regional 
mean values of TXx and TNx are then computed, with 

consideration of uneven spatial distribution of the sta-
tions, by first averaging available station data within 
each 5° × 5° grid box and then taking the averages of 
the available gridbox values within the region. Based 
on daily data from climate models participating in 
the Coupled Model Intercomparison Project Phase 
5 (CMIP5; Taylor et al. 2012), the simulated TXx 
and TNx were used to estimate extreme temperature 
responses to external anthropogenic and natural 
forcing (ALL), natural forcing only (NAT), and the 
internal variability of the climate system. Model data 
are interpolated onto the same 5° × 5° grids. Detailed 
information about observations, model data, and 
calculations are provided in the online supplemental 
material. 

To estimate the influence of anthropogenic forcing 
(ANT) on the extreme events, our method involves 
three steps. 1) We first conduct a formal detection and 
attribution analysis for regional mean TXx and TNx 
values for 1958–2012 using an optimal fingerprinting 
method (Hegerl et al. 1997; Allen and Stott 2003) as 
implemented in Ribes et al. (2013). This is done by 
regressing the observations onto one or more model-
simulated responses to external forcings (ALL, ANT, 
and NAT). We obtain the scaling factors that scale 
the model-simulated responses to best match the ob-
servations. 2) We then multiply the model simulated 
responses to ALL and NAT with the relevant scaling 
factors to obtain the ALL and NAT reconstructions. 
3) We finally estimate the probability of occurrence 
for an event as hot as the 2015 summer in the worlds 
with or without human influence, using a method 
described in Sun et al. (2014). The world without hu-
man influence is represented by adding preindustrial 
control simulations to the reconstructed 5-year aver-
age model responses to NAT forcing in 2007–12. The 
world with human influence is represented by adding 
preindustrial control simulations to the reconstructed 
5-year average model response to ALL forcing in 
2013–17 that was estimated from simulations from 

Human influence has very likely increased the probability of occurrence of the 2015 western China 
extreme summer temperature events by at least 3-fold and 42-fold for the highest daily maximum and 

minimum temperatures, respectively.
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RCP 4.5 experiments. The percentage of years with 
temperatures at or above the 2015 summer tempera-
ture in the reconstructed series is considered as the 
probability for that event to occur in the worlds with 
or without human influence. 

The fraction of attributable risk (FAR; Allen 2003; 
Stott et al. 2004) and its uncertainty range are esti-
mated using a method described in Song et al. (2015). 
Because the effect of urbanization is not particularly 
strong in western China, it is not considered in this 
study.

Results. The regional averages of the 2015 summer 
(June–August) mean and the TXx and TNx in west-
ern China (west of 105°E) were the highest on record 
beginning in 1958, with 1.54°C, 2.14°C, and 2.06°C 
above their respective 1961–90 averages (Fig. 20.1b). 
The long-term changes in the mean and the extreme 
temperatures are very similar, with the linear trends 
of 0.28°C (10 yr)−1 for mean temperature, 0.22°C (10 
yr)−1 for TXx, and 0.30°C (10 yr)−1 for TNx during 
1958–2012, respectively. Warming continued during 

the so-called global warming hiatus, consistent with 
the findings of Seneviratne et al. (2014). 

Figures 20.1c,d show the maps of 2015 summer 
TXx and TNx anomalies in China, respectively. Both 
the maxima of daily maximum and daily minimum 
temperatures were very high in western China with 
positive anomalies almost everywhere in the region. 
In particular, the anomalies are generally larger than 
3°C with the maximum above 5°C in the region north 
of 35°N. 

The 5-year mean time series shows that the evolu-
tions of observed TXx and TNx are consistent with 
the model-simulated responses to ALL forcing but not 
with that to NAT forcing (Figs. 20.2a,b). Additionally, 
the 90% ranges of model-simulated TNx responses 
to ALL and NAT forcings do not overlap beyond the 
year 2000. The model-simulated response to NAT 
forcing shows small positive values near the end of the 
period, especially for TXx. This might be a reflection 
of underestimation of volcanic aerosols used in the 
CMIP5 simulations for the early twenty-first century 
as suggested by Santer et al. (2014). An implication is 

Fig. 20.1. (a) A map of China showing the locations of the observing stations (blue dots) used in the 
study. The colors show elevation (in meters). (b) Time series of summer mean temperature (black), 
the maximum daily maximum temperature TXx (red), and the maximum daily minimum temperature 
TNx (blue) anomalies over western China. (c) Spatial distribution of 2015 summer TXx, and (d) TNx 
anomalies relative to 1961–90 average (°C).



S104 DECEMBER 2016|

that we might have underestimated human influence 
on the 2015 summer heat. 

Our detection and attribution analyses were con-
ducted on nonoverlapping 5-year mean series. We 
first regress the observations onto ALL and ALL-NAT 
(ANT) signals separately (one-signal analyses) and 
then onto ALL and NAT jointly (two-signal analyses). 
The one-signal analyses show that the ALL and ANT 
signals can be detected in the extreme temperatures, 
and there is no evidence to indicate, from residual 
consistency tests, that the model may have underesti-
mated natural internal variability. The best estimates 
of scaling factors for ALL are 0.80 (90% confidence 
level 0.46–1.14) and 1.20 (90% confidence level 
1.00–1.41) for TXx and TNx, consistent with earlier 
findings (e.g., Zwiers et al. 2011; Kim et al. 2015) for 
that general region yet over a much larger area.

The two-signal detection results indicate that the 
ANT signal can be separately detected from the NAT 
signal for both TXx and TNx, and that the NAT signal 
can be detected in TNx. The scaling factors for ANT 
and NAT are 0.78 (90% confidence level 0.38–1.18) 

and 0.89 (90% confidence level −0.16–1.95) for TXx 
and 1.21 (90% confidence level 0.96–1.47) and 1.17 
(90% confidence level 0.48–1.87) for TNx, indicating 
the robustness of detectable human influence on the 
extreme temperatures. The residual consistency test 
shows that the model-simulated variability for TXx is 
consistent with the observed internal variability; how-
ever, the model-simulated TNx variability is larger 
than that of observations. These all suggest that the 
observed warming in the extreme temperatures are 
mainly attributable to anthropogenic external forcing 
rather than natural external forcing. 

The 2015 summer TXx was 2.14°C higher than 
the 1961–90 average. The best estimate of tempera-
ture response to ALL forcing at the 2015 climate is 
0.88°C (with a 90% range of 0.51°C–1.26°C) above 
the 1961–90 climatology. This suggests that 1.26°C 
of the TXx anomaly was due to natural internal vari-
ability. By calculating the percentage of years with 
TXx temperature anomalies at or above 2.14°C in 
the reconstructions with ALL forcing and with the 
NAT forcing, the hot 2015 TXx would be roughly a 

Fig. 20.2. Five-year mean nonoverlapping (a) TXx and (b) TNx anomalies (°C) from observations 
(black) and simulations of multimodel ensembles. The model ensemble averages are represented by 
red (ALL) and blue (NAT) lines. The blue and pink shadings show the 5%–95% ranges of the ALL and 
NAT simulations. (c) Probability histograms for the mean summer TXx and (d) TNx anomalies from 
the best estimates of NAT (blue) and ALL (red) forcing simulations in comparison with the observed 
values (OBS, vertical black line) in 2015.
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once-in-272-year event (with a 90% range of 143–572 
years) in the natural world, and that it became a once-
in-28-year event (with a 90% range of 12–94 years) 
under the climate appropriate for the anthropogenic-
forcing-induced world of 2015. The probability of the 
event occurring has increased by almost 10-fold due 
to human influence; there is more than a 90% chance 
for this increase to be at least 3-fold. The FAR (Stott 
et al. 2004) can thus be estimated as 0.90 (with a 90% 
range of 0.66–0.96). 

The 2015 summer TNx was 2.06°C above its 
1961–90 average. The best estimate of temperature 
response to ALL forcing at the 2015 climate is 1.40°C 
(with a 90% range 1.17°C–1.65°C) above the 1961–90 
climatology. This suggests that 0.66°C of the TNx 
anomaly was due to natural internal variability. We 
estimate that the observed extreme warm temperature 
for 2015 would be a once-in-1430-year event (with a 
90% range of 715–2860 years) in the NAT world, and 
that it became a once-in-16-year event (with a 90% 
range of 6–41 years) under the climate appropriate 
for the anthropogenic-forcing-induced world of 2015. 
The probability of the event occurring has increased 
by almost 89-fold due to human influence; there is 
more than 90% chance for this increase to be at least 
42-fold. The FAR can thus be estimated as 0.99 (with 
a 90% range of 0.97–1.00).  

Conclusions. We have detected anthropogenic influ-
ence on the highest maximum (TXx) and minimum 
(TNx) temperatures in western China. We found 
that the record-breaking 2015 summer temperatures 
are the result of the combination of natural internal 
variability of the climate system and human emission 
of greenhouse gases. The natural internal variability 
may be associated with anomalous anticyclones on a 
range of time scales, the possible circulation features 
causing anomalously high temperatures in northwest-
ern China and dryness in the Tibetan Plateau (Chen 
et al. 2011; Zhu et al. 2011).

We noted a much larger FAR for TNx than for 
TXx. This may come about for the following reason: 
the smaller variance in TNx would mean a larger 
change in the probability for a similar magnitude 
of temperature increase when compared with TXx. 
We also noted that the models may have slightly 
overestimated natural variability in the region. An 
implication of this is that our calculated changes 
in probability (and consequently the FAR) may be 
underestimated.
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21. A PERSISTENT JAPANESE HEAT WAVE IN EARLY AUGUST 
2015: ROLES OF NATURAL VARIABILITY AND 

HUMAN-INDUCED WARMING

Chiharu taKahashi, Masahiro watanabe, hideo shiogaMa, yuKiKo iMada, and Masato Mori 

Introduction. A prolonged heat wave hit Japan in 
early August 2015. Daily maximum surface air tem-
perature (SAT) exceeded 35°C for eight consecutive 
days and the 8-day mean anomaly was greater than 
4°C at several observation sites, causing over 10 000 
people to suffer from heatstroke. This heat wave was 
particularly unusual because an ongoing extreme El 
Niño of 2015 was expected to lead to a cooler sum-
mer in Japan. 

A primary cause of this heat wave was an intra-
seasonal tropical disturbance (Fig. 21.1). A tropical 
cyclone (TC), TC1513, was generated in the western 
North Pacific (WNP) during the convectively active 
phase of the intraseasonal oscillation (ISO) in the 
western Pacific (Fig. 21.1c and Supplemental Fig. 
S21.3c), followed by another TC (TC1514). Li and 
Zhou (2013) demonstrated that the two major com-
ponents of the ISO, the 30–60 day Madden–Julian 
oscillation (MJO, Madden and Julian 1971) and the 
10–20 day quasi-biweekly oscillation (QBWO, Chen 
and Sui 2010) can affect the genesis and intensity of 
TCs in the WNP during the summer. It appears that 
the TCs in this study likewise formed in association 
with the ISO. 

The diabatic heating associated with the TC-
related precipitation induced a Rossby wave train, 
which is characterized by cyclonic circulation and 
anticyclonic circulation anomalies in the WNP and 

East Asia, respectively (Figs. 21.1b,d). This pattern is 
similar to the so-called Pacific–Japan (PJ) teleconnec-
tion pattern (Nitta 1987; Wakabayashi and Kawamura 
2004) in July and August, accompanying a meridi-
onal tripolar pattern in precipitation, vorticity, and 
temperature anomalies (Supplemental Fig. S21.1a). 
Several studies have also reported that TCs can gen-
erate the PJ pattern over the WNP (Kawamura and 
Ogasawara 2006; Yamada and Kawamura 2007). In 
early August 2015, the positive PJ pattern gave rise to 
the abnormally persistent hot and dry days over Japan. 

The El Niño conditions climatologically had a 
cooling impact on Japan in July–August (Supple-
mental Fig. S21.1a), yet the 2015 summer was still 
unexpectedly hot (Supplemental Fig. S21.1b). An-
thropogenic warming can change the likelihood of 
specific extreme events, although the odds of an 
event occurring may vary from year to year depend-
ing on the regional sea surface temperature (SST) 
pattern (Christidis and Stott 2014). In this study, we 
investigate the possible influences of the intraseasonal 
variability, the 2015 strong El Niño, and anthropo-
genic warming on the Japanese heat wave in August 
2015 using an atmospheric general circulation model 
(AGCM). 

Methods. We performed four 100-member ensemble 
experiments using the Model for Interdisciplinary 
Research on Climate, version 5 (MIROC5), AGCM 
with a horizontal resolution of 150 km (Watanabe et 
al. 2010). Each of the four experiments used different 
initial conditions during January–October 2015: 1) 
ALL: Experiments designed to simulate the current 
observed world, forced by the observed historical SST 
and sea ice (SIC) derived from the HadISST dataset 
(Rayner et al. 2003) and historical anthropogenic and 
natural radiative forcing agents; 2) NAT1: Forced by 
natural forcing agents and historical SST and SIC 

The persistent Japanese heat wave that occurred in early August 2015 was mainly attributed to 
intraseasonal disturbances including tropical cyclones. Anthropogenic warming contributed to an increase 

in the probability of occurrence.              
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excluding anthropogenic forcings by subtracting 
the long-term 1870–2012 linear trends in SST from 
the HadISST dataset (Christidis and Stott 2014); 3) 
NAT2: Similar to NAT1, but forced by SST/SIC ex-
cluding anthropogenic forcings by subtracting SSTs 
estimated using the Coupled Model Intercomparison 
Project Phase 5 (CMIP5) attribution experiments 
(Stone 2013); 4) ALLnoENSO: Same as ALL but the 
SST anomaly that regressed onto the Niño-3.4 SST 
anomaly was removed in order to eliminate the 
influence of the extreme El Niño in 2015. The above 
experiments except for ALLnoENSO were designed 
by Shiogama et al. (2013, 2014) and updated from the 
previous runs (Imada et al. 2014). We also performed 
a 10-member long-term ALL experiment, called ALL-
LNG, for 1949–2014, to define the model climatology 
and evaluate the simulated interannual variability 
(Supplemental Fig. S21.2). We use the daily JRA–55 
Reanalysis dataset (Onogi et al. 2007; Kobayashi et al. 
2015) and Global Precipitation Climate Project (GPCP 

v1.2; Huffman et al. 2001). The TC data was obtained 
from the best-track of TC provided by the Tokyo– 
Typhoon Center, Japan Meteorological Agency. 

We analyze daily anomalies of all related variables 
from the daily climatology for 1981–2010. Bandpass 
(10–60 day) and low pass (60 day) filters are applied 
to daily anomaly fields in order to extract the intra-
seasonal (IS) and low frequency (LF) components of 
natural variability. The IS component is mainly as-
sociated with the PJ pattern that links to TCs, and the 
LF part is related to seasonal variability including the 
influence of the 2015 El Niño. The SAT anomaly in 
Japan was largely dominated by the IS component in 
mid-July to mid-August (Fig. 21.1a). To examine the 
variability of the intraseasonal PJ pattern, the empiri-
cal orthogonal function (EOF) analysis is performed 
to intraseasonal 850-hPa vorticity anomalies in the 
domain of 10°–50°N, 110°–170°E in July and August 
for 1981–2015 in the observation and for 2015 in the 
ALL ensemble. The intraseasonal PJ index is defined 

Fig. 21.1. (a) Time series of observed SAT anomalies over Japan (30°–42°N, 130°–145°E, land area only, 
daily anomaly in black, IS in red, and LF in blue) and normalized PJ index in green from 16 July to 16 
Aug 2015. The shading indicates the analysis period (10-day from 31 Jul to 9 Aug) including the heat 
wave event. (b)–(d) Observed patterns of the 10-day mean anomalies in (b) precipitation (shading), 
850-hPa stream function (contours, 106 m2 s−1 interval), and 850-hPa wave activity fluxes (vectors); 
(c) 850-hPa vorticity, on which 2 TC tracks (green and black circles) are superimposed; and (d) SAT 
(shading), 500-hPa geopotential height (contours, 10-m interval), and 500-hPa winds (vectors). The 
dashed contours indicate negative anomalies.
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as the principal component associated with the lead-
ing EOF that accounts for 8.3% of the total variance in 
the observation. The observed intraseasonal PJ index 
exceeded 1 standard deviation (σ) in the period of the 
heat wave in 2015 (Fig. 21.1a). We mainly analyze the 
10-day period from 31 July  to 9 August 2015 to cover 
the extreme heat event (Fig. 21.1a). 

Results. The PJ pattern simulated in the ALL 100-mem-
ber ensemble corresponds well with the observational 
pattern (Supplemental Figs. S21.3.a,b). A few ensemble 
members in ALL had SAT anomalies over Japan equal 
to or higher than the observation (extreme warm 
members) and well represent the positive PJ patterns 
induced by northwestward-propagating TC-like dis-
turbance as in the observations (Supplemental Figs. 
S21.3d–f). Apart from the PJ pattern originating from 
TCs, an upper-tropospheric wave train also appears 
in the observation (Supplemental Fig. S21.3g). Ogas-
awara and Kawamura (2007) suggest that a combined 
effect of the PJ pattern and other teleconnection pat-
terns propagating from the west may cause extraor-
dinary summer weather. However, the extreme warm 
members in the ALL experiment do not exhibit a clear 
upper-level wave train (Supplemental Fig. S21.3h), 
suggesting that the PJ pattern played the key role in 
the occurrence of the 2015 extreme heat. 

The simulated SAT anomalies (T) are decomposed 
into IS (TIS) and LF (TLF) components for the 10-day 
period that includes the heat wave. The observed 
total and IS SAT anomalies are 1.7°C and 1.4°C aver-
aged over Japan’s land area (30°–42°N, 130°–145°E), 
respectively, indicating that the IS component mostly 
explains the total SAT anomaly (Fig. 21.2a). The rela-
tive contributions of anthropogenic forcing and El 
Niño to the 2015 extreme heat wave are evaluated. The 
occurrence probability of an extreme warm event that 
exceeds or is equal to the observed SAT anomaly is es-
timated using the probability density function (PDFs) 
based on the assumption of a Gaussian distribution 
in each run. The best estimates (50th percentile) and 
uncertainties (the 5%–95% range) of the probabili-
ties are estimated through random resampling. The 
best estimate in occurrence probability (the 5%–95% 
uncertainty range) of the 2015 extreme event is 2.8% 
(1.2%–4.7%) for ALL, 1.8% (0.7%–3.4%) for NAT1, 
1.6% (0.6%–2.8%) for NAT2, and 4.5% (2.2%–7.0%) for 
ALLnoENSO (Fig. 21.2c). The results suggest that the 
anthropogenic warming contributed to increase the 
probability of the 2015 heat wave by 1.5 to 1.7 times 
(5%–95% range: 0.6–5.0), while the El Niño condition 

acted to counteract the anthropogenic warming effect 
and decrease the probability by 0.6 times (5%–95% 
range: 0.2–1.5). 

We also investigate why the low-frequency SAT in 
Japan during the 2015 heat wave unexpectedly exhib-
its positive anomalies (Fig. 21.1a) in spite of the strong 
El Niño year. The influences of anthropogenic forcing 
and El Niño on TLF can be estimated from the differ-
ence between ALL and NAT (TGW1 and TGW2), and ALL 
and ALLnoENSO (TENSO), respectively (Fig. 21.2b). 
The ensemble mean of TLF in ALL is approximately 
consistent with that in observation (Figs. 21.2a,d). 
The ensemble mean with 1 σ is 0.60°C ± 0.42°C for 
TGW1, 0.44°C ± 0.46°C for TGW2, and −0.24°C ± 0.44°C 
for TENSO. In observation, the SAT anomaly in Japan 
is −0.19°C ± 0.31°C for the warm phase of the ENSO, 
when Niño-3.4 SST anomaly is greater than 0.7 σ in 
July–August for 1958–2014. These results indicate 
that the 2015 El Niño (TENSO) has a cooling impact 
on temperatures in Japan comparable to that of the 
climatology for other El Niño years and suggest that 
the impact of anthropogenic warming overcomes the 
cooling effect by the El Niño. However, an individual 
atmospheric response to SST variability in the tropics 
has large variation for the observation and the simu-
lation. The best estimate (the 5%–95% range) of the 
probability exceeding the observed anomaly (0.20°C) 
for TLF by similar resampling is 48.6% (43.0%–54.7%) 
for ALL, 8.3% (5.3%–12.2%) for NAT1, 18.3% (13.7%–
22.8%) for NAT2, and 69.5% (64.7%–74.8%) for ALL-
noENSO (Fig. 21.2d). This result also suggests that 
anthropogenic forcing caused a significant increase 
in the probability of a seasonally warm 2015 summer 
in Japan, while the El Niño decreased it. 

As LF components are better captured by the ALL 
ensemble, we focused on the anthropogenic and El 
Niño contributions to TLF over a wider region. In 
observations, positive TLF anomalies over Japan are 
accompanied by anticyclonic circulation anomalies, 
which may be part of a wave train emanating from 
the subtropical WNP through the North Pacific to 
the west coast of North America that appears to be a 
seasonally generated positive PJ pattern (Fig. 21.2e). 
The changes in the atmospheric circulation owing 
to anthropogenic warming and El Niño, represented 
by TGW2 and TENSO, show a different structure (Figs. 
21.2g,h). The change in atmospheric temperature as a 
result of anthropogenic global warming simulated by 
climate models shows strong warming over the polar 
region in the lower- to mid-troposphere (e.g., Simpson 
et al. 2014). This change indicates that the midlatitude 
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Fig. 21.2. (a) Box-and-whisker plots of 10-day average SAT anomalies over the Japan land area [boxes in (e),(f)] 
in 2015 event. Daily anomalies, LF, and IS components in ALL are compared with observations (orange circles). 
(b) As in (a) but contributions of global warming and ENSO to LF in ALL. GW1, GW2, and ENSO represent the 
differences of SAT anomalies between ALL and NAT1, NAT2, and ALLnoENSO, respectively. (c)–(d) PDFs of 
the 10-day averaged SAT over Japan for (c) daily anomalies and (d) LF components. (e)–(h) 10-day average LF 
SAT (shading), 500-hPa geopotential height [contours, 10-m and 3-m intervals with negative dashed in (e),(f) 
and (g),(h), respectively], and 850-hPa winds (vectors) anomalies for (e) Obs, (f) ALL, (g) GW2, and (h) ENSO. 
Anomalies in (f)–(h) represent the 100-member ensemble means. 
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circulation undergoes a poleward shift and thus the 
equator-to-pole temperature gradient decreases. The 
change in circulation patterns due to the anthropo-
genic effect (TGW2) likewise represents the midlatitude 
anticyclones with SAT and SST warming (Fig. 21.2g). 
On the other hand, the El Niño-induced teleconnec-
tion pattern in 2015 formed a wave train propagating 
from the tropical western Pacific northward and acts 
to decrease the seasonal SAT accompanied by the 
anomalous cyclonic circulation over Japan that links 
to a suppressed northward expansion of the climato-
logical North Pacific high (Fig. 21.2h). The seasonal 
PJ pattern in summer tends to have negative correla-
tions with El Niño–Southern Oscillation (ENSO) in 
the preceding boreal winter and with Indian Ocean 
temperature in the concurrent summer (Kubota et al. 
2015). The 2015 El Niño-induced pattern (Fig. 21.2h) 
seems to be out of phase with the well-known PJ pat-
tern (Wakabayashi and Kawamura 2004). 

ENSO modifies the background state of tropi-
cal–subtropical ISO and thus significantly affects the 
degree of ISO modulation on TC formation in the 
WNP (Li et al. 2012). The El Niño in the summer 2015 
provides the favorable background condition for the 
growth of tropical disturbances, including strength-
ened vorticity and monsoon trough within 5°–20°N 
(Fig. 21.2h). We examined a possible influence of El 
Niño on the intraseasonal PJ teleconnection pattern 
and associated SAT in Japan for July–August 2015 
(Supplemental Fig. S21.4). The result indicates that the 
extreme rainfall accompanied by intraseasonal vari-
ability is more enhanced east of the Philippines, which 
may in turn cause more warming in Japan through 
the PJ teleconnection due to extreme El Niño in 2015 
(see online Supplemental Material). This work notes 
that an understanding of the interaction between 
tropical SST and the intraseasonal teleconnection is 
of importance for weather and climate prediction for 
East Asia. A follow-up study using atmosphere–ocean 
coupled GCMs is required to investigate any role of 
air–sea interaction in extraordinary weather and 
climate in Japan. 

Conclusions. The persistent Japanese heat wave that 
occurred in early August of 2015 was mainly attrib-
uted to intraseasonal disturbances, including TCs. 
Yet, it is found that the anthropogenic warming in-
creased the probability of occurrence of the event by 
1.5 to 1.7 times. The contribution of human-induced 
warming to the 2015 heat wave would have been 
more pronounced if there had not been a concurrent 

extreme El Niño event because El Niño has a cooling 
effect in Japan. 
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22. CLIMATE CHANGE AND EL NIÑO INCREASE 
LIKELIHOOD OF INDONESIAN HEAT AND DROUGHT

andrew d. King, geert Jan van oldenborgh, and david J. Karoly

Introduction. Indonesia experienced severe heat and 
drought throughout the dry season of 2015. The pe-
riod July–October saw extreme precipitation deficits 
and record-breaking hot temperatures (Figs. 22.1a,b). 
The combination of heat and drought contributed to 
fires across much of the country, which were associ-
ated with fatalities and were likely the worst since 
1997 (Huijnen et al. 2016). The fires had broader 
health impacts through increased prevalence of re-
spiratory problems (Koplitz et al. 2016). 

El Niño conditions in the central Pacific are 
strongly linked with seasonal precipitation deficits 
south of the equator in the dry season (Hendon 2003; 
Fig. 22.1c) and, to a lesser extent, warmer land tem-
peratures (Harger 1995; Fig. 22.1d). Previous strong El 
Niño events, such as 1997, were associated with severe 
drought conditions in Indonesia. Anthropogenic 
influences may also have played a role in this event. 
The relative influences of El Niño–Southern Oscilla-
tion (ENSO) and human-induced climate change are 
investigated here. 

Data and methods. To assess this current extreme 
event in the long-term context of a changing 
climate, it is desirable to have high-quality long-
term observational time series. It is also preferable 
to have gridded observations, when comparing with 
climate model output, at a moderate resolution, 
especially over Indonesia where larger grid boxes 
contain both land and ocean. Unfortunately, in 
many regions of the developing world such data do 
not exist. The use of temperature and precipitation 

data from a range of observation-based datasets were 
investigated, and ERA-Interim (1979–2015; Dee et 
al. 2011) was selected for use in this analysis. Other 
longer-running reanalyses and analyses, such as ERA-
20C (Poli et al. 2016) and CRU-TS3.23 (Harris et al. 
2014), were found to include inhomogeneities prior 
to the satellite era (1979 onwards). A long, relatively 
homogenous, precipitation series was obtained from 
the GPCC 1° V7 analysis (1901–2015) extended by 
the V5 monitoring analysis (Schneider et al. 2015).
Temperature and precipitation data were regridded 
onto a regular 2° grid and averaged over land boxes 
within the region 0°–11°S, 95°–141°E for July–October 
(time series shown in Supplemental Fig. S22.1). 
There is agreement in temperature trends between 
ERA-Interim and limited observational data from 
the public Global Historical Climatology Network-
Monthly database (Lawrimore et al. 2011) available 
since 1979 (Supplemental Fig. S22.2). The trends 
and connection to El Niño were also investigated 
in observational data. It was impossible to find a 
temperature series longer than the ERA-Interim 
series, as the station density is low, variability is small, 
and coastal effects make interpolation to the interiors 
of large islands doubtful. For further details on our 
observational analysis, see the online Supplemental 
Material.

The Niño-3.4 index was calculated from HadISST 
(Rayner et al. 2003) for July–December. Values of the 
Niño-3.4 index more than +0.83°C (1σ) above zero in 
the observations were deemed to be El Niño seasons. 
Applying this threshold to the climate models results 
in selecting 10% of the seasons due to a tendency 
toward lower Niño-3.4 variability in most models.

Model data were extracted from the CMIP5 
archive (Taylor et al. 2012) and evaluated for their 
performance in capturing observed temperature and 
precipitation variability. The model data processing 
followed the same regridding and subsequent mask-
ing as the reanalysis (the raw resolution of most 

El Niño and human-induced climate change have substantially increased the likelihood of rainfall deficits 
and high temperatures, respectively, in Indonesia such as those experienced in the drought conditions of 

July–October 2015.
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models used here is finer than 2°). July–October tem-
perature and precipitation averages over Indonesia 
and July–December Niño-3.4 index values were ex-
tracted. Simulations from the “historical” experiment 
(including natural and anthropogenic forcings for 
1861–2005) were compared with observation-based 
data over the common 1979–2005 period. To account 
for the shorter period over which the evaluation takes 
place, additional evaluation steps were included that 
test model ability to capture Indonesian climate 
variability and ENSO relationships (described in the 
Supplemental Material). Models with at least three 
historical simulations (listed in Supplemental Table 
S22.1) were tested for similarity to observational data.

The ten models that passed the evaluation were 
further analyzed. Equivalent Indonesian temperature 
and precipitation averages and Niño-3.4 index values 
were calculated from the historicalNat (natural 
forcings only for 1861–2005) and RCP8.5 (projected 
climate under a high greenhouse gas emissions 
scenario for 2006–30) simulations. 

The historical and equivalent RCP8.5 simulations 
were joined to form simulations included in an all-
forcings ensemble (2000–30), which were compared 

with a natural-forcings ensemble (1861–2005) using 
the historicalNat runs. These ensembles were then 
used to investigate the change in likelihood of extreme 
heat (above +0.7°C anomaly) and drought (below 
60% of average precipitation) in Indonesia due to 
anthropogenic climate change and El Niño–Southern 
Oscillation.

In addition, we estimated the change in magnitude 
of hot and dry July–October periods in Indonesia due 
to climate change and the El Niño conditions. See 
the online Supplemental Material for more details 
and the results.

Uncertainty in results was measured through 
boot s t rappi ng model  s i mu lat ions  (see  t he 
Supplemental Material). Results reported here are 
conservative 10th percentile estimates with best 
estimates in parentheses.

Results. 1) Attribution to anthropogenic influences: 
low rainfall extremes

Based on our model analysis, precipitation 
deficits like those experienced during July–October 
2015 in Indonesia were made at least 37% (best 
estimate: 100%) more likely due to anthropogenic 

Fig. 22.1. (a) Precipitation and (b) temperature anomaly in Jul–Oct 2015 relative to a 1979–2005 climatological 
average in ERA-Interim. The box in (a) denotes the region of study. Detrended area-average (c) precipitation 
and (d) temperature anomalies for the boxed region from 1979–2015 in ERA-Interim plotted with average 
Jul–Dec Niño-3.4 index. Spearman rank correlation coefficients are shown and 2016 is marked (red crosses). 
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climate change. This result is based on the models 
that passed our evaluation tests and adequately 
capture Indonesian climate variability and ENSO 
relationships. The significant increase in frequency 
of low rainfall totals in the all-forcings ensemble 
compared with the natural-forcings ensemble is 
consistent with the simulated reduction in July–
October mean precipitation. These results contrast 
previous attribution analyses of precipitation deficits 
in other parts of the world, such as Australia (King 
et al. 2014), Brazil (Otto et al. 2015), and Texas (Rupp 
et al. 2015) that found limited evidence of a strong 
anthropogenic influence.

The observational precipitation time series (for 
1901–2014) shows a downward trend in low extremes, 
albeit a nonsignificant trend (Fig. 22.2a), and no trend 

in mean July–October precipitation. The dry tail of 
the observations and the El Niño tail in the models 
agree well (Fig. 22.2a).

2) Attribution to anthropogenic influences: high 
temperature extremes

High temperatures like those observed in 2015 
do not occur in our natural-forcings ensemble (as 
indicated by all green crosses being below the 2015 
mark in Fig. 22.2c), but do exist in our all-forcings 
ensemble. Therefore, in our model-based analysis, the 
high temperatures are entirely attributable to anthro-
pogenic influence. The probability is also vanishingly 
small in the observations (Fig. 22.2c), even though we 
can only go back to 1979, which misses about 1/3 of 
the warming signal. We also did not separate out El 
Niño years in the observations due to the small num-

Fig. 22.2. (a),(b) The change in likelihood of dry Jul–Oct periods like 2015 in modeled and observed precipitation 
due to (a) anthropogenic influence and (b) ENSO. (c),(d) The same but for hot Jul–Oct periods like 2015. (a) 
Scaled observed precipitation in the current climate fitted to a Generalized Pareto Distribution (GPD) function 
that scales with the smoothed global mean temperature for 1901 (blue lines and symbols) and 2015 (red lines 
and symbols), including 95% confidence intervals. The crosses denote the observations shifted with fitted trend. 
The purple symbols denote El Niño seasons in the model-simulated current climate, green simulated El Niño 
seasons without anthropogenic forcings. (b) The same for El Niño (red observations, purple models) against 
neutral, using 2005 as an example neutral year (blue observations), and neutral plus La Niña (green models). 
(c) As in (a) but for temperature, fitted to a Gaussian distribution that shifts with the smoothed global mean 
temperature. The reanalysis only starts in 1979, which misses 1/3 of the heating. (d) As in (b) but for temperature.
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ber of samples. The warming trend in ERA-Interim 
can also be seen in longer observational time series, 
such as Jakarta (Siswanto et al. 2015).

3) Attribution to El Niño: low rainfall extremes
Given the strong ENSO relationship with Indonesian 
dry-season precipitation (Fig. 22.1c) and the strong 
El Niño of 2015–16, it is expected that the El Niño 
also inf luenced the likelihood of a rainfall deficit 
occurring. Comparing precipitation deficits in the 
all-forcings ensemble between El Niño seasons with 
neutral and La Niña seasons, we found at least a 300% 
increase (best-estimate: 500% increase) in likelihood 
of having dry July–October periods in El Niño years. 
An analysis of the detrended long observed rainfall 
series shows that the probability of a dry season like 
July–October 2015 increases by at least a factor 20 
over neutral years (Fig. 22.2b). The models have a 
somewhat broader distribution toward dry seasons 
than the observations.

4) Attribution to El Niño: high temperature 
extremes
In comparison, ENSO has a weaker (but statistically 
signif icant relationship) with Indonesian land 
temperatures. In the models, the likelihood of hot 
July–October periods in Indonesia is raised by at least 
22% (best estimate: 51%) in El Niño seasons relative to 
neutral and La Niña events combined (Fig. 22.2d). The 
reanalysis shows a stronger effect, with the probability 
increased by at least 300% compared to a neutral year 
like 2005 (after detrending). This is again caused by 
the broader modeled distribution than the observed 
one (Fig. 22.2d).

Conc lus ions .  Indonesia endured severe heat 
and drought during the dry season of 2015. By 
investigating the July–October high temperatures 
and low rainfall totals in ensembles of coupled climate 
models with and without anthropogenic forcings, an 
attribution of these extreme conditions to human-
induced climate change and the concurrent El Niño 
was conducted. The model-based and observational 
analyses show that El Niño conditions strongly 
increased the probability of a drier-than-normal 
dry season, and that the background warming trend 
due to anthropogenic climate change increased the 
likelihood of high temperatures. El Niño also caused 
somewhat higher land temperatures. The models also 
show a trend toward less rain and more extreme dry 
events, which is smaller than can be significantly 
detected in the observations to now.

Dry-season precipitation variability in Indonesia 
is strongly related to ENSO, while a very clear warm-

ing trend is detectable there. Our results are in line 
with time of emergence studies in that regard (e.g. 
King et al. 2015; Mahlstein et al. 2011), which find 
an earlier warming signal in tropical regions such 
as Indonesia due to a high signal-to-noise ratio. A 
difficulty with performing this study was the lack 
of high-quality long-running observational climate 
data representative of our study area. The use of 
ERA-Interim reanalyses to evaluate the models and 
provide thresholds for the CMIP5-based analysis is 
not ideal. This difficulty is a problem across much 
of the developing world, where extreme weather and 
climate events also tend to have the strongest impacts. 
Further analysis on how to best conduct attribution 
studies where observations are sparse or have sus-
pected inhomogeneities is required.
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23. SOUTHERN AUSTRALIA’S WARMEST OCTOBER ON 
RECORD: THE ROLE OF ENSO AND CLIMATE CHANGE

MitChell t. blaCK and david J. Karoly 
 

Introduction. Australia experienced its warmest 
October on record in 2015 (Australian Bureau of 
Meteorology 2015). This was primarily the result of 
an early season heat wave in the beginning of the 
month, concentrated over southern Australia (SAUS; 
Fig. 23.1a). The monthly anomaly for maximum 
temperature over SAUS (5.16°C; Fig. 23.1b) was the 
largest ever recorded for the region for any month of 
the year. This unseasonably warm weather over SAUS 
led to an early start to the bushfire season and caused 
significant crop losses across one of Australia’s most 
important agricultural regions, the Murray–Darling 
basin. 

The October heat coincided with one of the stron-
gest El Niño events on record. While warm and dry 
conditions over parts of Australia are typical of an El 
Niño event, the observed record-breaking tempera-
tures may have been exacerbated by climate change. 
This study uses very large ensembles of atmosphere-
only regional climate model simulations to assess the 
relative roles of the El Niño–Southern Oscillation 
(ENSO) and anthropogenic climate change in the 
October 2015 extreme heat across SAUS.

Data and methods. Our study made use of the 
weather@home Australia–New Zealand project 
(Black et al. 2016) to generate very large ensembles 
of reg iona l cl imate model simulat ions over 
Australia. This setup uses the atmosphere-only 
model, HadAM3P, to drive a nested regional model 
(HadRM3P; 0.44° resolution). For details of the 
modeling setup, see Black et al. (2016); only a brief 
description is provided here for context. First, the 

model was run under two distinct climate scenarios: 
observed (all forcings, ALL) and counterfactual 
(natural forcings only, NAT) realizations of the year 
2015. For the ALL simulations, the model was driven 
by observed sea surface temperatures (SSTs) and sea 
ice from the Met Office Operational Sea Surface 
Temperature and Sea Ice Analysis dataset (OSTIA; 
Donlon et al. 2012), as well as present-day atmospheric 
composition (well-mixed greenhouse gases, ozone, 
and aerosols). Very large ensembles were generated by 
running the model with perturbed initial conditions. 
For the NAT simulations, the model was driven by 
preindustrial (1850) atmospheric composition, while 
the SSTs were modified to remove different estimates 
of the warming attributable to anthropogenic 
greenhouse gases. Estimates of the SST changes 
due to human influence were separately calculated 
using eight CMIP5 models (Taylor et al. 2012; see 
online Supplemental Material). Therefore, eight 
alternative realizations of the NAT climate were 
created. By adjusting observed SSTs to remove the 
anthropogenic signal, the main modes of natural 
variability represented in the ALL SSTs (e.g., the 
phase of ENSO) are maintained in the NAT climate 
realizations. Therefore, any change of likelihood of 
heat events between the ALL and NAT scenarios can 
be directly attributed to anthropogenic forcing. 

To assess the influence of ENSO on the occurrence 
of SAUS temperature records, additional simulations 
were generated by driving the weather@home model 
with composite SST patterns representative of each of 
the three phases of ENSO: El Niño, Neutral, and La 
Niña (see online supplemental material for details). 
Each of these three phases was modeled under both 
ALL and NAT climate realizations (as per the 2015 
runs listed above). Previous work has shown that 
the weather@home model is able to correctly rep-
resent ENSO teleconnections over Australia (Black 
et al. 2016). We used all of the model simulations that 

Anthropogenic climate change was found to have a substantial influence on southern Australia’s extreme 
heat in October 2015. The relative influence of El Niño conditions was less clear.    
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were available at the time of this writing: 
at least 2700 members for each of the 
ALL scenarios (i.e., 2015 ALL, El Niño 
ALL, Neutral ALL, and La Niña ALL) 
and at least 650 members for each of the 
corresponding eight NAT realizations.

For brevity, this study focuses on 
SAUS because this region experienced 
exceptional October heat (Fig. 23.1a). 
A subset of SAUS, the Murray–Darling 
basin (MDB), is also examined as it 
is located in the east where the ENSO 
relat ionship with temperature is 
typically stronger (e.g., Min et al. 2013). 
Homogeneous temperature records 
for both regions were provided by the 
Australian Bureau of Meteorology (Figs. 
23.1b,c), calculated from the Australian 
Cl imate Obser vat ions Reference 
Network–Surface Air Temperature 
(ACORN-SAT) dataset (Trewin 2013). 
For both SAUS and the MDB, area-
weighted October average maximum 
temperatures were calculated for each 
of the ALL and NAT model simulations. 
As per Black et al.  (2015), we correct 
for model bias (0.13°C for SAUS and 
0.68°C for MDB) by adjusting the mean 
of the NAT distribution to equal that 
of the early ACORN-SAT observations 
(1910–39); this bias adjustment is then 
applied to the ALL distribution.

I n  l i n e  w i t h  o t h e r  c o m m o n 
approaches, we def ine an anomaly 
t hreshold based on t he prev ious 
observed record (+3.68°C for SAUS 
and +4.15°C for the MDB, both set in 
2014; see Figs. 23.1b,c). To quantify 
the change in risk of extreme heat 
due to different forcing scenarios, we 
calculate the fraction of attributable 
risk (FAR; Allen 2003), defined as FAR = 1 − (P1 / 
P2), where P1 and P2 represent the probabilities of 
exceeding the October temperature threshold in two 
different scenarios. In the first instance, we estimate 
the anthropogenic influence by setting P1 to be the 
probability of exceeding the October temperature 
threshold in the 2015 NAT scenarios, while P2 is 
the equivalent for the 2015 ALL scenario. Here, 
we aggregate the eight NAT realizations in order 
to calculate a best estimate of FAR. This process 
is repeated for the El Niño NAT and El Niño ALL 

scenarios. Next, to estimate the influence of El Niño 
conditions on the change in risk of extreme heat, 
we calculate FAR using P1 from the La Niña ALL 
simulations and P2 from the El Niño ALL simulations; 
this is also repeated for Neutral ALL (P1) and El 
Niño ALL (P2). Therefore, we are able to quantify the 
change in risk due to both anthropogenic forcing and 
the phase of ENSO. An assessment of FAR uncertainty 
was estimated by a bootstrap procedure (10 000 times 
with replacement) and the 10th percentile FAR value 
is used to make conservative estimates of changes in 

Fig. 23.1. Oct mean daily maximum temperatures from °Cthe 
Australian Bureau of Meteorology, expressed as anomalies relative 
to the 1961–90 base period. (a) Spatial anomaly field for Oct 2015. 
The southern Australian region (land area south of 25°S) and the 
Murray–Darling basin (hatched region) are shown. (b) Timeseries 
of the southern Australian anomalies from 1910 to 2015, calculated 
from the Australian Climate Observations Reference Network–
Surface Air Temperature dataset (Trewin 2013). (c) As in (b), but 
for the Murray–Darling basin. 
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risk associated with the different forcing scenarios. To 
assist with the interpretation of results, FAR values 
are also presented as estimated increase in likelihood. 

Results. Figure 23.2a shows the model-derived distri-
butions of SAUS October average maximum tempera-
ture for the various forcing scenarios. There is close 
agreement between the distributions for the 2015 
ALL and El Niño ALL scenarios, as well as between 
the 2015 NAT and El Niño NAT scenarios, suggesting 
that the El Niño composite SSTs are a suitable ana-
logue for the 2015 observed conditions. Even though 
the SSTs for the 2015 El Niño were extreme, the 
model results in Fig. 23.2a indicate that the associated 

temperature anomalies in Australia were consistent 
with a typical El Niño event. The ALL scenarios are 
clearly warmer than the NAT scenarios. The La Niña 
ALL distribution is notably cooler than both Neutral 
ALL and El Niño ALL, although the warm tails of 
the distributions are seen to converge. Figure 23.2a 
suggests that even under La Niña conditions, extreme 
SAUS and MDB temperatures as warm as in El Niño 
ALL and Neutral ALL can be achieved. 

The corresponding FAR estimates for exceeding 
the previous SAUS temperature record are shown 
in Fig. 23.2b. When comparing the ALL scenarios 
against the NAT scenarios (first two columns of Fig. 
23.2b), the 10th percentile FAR estimates are around 

Fig. 23.2. (a) Distributions of southern Australian Oct average maximum temperatures for the various weather@
home modeling scenarios. The vertical line represents the previous temperature record (set in 2014). (b) Cor-
responding fraction of attributable risk (FAR = 1 − P1 / P2) calculated using different scenario combinations for 
P1 and P2, as indicated. Estimates of FAR are calculated using a bootstrapping approach (resampling distribu-
tions 10 000 times with replacement); boxes show the median and interquartile range while the whiskers extend 
to the 10th and 90th percentiles. See text for details. (c),(d) As in (a),(b) but for the Murray–Darling basin. 
Abbreviations: El Niño (EN), La Niña (LN), neutral (NU), all forcings (ALL), and natural forcings only (NAT). 
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0.76. Therefore, it is very likely (with 90% confidence) 
that anthropogenic climate change increased the like-
lihood of breaking the previous SAUS temperature 
record by at least 400%. Meanwhile, FAR estimates 
comparing El Niño ALL against La Niña ALL (third 
column) and Neutral ALL (fourth column) result in 
the 10th percentiles being below zero. Therefore, we 
cannot conclude (with 90% confidence) that El Niño 
conditions increased the likelihood of setting a new 
SAUS temperature record. The results for the MDB 
(Figs. 23.2c,d) are similar to SAUS. When comparing 
the ALL and NAT scenarios for the MDB, the 10th 
percentile FAR values were of the order of 0.67, that 
is a 300% increase in likelihood due to anthropogenic 
climate change. Meanwhile, the ENSO response is 
clearer over the MDB than for all of SAUS: FAR esti-
mates when comparing El Niño ALL and La Niña ALL 
indicate it is very likely that El Niño conditions in-
creased the likelihood of breaking the previous MDB 
record by 4% when compared to La Niña conditions. 

Conclusions. This study demonstrates a novel approach 
for separating the role of ENSO and anthropogenic 
climate change within the context of an event attribu-
tion study. Using regional climate model simulations 
from the weather@home modeling setup, we identify 
that anthropogenic climate change had a substantial 
inf luence on southern Australia’s extreme heat in 
October 2015. El Niño also contributed to the heat, 
but its relative influence was much weaker. These 
conclusions, of course, rely heavily on our assumption 
that our model is able to correctly represent extreme 
temperatures in southern Australia during El Niño 
events. However, this cannot be thoroughly tested 
due to a lack of observational samples. By generat-
ing an extremely large number of regional climate 
model simulations under different forcing scenarios, 
weather@home is shown to be a powerful tool for 
understanding the drivers of recent Australian tem-
perature extremes. 
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24. WHAT CAUSED THE RECORD-BREAKING HEAT ACROSS 
AUSTRALIA IN OCTOBER 2015?

pandora hope, guoMin wang, eun-pa liM, harry h. hendon, and Julie M. arblaster 
 

The Event. In 2015, Australia experienced another 
exceptionally warm spring, making the spring 
seasons of 2013, 2014, and 2015 the three warmest 
from 105 years of record (Trewin 2013). In 2015, 
October was the most extreme month (Fig. 24.1a), 
with the largest monthly mean daily maximum 
temperature (AusTmax) anomaly (+3.44°C, relative to 
1961–90; 33.54°C absolute) of any month, surpassing 
the September 2013 AusTmax record of +3.41°C. 
The monthly mean daily minimum temperature 
was also a record high for October (+2.34°C), and 
the fourth largest positive anomaly of any month. 
More than half of the continent (54.7%) recorded the 
highest-on-record October maximum temperatures, 
exceeding the previous record of 22.3% in 1988. The 
heat was particularly focused in the south (Fig. 24.1a), 
associated with a number of weather systems that 
encouraged surface northerlies from the continental 
interior during the month (Australian Bureau of 
Meteorology 2015). Temperatures in the north were 
relatively cool. At inland locations, temperatures were 
consistently above average, leading to record warm 
monthly averages, but no daily records being set. 
  
Climate conditions during October 2015 and their 
relationship to Australian Tmax. The global climate 
of October 2015 was extraordinary in various 
aspects, with many large-scale climate features 
in a phase generally linked to unusually warm 
temperatures across Australia. These included a 
strong El Niño (www.bom.gov.au/climate/enso 

/archive/ensowrap_20151110.pdf), with Niño-3.4 at 
+2.2°C, Niño-3 at +2.3°C, and Niño-4 at +1.4°C above 
the 1961–90 average. Niño-4 was the warmest October 
value since records began in 1870 (HadISST used for 
sea surface temperature-based indices; Rayner et al. 
2003; KNMI climate explorer: climexp.knmi.nl). The 
southern Indian Ocean (30°–120°E and 0°–60°S) was 
the warmest on record to date for any month, with an 
anomaly of +0.63°C compared to the 1961–90 average, 
and the Indian Ocean dipole (IOD) was strongly 
positive (dipole mode index: +0.76, relative to 1961–
90; Saji et al. 1999). El Niño together with a positive 
IOD is typically associated with warm conditions 
over Australia during September to November (White 
et al. 2013), although the inf luence from El Niño 
becomes more important later in the year. 

While seasonally varying oceanic conditions 
favored warm conditions across Australia, on the 
intraseasonal time scale many atmospheric features 
also favored warm conditions during October 2015 
(see details on the climate state on the POAMA-2 
pages at http://poama.bom.gov.au/). In spring, nega-
tive southern annular mode (SAM; Marshall 2003), 
phase 2 and 3 of the Madden–Julian oscillation (MJO; 
Wheeler and Hendon 2004) and blocking in the Tas-
man Sea are all associated with warm conditions 
across southern Australia (Marshall et al. 2013; Hen-
don et al. 2007). During October 2015, the subtropical 
ridge was intense, associated with blocking over the 
Tasman Sea as indicated by the subtropical ridge in-
dex (STRHI; Marshall et al. 2013), which was greater 
than two standard deviations above the mean in the 
first half of the month. The SAM varied through the 
month, but was negative during two periods of strong 
heat, in the first week and again around 20 October. 
From 23 October through the end of the month, the 
MJO became moderate to strong in Phase 2. The com-
bination of these climatic features would be expected 
to bring heat to southern Australia.

Using a seasonal forecasting framework for attribution, we find that half of the record heat anomaly 
across Australia in October 2015 can be attributed to increasing CO2, with much of the rest due to  

internal atmospheric variability.
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Assessing the influence from increasing CO2. Black and 
Karoly (2016) assessed the level of inf luence from 
anthropogenic climate change on the October 2015 
heat across southern Australia. Probabilities of the 
current climate were estimated using very large en-
sembles of simulations (over 2000 realizations) from 
the HadRM3P nested regional atmospheric GCM 
forced with 2015 sea surface temperatures (SSTs). 
The natural world probabilities were from similar 
experiments where a measure of the impact of an-
thropogenic forcing since preindustrial times had 
been removed (weather@home; Black et al. 2015). 
They calculated the fraction of attributable risk (FAR; 
Stott et al. 2004) of exceeding the previous tempera-
ture record for southern Australia. Defining FAR = 
1 − (P1 / P2), where P1 is the probability of exceeding 
the previous threshold in the “natural” world, and P2 
is the probability of exceeding the previous threshold 
in the current world. They found a conservative FAR 
estimate of 0.76. A FAR of 0.76 means that October 
2015 was at least four times more likely to exceed the 
previous record, set in 2014, of 29.68°C in the current 
world than in the natural world.

Here, extending the method of Hope et al. (2015), 
we use a fully coupled seasonal forecast modeling 
system to attribute the level of influence of both the 

last 55 years of increasing 
CO2 and natural (internal) 
variability on this event. The 
Australian Bureau of Me-
teorology’s seasonal forecast 
model POAMA-2.4 (Cottrill 
et al. 2013; Hudson et al. 2013) 
was used. Note that the use of 
a coupled seasonal forecast 
system in this way is unique 
and has certain limitations 
and strengths compared to 
other methods. For instance, 
the initial-value nature of the 
framework allows little time 
for the growth of model-driv-
en biases, while allowing the 
full coupled response of the 
ocean–atmosphere–land sys-
tem. Currently, only changes 
in CO2 are considered and 
not other anthropogenic fac-
tors such as land-use change 
or aerosols. For full details of 
the method used here, refer to 
Wang et al. (2016). 

For each of 24 September, 27 September, and 1 
October 2015, an 11-member ensemble forecast of 
October 2015 under current CO2 levels (400 ppm) 
was initialized with observed atmosphere, ocean, and 
land conditions, forming a 33-member ensemble. A 
corresponding ensemble forecast was also initialized 
on the same dates, but with CO2 set to the 1960 level 
of 315 ppm and with anomalies—corresponding to 
the signature of change due to the last 55 years of 
rising CO2—removed from the ocean, soil, and atmo-
sphere to create a “low CO2” forecast. For the three-
dimensional ocean, the signature of change due to 
rising CO2 levels was the difference between the ocean 
state in the final years of long integrations with fixed 
CO2 at 400 or 315 ppm. To calculate the signature of 
change in the atmosphere or land, differences were 
made between two sets of forecasts for October 2015 
using either current initial conditions or the current 
initial conditions with 315 ppm and the ocean state 
after subtracting the difference as calculated above.
Two forecast climatologies, one for the current climate 
and one for the low CO2 climate, were produced with 
an ensemble of 11 members initialized on 1 October 
for each year from 2000–14. Although short, this 15-
year period includes a range of interannual variability 
due to the different states of ENSO. The climatology 

Fig. 24.1. (a) Map of observed anomaly of Oct 2015 mean Australian Tmax 
relative to 2000–14 climatology (Australian Water Availability Project; Jones 
et al. 2009). (b) The observed Oct AusTmax and ensemble mean Oct forecasts 
for current CO2 conditions and 1960 (low CO2) conditions. The ensemble range 
of 11 members forecast from 1 Oct each year is shown in pink shading for 
current CO2 conditions and blue for low CO2 conditions, and (c) time series 
of observed Oct AusTmax from 1910 to 2015.
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has 165 members (11 forecasts for each October, 15 in 
total). The time series of the ensemble mean forecasts 
and the forecast spread of the two experiments are 
shown in Fig. 24.1b. The probability distribution 
functions (PDFs) are shown in Fig. 24.2b. 

The record heat across Australia in October 2015 
was well predicted under current CO2 levels; the 2015 
ensemble mean was warmer than any year in the 
2000-14 climatology (Fig. 24.1b, red line). Although 
the ensemble mean anomaly was less than observed, 
one forecast ensemble member was warmer than 
observed (Fig. 24.2a). The forecast for October 2015 
under the current climate was 2.0°C warmer than the 
low CO2 climatology mean (Fig. 24.2a, red dot com-
pared to blue line) The ensemble mean of the October 
2015 forecast in the low CO2 climate was the warmest 
ensemble mean against the low CO2 climatology (Fig. 
24.1b, blue line). Thus even under low CO2 conditions, 
forecasts driven by the observed state of the internal 
atmospheric variability were the warmest on record.

An obvious measure of the contribution from 
increasing CO2 is simply the difference between the 
two means of the current and low CO2 forecast cli-
matologies, which is 1.0°C and statistically significant 
(p < 0.01) (Fig. 24.2, dashed lines). This aligns with 
the observed change of  1.1°C from around 1960 
(1953–67) to recent years (2000–14), see Fig. 24.1c.

To calculate an estimate of the FAR, the previous 
record was taken as the warmest ensemble mean 
forecast in the climatology under current CO2 levels, 
with a value of 31.4°C. Across the 33-member fore-
cast ensemble of 2015, five members exceeded this 
threshold in the low CO2 climate, while 17 exceeded 
it in the current climate, leading to a FAR value of 
0.71. Alternatively, if the previous record was taken 
from observations (32.1°C, set in 2014), none of the 
ensemble members of the 2015 forecast in a low 
CO2 climate exceeded this threshold, while six en-
semble members exceeded it in the current climate, 
thus the FAR would be 1.0. 

Assessing the influence from the climatic and synoptic 
conditions. In order to further explore the importance 
of the atmospheric state (e.g., MJO, the location 
of the subtropical ridge, SAM) as compared to the 
antecedent land conditions or the oceanic state (e.g., 
El Niño, IOD) for promoting the record warmth, 
further forecast experiments were done, removing the 
influence from either the land, ocean, or atmosphere 
initial conditions, following Arblaster et al. (2014) and 
Wang et al. (2016). The results (outlined in more detail 
in the online supplemental material) indicate that the 

overwhelming driver of the heat was the atmospheric 
state from the atmospheric initial conditions, as 
opposed to the ocean or land state. This suggests 
that the direct impact on warming from the strong 
El Niño and IOD was small, and the major impact 
was from intraseasonal drivers such as MJO activity 
in the tropical Indian Ocean, the negative SAM, and 
Tasman Sea blocking.

Conclusions. Using a seasonal forecast framework, the 
record heat of October 2015 across Australia was at-
tributed to the last 55 years of CO2 induced warming 
and other factors. The warming from CO2 contributed 
roughly 1.0°C to the extreme heat forecast across 
Australia in October 2015, while a combination of 
Tasman Sea blocking, negative SAM, MJO, and a 
high positioned over the southeast of the country, on 

Fig. 24.2. (a) The distribution of the forecast Oct 2015 
AusTmax is estimated with 33 member forecasts for 
current (red open bars) and low CO2 (blue open bars) 
climates. The mean value for the observed event in 
Oct 2015 is shown by the top black dot, with the event 
ensemble means for current in red and low CO2 in 
blue. (b) Oct AusTmax climatology distribution for 
2000–14 from observations (gray bars), and the clima-
tology estimated using 11 member Oct forecasts during 
2000–14 for the current climate (pink solid bars) and 
the low CO2 climate of 1960 (light blue solid bars). The 
climatology means are shown in dashed lines: black for 
observations, red for current, and blue for low CO2.
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the background state of a strong El Niño and a posi-
tive IOD, all contributed to the remaining 1.0°C of 
the 2.0°C forecast anomaly against a 1960, low CO2 
climatology. The FAR estimate for October 2015 Aus-
Tmax being warmer than the previous record using 
this framework was 0.71, similar to the 0.76 that Black 
and Karoly (2016) showed for southern Australia. The 
pattern of anomalously low pressure to the south of 
Australia and a high over the southeast of the conti-
nent appears to be a consistent feature of the extreme 
heat across southern Australia during the last three 
springs of 2013 (Arblaster et al. 2014), 2014 (Hope et 
al. 2015; Gallant and Lewis 2016), and 2015. 
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25. THE ROLES OF CLIMATE CHANGE AND EL NIÑO  
IN THE RECORD LOW RAINFALL IN OCTOBER 2015 

IN TASMANIA, AUSTRALIA

david J. Karoly, MitChell t. blaCK, MiChael r. grose, and andrew d. King

Introduction. The island state of Tasmania, in southeast 
Australia, received record low average rainfall of 21 
mm in October 2015, 17% of the 1961–90 normal (Fig. 
25.1a; Bureau of Meteorology 2015). This had major 
impacts across the state, affecting agriculture and 
hydroelectric power generation and preconditioning 
the landscape for major bushfires the following 
summer (Hobday et al. 2016). Rainfall in Tasmania is 
normally high throughout the year, with variations in 
Austral spring associated with mean sea level pressure 
(MSLP) and circulation variations due to El Niño, 
the Indian Ocean dipole (IOD), and the southern 
annular mode (SAM; Hill et al. 2009). Spring rainfall 
is declining and projected to decrease further in 
Tasmania (Hope et al. 2015)

This record low rainfall was associated with 
extreme high MSLP over much of southeast Australia 
(Fig. 25.1b) and record high October mean maximum 
temperature over southern Australia (Black and 
Karoly 2016). The wave train pattern of MSLP 
anomalies in October (Fig. 25.1b) from southern 
Australia across the South Pacific is typical of the 
Pacific South American (PSA) pattern (Mo and 
Higgins 1998). El Niño conditions, such as in late 
2015, are associated with a shift in tropical Pacific 
rainfall and in waveguides in the extratropical Pacific 
that inf luence the PSA pattern (Karoly 1989) and 
rainfall in Tasmania.

We have investigated the roles of anthropogenic 
climate change, the 2015/16 El Niño, and internal 

atmospheric variability on this record low October 
rainfall using observational data, regional climate 
simulat ions driven by speci f ied sea surface 
temperatures (SSTs) from the weather@home 
Australia and New Zealand (w@h ANZ) project 
(Black et al. 2015, 2016; Massey et al. 2015), and 
coupled climate model simulations from the Coupled 

Anthropogenic climate change and El Niño made small but significant contributions to 
increasing the likelihood of record low rainfall in October 2015 in Tasmania. Atmospheric 

variability was the main contributor.     
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Fig. 25.1. (a) Observed Oct mean rainfall (mm) for 
Tasmania for 1900–2015 from the Australian Bureau 
of Meteorology, with 2015 highlighted in red. The 
dashed line shows the 1900–2015 average. (b) Mean 
sea level pressure anomalies (MSLP, hPa) for Oct 2015 
from NCEP–NCAR1 reanalyses (Kalnay et al. 1996). 
Regions with record high and low Oct MSLP values in 
the reanalyses are outlined by gray lines.
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Model Intercomparison Project phase 5 (CMIP5; 
Taylor et al. 2012).

Data and Methods. Monthly area-average rainfall 
data for Tasmania were obtained from the Australian 
Bureau of Meteorology. The October rainfall for 
1900–2015 was obtained from high-resolution 
gridded data from the Australian Water Availability 
Project (AWAP; Jones et al. 2009). The dataset uses all 
available monthly rainfall station data, with sparser 
station coverage early in the period. 

Ver y large ensembles of regiona l cl imate 
simulations of rainfall over Tasmania were used from 
the w@h ANZ project. This uses the atmosphere-
only model, HadAM3P, to drive a nested regional 
model (HadRM3P; 0.44° resolution). For details of 
the modeling setup, see Black et al. (2016). First, 
the model was run under two climate scenarios for 
2015: observed (all forcings; ALL) and counterfactual 
(natural forcings only; NAT) realizations. For the ALL 
simulations, the model used observed SSTs and sea 
ice from the Operational Sea Surface Temperature 
and Sea Ice Analysis (OSTIA; Donlon et al. 2012), 
as well as present-day atmospheric composition 
(long-lived greenhouse gases, ozone, and aerosols). 
Very large ensembles were generated by running 
the model with perturbed atmospheric initial 
conditions. For the NAT simulations, the model was 
driven by preindustrial atmospheric composition 
and SSTs modified to remove different estimates of 
the warming attributable to anthropogenic forcing. 
Estimates of the SST changes due to anthropogenic 
forcing were separately calculated using eight CMIP5 
models (Taylor et al. 2012; see online Supplemental 
Material), giving eight realizations of possible 
NAT SSTs. The main modes of natural variability 
represented in the ALL SSTs (e.g., the phase of El 
Niño) are maintained in the NAT SSTs. Therefore, 
any change in likelihood of low Tasmanian rainfall 
between these ALL and NAT scenarios can be directly 
attributed to anthropogenic forcing (Black et al. 2015). 

To assess the influence of El Niño on Tasmanian 
rainfall, additional simulations were generated by 
driving the w@h ANZ model with composite SST 
patterns representative of El Niño, Neutral, and La 
Niña phases (see supplemental material). Each of 
these three phases was modeled under both ALL and 
NAT climate scenarios (as for the 2015 runs). Previous 
analysis has shown that the w@h ANZ model is able 
to represent El Niño teleconnections over Australia 
(Black et al. 2016). 

We used all the model simulations that were avail-
able; more than 2700 members for each of the ALL 
scenarios (2015 ALL, El Niño ALL, Neutral ALL, and 
La Niña ALL) and more than 650 members for each 
of the corresponding eight NAT realizations (at least 
5200 members for each NAT scenario). 

Following Black et al. (2016), we corrected any 
model rainfall bias by scaling the Tasmanian October 
rainfall from the ALL simulations so that the mean of 
the distribution is equal to that of the recent AWAP 
observations (1985–2014). This bias adjustment is 
then applied to the NAT distribution. 

To examine possible changes in the likelihood of 
extreme low October rainfall, we define a threshold 
based on the previous observed record (56 mm in 
1965; see Fig. 25.1a) rather than the 2015 record, to 
reduce selection bias. The 1914 low rainfall value was 
not used because of the smaller number of rainfall 
stations available then, which limits the reliability 
of the Tasmanian rainfall estimate given the varied 
topography across the state. The current rainfall 
station network across Tasmania has been relatively 
stable since the mid-1950s. 

To quantify the change in likelihood of extreme 
low rainfall due to different forcing scenarios, we 
calculate the fraction of attributable risk (FAR; 
Allen 2003), defined as FAR = 1 − (P1 / P2). We 
estimate the anthropogenic (El Niño) influence by 
setting P1 to be the probability of rainfall lower than 
the October threshold in the NAT (La Niña and 
Neutral) simulations, while P2 is the equivalent for 
the ALL (El Niño) simulations. Hence, we are able 
to quantify the change in likelihood due to either 
anthropogenic forcing or El Niño. FAR uncertainty 
was estimated by bootstrap resampling groups of 1000 
simulations from each of the ensembles (10 000 times 
with replacement) and the 10th percentile FAR value 
is used to provide conservative estimates of changes 
in likelihood associated with the different forcing.

Coupled climate model data were extracted 
from the CMIP5 archive and evaluated for their 
performance in capturing observed variability of 
Tasmanian rainfall. The model data were regridded 
onto a 2° grid and October rainfall over Tasmania and 
July–December Niño-3.4 SST values were extracted. 
Simulations from the “historical” experiment 
(including natural and anthropogenic forcings for 
1861–2005) were compared with observations over 
1951–2005. Models with at least three historical 
simulations were tested for similarity to observational 
data following King et al. (2016). The twelve models 
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that passed this evaluation are listed in supplemental 
material. Given the coarse model resolution and poor 
representation of topography in western Tasmania, 
the simulated rainfall anomalies were assessed as 
percentage anomalies from the 1961–90 historical 
average, removing any rainfall bias.

October rainfall and Niño-3.4 data were extracted 
from the historicalNat (natural forcings only for 1861–
2005) simulations and RCP8.5 (projected climate 
under a high greenhouse gas emissions scenario for 
2006–35) simulations. The historical and matching 
RCP8.5 simulations were combined to provide an ALL 
forcing ensemble for 1995–2035 (40 years centered on 
2015), which was compared with the NAT ensemble 
(1861–2005) using the historicalNat runs. These 
ensembles were then used to investigate the change 
in likelihood of low rainfall due to anthropogenic 
climate change.

Results. The observed October rainfall data show a 
significant but small correlation with El Niño and 
a small, nonsignificant drying trend. The linear 
regression estimate of the October 2015 rainfall 
anomaly associated with the Niño-3.4 SST value is 
−26 ± 10 mm. 

Assessment of the probability distributions of 
October rainfall from the w@h ANZ simulations (Fig. 
25.2a) shows good agreement with observations and 
that the ALL ensembles are significantly drier than 
the NAT ensembles for both the 2015 and composite 
El Niño scenarios. The drying is about 8 mm for the 
median and about 5 mm for the 5th percentile. A 
mean drying of about 6% is also found in the CMIP5 
simulations (Fig. 25.2a). 

The October rainfall distribution from the w@h 
ANZ El Niño ALL ensemble is also drier than the 
combined Neutral/La Niña ensemble (Fig. 25.2a), 
with a drying of about 5 mm for the 5th percentile. 
This is much smaller than the observational-estimat-
ed anomaly for the 2015 El Niño. This El Niño analy-
sis was not undertaken for the CMIP5 simulations 
due to the smaller number of El Niño years available.

Next, the change in likelihood of record low 
rainfall below the 1965 threshold is assessed for 
the different scenarios, using the FAR results 
shown in Fig. 25.2b. For the w@h ANZ simulations, 
anthropogenic forcing very likely increases the 
likelihood of low rainfall by at least 39% (median 
increase 75%) for the 2015 scenario and by at least 
18% (median increase 59%) for the composite El Niño 
scenario. For the CMIP5 simulations, the FAR results 

are less certain, with anthropogenic forcing possibly 
decreasing the likelihood by 12% or increasing it by 
up to 82%, with a median increase of 25%. Using the 
w@h ANZ simulations again, El Niño very likely 
increases the risk of low October rainfall by at least 
18% (median increase 59%).

There are circulation differences between the w@h 
ANZ ALL and NAT simulations that are consistent 
with the response to anthropogenic forcing, including 
higher MSLP in middle latitudes and a significantly 
more positive SAM index in the ALL scenario, as 
found also in the CMIP5 simulations (Gillett et al. 
2013).

Conclusions. Tasmania experienced its driest October 
on record in 2015. Anthropogenic climate change and 
the strong El Niño in 2015 very likely increased the 
chances of breaking the previous record low rainfall 
in 1965. In terms of contributions to the magnitude of 
this rainfall deficit, internal atmospheric variability 
as indicated by the PSA MSLP pattern (Fig. 25.1b) 

Fig. 25.2. (a) Distributions of Oct mean rainfall rate 
for Tasmania for the various model scenarios. Each 
vertical line spans the range from the 5th percentile 
to the 95th percentile, with the median marked. 
The dotted line is the Oct 1965 observed rainfall. 
(b) Corresponding distributions of FAR for rainfall 
below the 1965 threshold for the different scenario 
combinations for P1 and P2. Boxes show the median 
and interquartile range while whiskers extend to the 
10th and 90th percentiles. 
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was likely the main contributor, with El Niño next 
and a smaller but significant contribution from 
anthropogenic climate change.
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26. INFLUENCES OF NATURAL VARIABILITY AND 
ANTHROPOGENIC FORCING ON THE EXTREME 2015 

ACCUMULATED CYCLONE ENERGY IN THE  
WESTERN NORTH PACIFIC

wei Zhang, gabriel a. veCChi, hiroyuKi MuraKaMi, gabriele villarini, thoMas l. delworth, 
Karen paFFendorF, riCh gudgel, liwei Jia, Fanrong Zeng, and Xiaosong yang

Introduction. The 2015 tropical cyclone (TC) activity 
measured by the ACE  [computed as the sum of the 
square of the maximum surface wind speed (MSW) 
over the TC duration when MSW is greater than 34 
knots; e.g., Bell et al. 2000] was extremely high in the 
western North Pacific Ocean (Figs. 26.1a,b and 26.2a). 
The 2015 WNP ACE is the second highest since 1970 
(with the highest being 1997) based on the Joint Ty-
phoon Warning Center best track data for 1970–2014 
and Unisys data for 2015 (http://weather.unisys.com 
/hurricane/), the highest since 1977 based on the 
Japan Meteorological Agency (JMA), and the high-
est since 1970 based on Shanghai Typhoon Institute 
(STI) data. Higher (lower) WNP ACE is generally 
observed during El Niño (La Niña) years, because 
TCs are formed more southeastward (northwest-
ward) and stay longer (shorter) over the warm ocean 
surface (e.g., Camargo and Sobel 2005; Chan 2007). 
This shift in genesis and difference in tracks leads to 
a higher occurrence of the most intense typhoons, 
which is the main cause of a high ACE during El Niño 
years. An extremely strong El Niño event developed 
in 2015. While there has been major progress in the 
understanding of the El Niño–Southern Oscillation 
(ENSO)–WNP ACE association, the modulation of 

WNP ACE by anthropogenic forcing is still a chal-
lenging scientific question (e.g., Emanuel 2013; Lin 
and Chan 2015). Using observations and a suite of cli-
mate model experiments, this study attempts to assess 
whether and to what extent internal climate modes 
(e.g., ENSO) and anthropogenic forcing contributed 
to the extreme 2015 WNP ACE event.  

Methodology. We use two coupled general circulation 
models (CGCMs): the Geophysical Fluid Dynam-
ics Laboratory (GFDL) forecast-oriented low ocean 
resolution model (FLOR; Vecchi et al. 2014) and high-
resolution FLOR (HiFLOR; Murakami et al. 2015a; 
Zhang et al. 2016b). TCs are identified and tracked 
using a tracking algorithm based on various model 
variables (Zhang et al. 2016a,b; see online Supplemen-
tal Material). The climatological values of WNP ACE 
in the observations, FLOR, and HiFLOR are different 
partly because of different spatial resolutions and cli-
mate mean states; we therefore analyze the WNP ACE 
values in terms of exceedance probabilities (e.g., 0.95, 
0.99) of all the sampled ACE values in observations 
and simulations. Following Murakami et al. (2015b) 
and Yang et al. (2015), we use a probabilistic approach 
to examine the probability of a WNP ACE event as:

                          
       
where x is a selected WNP ACE value and P(x) rep-
resents the probability with WNP ACE larger than 
or equal to x. We use the fraction of attributable risk 
(FAR; e.g., Allen 2003; Stott et al. 2004) to quantify 
the FAR to human influence or anthropogenic forc-
ing. FAR is defined as FAR = 1 − (P0/P1), where P0 
(P1) is the probability of exceeding the observed TC 

The extreme value of the 2015 western North Pacific (WNP) accumulated cyclone energy (ACE) was 
mainly caused by the sea surface warming in the eastern and central Pacific, with the anthropogenic 

forcing largely increasing the odds of the occurrence of this event. 
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trend in the experiments 
without (with) anthropogenic 
forcing. We compute FAR 
using P0 from a 1990 control 
experiment of FLOR and P1 
from a 2 × CO2 experiment 
with the same model (van 
der Wiel et al. 2016). We also 
compute P0 (P1) from the two 
experiments of HiFLOR with 
radiative forcing representa-
tive of 1940 (2015; 1940 is also 
a strong El Niño year). 

Natural Variability. The ex-
tremely high 2015 WNP ACE 
is mostly due to a large num-
ber of category 4 and 5 (C45; 
wind speed exceeding 58.1 
m s−1) TCs (Fig. 26.1a). There 
were 13 C45 TCs in the WNP 
during 2015, more than twice 
the climatological value of 
6.3. The 2015 C45 propor-
tion, defined by the number 
of C45 TCs divided by the 
basin-total TCs, is 0.48 while 
the climatology (1970–2015) 
is 0.25. The 2015 basin-total 
TC frequency (27) is slightly 
higher than climatology (25). 
The ENSO–WNP ACE as-
sociation is supported by the 
high Niño-3.4 index in 2015, 
similar to those in 1987 and 
1997 (Figs. 26.1b,c). The SST 
warming in 2015 extends 
westward to 160°E, and this 
provides favorable conditions 
for TC intensification because WNP TC intensifica-
tion is influenced both by TC genesis location and 
ocean temperature (Wada and Chan 2008; Mei et 
al. 2015; Zhang et al. 2015). Previous studies sug-
gested that factors such as the Pacific meridional 
mode (PMM), the Pacific decadal oscillation (PDO), 
and the Atlantic meridional mode (AMM) (see  
Supplemental Material) may also modulate WNP 
ACE (e.g., Chan 2008; Zhang et al. 2016a,c). The 
correlations between WNP ACE and the Niño-3.4 
(significant at 0.01 level), PMM (significant at 0.01 
level), and PDO (not significant at the 0.01 level) in-
dices are positive, while the correlation between WNP 

ACE and the AMM is negative but not statistically 
significant (Fig. 26.1b, see Supplemental Material for 
more details of the indices). The Niño-3.4 and PMM 
indices in 2015 are strongly positive, contributing to 
the extreme 2015 WNP ACE. Therefore, internal cli-
mate modes, especially the strong El Niño, may have 
substantially contributed to the extreme 2015 WNP 
ACE by leading to an extremely high frequency of 
C45 TCs (Camargo and Sobel 2005).  

Effect of Anthropogenic Forcing. We analyze two sets of 
experiments (i.e., 1990 control and 2 × CO2 experi-
ments) with FLOR. The probability density functions 

Fig. 26.1. (a) TC tracks in 2015 and C45 TCs (wind speed exceeding 58.1 m s−1) 
are shown in red. The C45 proportion in 2015 is 0.48 while the climatology 
(1970–2015) is 0.26, with 13 (6.3) C45 TCs in 2015 (climatology; see Supplemen-
tal Material for data sources). (b) Time series of different annually averaged 
normalized climate indices (see legend) and ACE (black); Cor (Niño-3.4, ACE) 
denotes the correlation coefficient between Niño-3.4 index and WNP ACE for 
1970–2015, while the others are defined likewise. (c) Sea surface temperature 
anomalies (°C) in 2015 computed with respect to the 1970–2000 base period.
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(PDFs) of WNP ACE in FLOR 1990 control and 2 × 
CO2 experiments have similar mean values while 
their variances are different, with a fatter tail in the 
2 × CO2 experiment (Fig. 26.2b). We select the ACE 
values in the 99th percentile of FLOR 1990 to calculate 
FAR, consistent with the percentile of the observed 
2015 WNP ACE (Figs. 26.2a,b). The FAR in the 1990 
control and 2 × CO2 experiments of FLOR are 0.81, 
indicating that anthropogenic forcing can substan-
tially increase the risk of having extreme WNP ACE 
events higher than or equal to the 2015 event. To fur-
ther substantiate this finding, we also analyze P0 and 
P1 in the two experiments of HiFLOR with radiative 
forcing representative of 1940 and 2015. The PDFs of 
WNP ACE in HiFLOR also have a fatter tail in the 
experiment with radiative forcing representative of 
2015 compared with that of 1940 (Fig. 26.2c). The FAR 

in HiFLOR is 0.80, close to 0.81 in the experiments 
with FLOR (Figs. 26.2b,c).   

We ran 35-member simulations with all forcing 
(natural and anthropogenic under RCP 4.5 scenario) 
and 30-member multidecadal simulations with 
natural forcing from 1961 to 2040 (see Supplemental 
Material). For each 20-year period from 1961, 1300 
(20 × 35 + 20 × 30) samples (years) were available 
to calculate P(x). We define a simulated positive (or 
negative) phase of ENSO, PDO, PMM, and AMO as 
these indices exceeding (falling below) one (minus 
one) standard deviation and estimate the amplitude 
of P(x) between the two phases. Figure 26.2d illus-
trates the results for P(x = 95th percentile). P(x = 95th 
percentile) in all_forcing experiments increases from 
1960 to 2040, suggesting that the external forcing 
tends to increase the odds of occurrence of extreme 

Fig. 26.2. (a) Annual WNP ACE based on observations. (b) PDFs of WNP ACE in 1990 (blue) and 2 × CO2 (red) 
experiments with FLOR. (c) PDFs of WNP ACE in the experiments with radiative forcing representative of 1940 
(blue) and 2015 (red) in HiFLOR. The magenta bars represent the 99th percentile of the ACE values (similar 
to observations) in FLOR/HiFLOR. (d) P(x = 95th percentile) in FLOR-FA all_forcing/nat_forcing multidecadal 
experiments with upper/lower limits of error bars represent ENSO+/− (red), PMM+/− (blue), PDO+/− (green), 
and AMO−/+ (magenta). The brown bars represent P(x = 95th percentile) in two control experiments with the 
widths representing the 0.95 confidence intervals. The black and gray curves represent P(x = 95th percentile) 
in samples of all_forcing and nat_forcing experiments, respectively.
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WNP ACE. There is a sharp increase in P(x = 95th 
percentile) during 2020–40 (Fig. 26.2d). In addition, 
the P(x = 95th percentile) in nat_forcing experiments 
also largely increases in 1960–2060, except for a slight 
decrease from 1960–80 to 1980–2000. The P(x = 95th 
percentile) in all_forcing experiments are higher 
than those in nat_forcing experiments, indicating 
that anthropogenic forcing increases the risk of hav-
ing extreme WNP ACE events. The results based on 
FLOR-FA 1860 and 1990 control experiments are 
also shown in the left of Fig. 26.2d, providing addi-
tional support to these conclusions. For each 20-year 
subperiod in 1980–2040, ENSO produces the largest 
variability of WNP ACE (Fig. 26.2d). The variability 
associated with ENSO is larger than that associated 
with radiative forcing (Fig. 26.2d). Therefore, the 
extreme 2015 WNP ACE may be mainly modulated 
by natural climate modes, especially by the strong 
El Niño, with the anthropogenic forcing increasing 
the risk of 2015 having a season with an extremely 
high WNP ACE. This risk is predicted to continue 
to increase in the next few decades, increasing the 
probability of having seasons with a WNP ACE equal 
to or higher than 2015 in the future.

Discussions and Conclusions. We have observed an ex-
tremely active TC season in the WNP in 2015, with an 
extremely high ACE and frequency of C45 TCs. The 
2015 season may be caused mainly by warm ocean 
surface temperatures in the tropical Pacific, charac-
terized by a strong El Niño event, with other climate 
modes (e.g., PMM) potentially playing a role. We have 
found that anthropogenic forcing has substantially 
increased the risk of having WNP ACE higher than or 
equal to such an extreme event. Although the changes 
in WNP ACE under anthropogenic forcing are still 
unclear (e.g., Emanuel 2013; Lin and Chan 2015), both 
GFDL FLOR and HiFLOR do suggest that the annual 
WNP ACE tends to become more extreme because of 
anthropogenic forcing. The two models also suggest 
that the variability of WNP ACE attributable to cli-
mate modes will increase at a much higher rate than 
as a result of anthropogenic forcing. The frequency of 
strong El Niño events is projected to increase due to 
greenhouse warming (Cai et al. 2014), which in turn 
could potentially lead to a higher frequency of WNP 
seasons with high values of ACE.
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27. RECORD LOW NORTHERN HEMISPHERE SEA ICE 
EXTENT IN MARCH 2015

NeveN S. Fučkar, FraNçoiS MaSSoNNet, virgiNie gueMaS, Javier garcía-SerraNo, oMar Bellprat, 
FranCisCo J. doblas-reyes, and Mario aCosta

Introduction. Since the late 1970s, the NH sea ice con-
centration (SIC), age, and thickness in most Arctic 
regions have experienced long-term decline super-
imposed with strong internal variability (Stroeve et 
al. 2012; Jeffries et al. 2013; Comiso and Hall 2014). 
March NH sea ice extent (SIE: integrated area of grid 
cells with monthly-mean SIC > 15%) reached the low-
est winter maximum in the satellite record in 2015 
(Fig. 27.1a). This extreme of 15.13 million km2 is 1.12 
million km2 below the 1980–2015 average NH March 
SIE, and 0.33 million km2 below the linear fit over the 
same period, based on SIC from the EUMETSAT’s 
Satellite Application Facility on Ocean and Sea Ice 
(OSI SAF; Eastwood 2014).

The March 2015 SIC anomaly pattern in Fig. 27.1d 
shows that the reduced SIC in the Barents and Green-
land Seas is contrasted by the increased SIC in the 
Baffin Bay and the Labrador Sea leading to the NH 
SIE in the Atlantic sector (NHAtl SIE) of 0.28 million 
km2 above the linear fit. At the same time, negative 
SIC anomalies in the Bering Sea and Sea of Okhotsk 
in Fig. 27.1d pushed the NH SIE in the Pacific sector 
(NHPac SIE) to the record low of 0.61 million km2 be-
low the linear fit, which is outside the 95% confidence 
interval of the linear-fit residuals. Hence, the 2015 
NHPac SIE strong interannual anomaly contributed 
most substantially to this NH SIE record low. The 
spatially nonuniform linear trend of the NH March 
SIC in Fig. 27.1e yields about three times faster long-
term decline of the NHAtl SIE than the NHPac SIE. 

The 2015 SIC anomaly pattern with respect to this 
long-term linear fit (Fig. 27.1f) further indicates that 
negative interannual anomalies in the Pacific sector 
outside of the Arctic basin dominate over the positive 
ones west of Greenland in the Atlantic.  

The anomaly and detrended anomaly patterns in 
Supplemental Fig. S27.1 show anticyclonic sea level 
pressure over the western Aleutian Islands associated 
with positive 2-m air temperature over the Sea of Ok-
hotsk in March 2015 likely due to southerly surface 
wind that substantially contributed to the negative 
SIC there (Kimura and Wakatsuchi 1999), while the 
negative SIC in the Bering Sea is more directly related 
to collocated positive sea surface temperature (SST, 
Zhang et al. 2010). Such strong interannual surface 
anomalies in these two marginal seas therefore seem 
to have played an important role in the NH SIE record 
low, but what is the role of the underlying long-term 
change in the ocean and sea ice cover? They integrate 
the impact of climate change that is pronounced in 
the high north due to the Arctic amplification (Screen 
et al. 2012; Taylor et al. 2013). Would the 2014/15 
fall–winter atmosphere yield this sea ice extreme if we 
reversed in time the long-term change in the ocean 
and sea ice state? We examine the contributions of 
the atmosphere and the long-term memory of the 
ocean and sea ice to the March 2015 record low of 
the NH SIE.  

Method. A climate variable can be decomposed into 
the sum of the background state represented as a lin-
ear fit over the period of interest and an interannual 
anomaly with respect to this fit: var(t) = [a1t + a0] + 
var’(t). To estimate the contributions of the evolution 
of the ocean and sea ice linear-fit background state 
over the last 36 years, and the 2014/15 fall–winter 
atmosphere to the NH March SIE minimum, we 
perform a set of control and sensitivity experiments 

The record low Northern Hemisphere (NH) winter sea ice maximum stemmed from a 
strong interannual surface anomaly in the Pacific sector, but it would not have been reached  

without long-term climate change.    

AFFILIATIONS: Fučkar, MaSSoNNet, gueMaS, garcía-SerraNo, 
bellprat, and aCosta—Barcelona Supercomputing Center–Centro 
Nacional de Supercomputación (BSC-CNS), Earth Sciences 
Department, Barcelona, Spain; doblas-reyes—BSC-CNS, Earth 
Sciences Department, Barcelona, Spain, and Instituciò Catalana de 
Recerca i Estudis Avancats, Barcelona, Spain

DOI:10.1175/BAMS-D-16-0153.1 

A supplement to this article is available online (10.1175 
/BAMS-D-16-0153.2) 



S137DECEMBER 2016AMERICAN METEOROLOGICAL SOCIETY |

with a state-of-the-art ocean–sea ice general circula-
tion model (OGCM). We utilize NEMO3.3-LIM3 
OGCM (Madec et al. 2008; Vancoppenolle et al., 
2009) forced by the ECMWF’s ERA-Interim atmo-
spheric reanalysis (Dee et al. 2011) as described in 
Massonnet et al. (2015) 

First ,  we per form a set  of  5-mont h-long 
retrospective control simulations (CTL) initialized 
on 1 November from 1979 to 2014 to assess the model 

skill in predicting the NH March SIE. We produce 
five ensemble members initialized from the five 
members of the ECMWF’s Ocean Reanalysis System 
4 (ORAS4; Balmaseda et al. 2013) and the associated 
five-member sea ice reconstruction produced with 
the same OGCM through the restoring methodology 
described in Guemas et al. (2014). CTL in March 
have 3.0, 2.4, and 5.5 times weaker ensemble-mean 
downward trends (along the start dates) than OSI SAF 

Fig. 27.1. (a)–(c) Black points show the total SIE, SIE in the Atlantic sector (from 95°W to 135°E), and SIE in 
the Pacific sector (from 135°E to 265°E) in the NH in Mar from 1980 to 2015 (which is exclusively marked in 
green), respectively, from OSI SAF. Solid (dashed) red lines show the linear fit with trends indicated in the 
upper right corner (the 95% confidence interval of the residuals of the linear fit). (d)–(f) The NH SIC anomaly 
in Mar 2015 with respect to the 1980–2015 average, linear change (linear trend times 36 years) where stippling 
denotes 5% significance, and anomaly in Mar 2015 with respect to the linear fit over this period, respectively.
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in the NH, NHAtl, and NHPac 
SIE, respectively (see  online 
supplementa l materia l). 
Hence, we apply the trend 
bias correct ion met hod 
(Kharin et al. 2012; Fučkar 
et al. 2014) to obtain adjusted 
March 2015 forecasts of the 
NH, NHAtl, and NHPac SIE 
ensemble means of 15.09 
million km2, 8.22 million 
km2, and 6.86 million km2 
(Figs. 27.2a, 27.2b, and 27.2c), 
respectively. CTL ensemble 
show s  overc on f idenc e , 
l i kely due to t he sma l l 
ensemble as well as missing 
physical processes, such as 
multicategory sea ice and 
interact ive atmosphere. 
Small ensemble-mean errors 
in 2015 (less than 2% in each 
domain) indicate that the 
adjusted OGCM forecasts 
have appropriate skill for our 
analysis. 

Next, we conduct two sets 
of four five-member sensitiv-
ity experiments with initial 
conditions (IC) and surface 
forcing fields specified in 
Table 27.1. In general, the 
forced OGCM forecast of 
the March state evolves from 
a past state to the 2015 state 
due to modifications in IC 
and forcing fields that can be 
decomposed into: (i) linear-
fit background state of IC; (ii) 
interannual anomaly in IC 
with respect to factor (i); (iii) linear-fit background 
state of surface forcing fields; and (iv) interannual 
anomaly in surface forcing fields with respect to fac-
tor (iii). The experiments e82*, e92*, e02*, and e12* 
forecast the March state for four different years (1982, 
1992, 2002, and 2012), starting from the ocean and 
sea ice IC on 1 November 1981, 1991, 2001, and 2011, 
respectively, with modified factor (ii). Specifically, we 
replace a past interannual anomaly of IC with the 1 
November 2014 (20141101) IC anomaly (all calculated 
with respect to the 1979–2014 linear fit of 1 November 
ocean and sea ice IC). The experiments e82 through 

e12 examine how much the selected March forecasts 
would change further if we use the same IC as in 
e82* through e12*, respectively, but also modify both 
factors (iii) and (iv): We apply the 2014/15 fall–winter 
surface forcing fields in e82 through e12.

Results. The adjusted e82* through e12* March 
forecasts enable us to examine the contribution of 
20141101 interannual IC anomaly to the total change 
between the selected past years and 2015 through the 
ratios: [CTL(1982) – e82*] / [CTL (1982) – CTL(2015)], 
…, [CTL(2012) – e12*] / [CTL(2012) – CTL(2015)]. 

Fig. 27.2. (a)–(c) Full black circles (full light blue diamonds with the 95% confi-
dence interval bars) show the total SIE, SIE in the Atlantic sector, and SIE in 
the Pacific sector in the NH in Mar from 1980 to 2015, respectively, from OSI 
SAF (NEMO3.3-LIM3 adjusted CTL values). (d)–(f) The total SIE, SIE in the 
Atlantic sector, and SIE in the Pacific sector of the NH in Mar, respectively, 
of adjusted sensitivity experiments (means with the 95% confidence interval 
bars). Horizontal lines in the right panels indicate OSI SAF Mar NH SIE for 
the same domains (left) for the years indicated on the right. 
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The recent interannual anomaly in the ocean and 
sea ice IC explains a minor part of the total past-2015 
change of the NH, NHAtl, and NHPac SIE: 2.1%, 9.0%, 
and −9.9% on average from e82* to e12*, respectively 
(red symbols on the right in Fig. 27.2 are close to 
the associated CTL forecasts on the left). The linear 
regressions of the March forecasts from e82* to e12* 
of the NH, NHAtl,, and NHPac SIE have significant 
slopes of 0.41, 0.42, and −0.01 million km2 10-yr−1, 
respectively. 

The experiments e82 through e12 compared with 
experiments e82* through e12*, respectively, exam-
ine the contributions of 2014/15 fall–winter surface 
forcing fields to the total change between the selected 
past years and 2015 through the ratios: (e82* − e82) 
/ [CTL(1982) − CTL(2015)], … and (e12* − e12) / 
[CTL(2012) − CTL(2015)]. This change in both (iii) 
and (iv) makes the dominant contribution to the total 

past-2015 change of 61.9%, 54.1%, 
and 74.1% (on average between these 
sensitivity experiments) in the NH, 
NHAtl, and NHPac SIE, respectively. 
Experiments e82 through e12 still 
contain the background IC state of 
the past years that typically prevents 
them from reaching the 2015 record 
(purple symbols are mostly far from 
the CTL 2015 values on the right in 
Fig. 27.2). The linear-fit slopes of the 
March forecasts from e82 to e12 of 
the NH, NHAtl, and NHPac SIE have 
values of 0.37, 0.28, and 0.09 million 
km2 10-yr−1, respectively. They show 
that the long-term linear change of 
the ocean and sea ice background 
state plays an important role, even in 
the Pacific sector (Fig. 27.2f) where 
the long-term trend is the weakest.  

C o n c l u s i o n s .  T he  p e r for me d 
experiments indicate that the most 
important factor driving the NH 
SIE to the record low in March 2015 
was surface atmospheric conditions 
on average contributing at least 
54% to the change from the past 
March states. The 1 November 2014 
interannual anomaly of IC, which 
on average contributes less than 
10%, is the least important factor. A 
change along the 36-year linear-fit 
of IC, representing the accumulative 

impact of the climate change in the ocean and sea 
ice, is the second most important factor for attaining 
the March 2015 extreme in our experiments. Even if 
we keep IC and forcing factors (ii) through (iv) in the 
2014–15 conditions, but translate the background 
state of ocean and sea ice, IC factor (i), more than 
three years into the past (in e02, e92, and e82), it 
prevents our OGCM from reaching this record low. 
We conclude that March 2015 interannual surface 
anomalies in the Sea of Okhotsk and the Bering Sea 
are necessary transient, but not sufficient, conditions 
to achieve the record low of the NH SIE maximum 
in March 2015 without underlying climate change.
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28. SUMMARY AND BROADER CONTEXT

stephanie C. herring, andrew hoell, Martin p. hoerling, JaMes p. Kossin, 
Carl J. sChreCK iii, and peter a. stott

Over the years, authors contributing to this report 
have also taken on the challenge of quantifying the 
impacts of climate change. We have increasingly 
emphasized this because to make attribution results 
informative to adaptation decisions, scientists must 
take on the questions of whether the risk or magni-
tudes of such events have increased or decreased, by 
how much, and what level of confidence supports the 
claims. Going forward, report authors will continue 
to clearly state not only the magnitude and nature of 
the impacts, but the confidence in their conclusions. 
While we have made great strides in communicating 
the exact role of climate change, we still struggle with 
ensuring that the confidence in the conclusions is also 
conveyed. This year we also added a methods column 
to the Summary Table 28.1. While we have limited 
data at this time, it will be interesting to see what 
methodological approaches are being applied for dif-
ferent event types and regions as the science evolves.

It was also exciting to see that even after five years 
and over 100 events examined, investigators are still 
finding new event types with which to explore the role 
of climate change.  This year we had contributions on 
novel event types including extreme sunshine in the 
United Kingdom, “sunny day” flooding in the south-

eastern United States, and snowpack drought in the 
U.S. mountain west. What might be a bright spot for 
the United Kingdom is that investigators found that 
extreme winter sunshine there, as observed in the 
record high 2014/15 season, has become more than 
1.5 times more likely to occur under the influence 
of human-caused climate change. The southeastern 
United States has a less positive outlook when it comes 
to sunny day coastal flooding. Even without a cloud in 
the sky or a storm on the horizon, the Miami, Florida, 
region is more likely to experience tidal f looding 
because of long-term sea level rise caused by global 
warming. In the U.S. Cascade Mountains, a 2015 
“snowpack drought” resulted from unprecedented 
warmth that caused cold-season precipitation to fall 
as rain rather than snow on the mountains. Investi-
gators found that because of climate change this event 
could be recurrent in the future.

As observed in years past, all the papers that looked 
at heat events around the world—from Egypt, Austra-
lia, Europe, Indonesia, Asia, India, and Pakistan—all 
found that climate change played a role in increasing 
the severity of the event. In addition, many of these 
events were influenced by both El Niño and natural 
variability, and in all cases researchers were able to 
distinguish between these drivers. For example, while 
El Niño conditions normally have a cooling impact 
on Japan in July–August, the 2015 summer was still 
unexpectedly hot. Authors isolated the various influ-
ences and showed that intraseasonal disturbances 
including tropical cyclones were the main drivers, but 
that human-caused warming increased the likelihood 
by 1.5 to 1.7 times.

The results of individual event attribution studies 
can be put into context by looking at the broader 

This year’s event types include tropical cyclones, extreme sunshine, nuisance tidal flooding, snowpack 
drought, forest fires, and Arctic sea ice extent in addition to heat, cold, precipitation, and drought. The 

Summary Table (Table 28.1) is provided to give readers a general overview of the results. However, it is a 
highly simplif ied categorization of the results and does not include information about the size of the signal 
detected or the confidence in the results. This information is found within each individual report and pro-
vides essential context for understanding and interpreting results for any individual event. Also, while these 
reports may be the first analysis for many of these events, they may not be the last. Additional research on 

any of these events may uncover new information that helps provide a more complete understanding for 
the role of climate change.  
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Table 28.1. Summary of Results

ANTHROPOGENIC INFLUENCE ON EVENT METHOD USED Total 
Events

INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Global Temperature (Ch. 2)

South India & Sri Lanka (Ch. 2)

Central Europe (Ch. 11)

Europe (Ch. 12)

Ethiopia and Southern Africa (Ch. 15)

N.W. China (Ch. 19)

W. China (Ch. 20)

Japan (Ch. 21)

Indonesia (Ch. 22)

S. Australia (Ch. 23)

Australia (Ch. 24)

 Central Equitorial Pacific (Ch. 2) Heat

Ch. 2: CMIP5 modeling

Ch. 11: Observations; weather@home modeling

Ch. 12: HadGEM3-A modeling

Ch. 15: CMIP5 modeling

Ch. 19: CMIP5 modeling with ROF; FAR 

Ch. 20: CMIP5 modeling with ROF; FAR 

Ch. 21: MIROC5-AGCM modeling

Ch. 22: Observations; CMIP5 modeling

Ch. 23: weather@home modeling; FAR

Ch. 24: BoM seasonal forecast attribution system and seasonal forecasts

12

Cold Northeastern U.S. (Ch. 7)
Mid-South Atlantic U.S. (Ch. 7)

N. America (Ch. 8)
Cold

Ch. 7: Observations; CMIP5 modeling
Ch. 8: AMIP (IFS model) modeling

3

Heat & 
Humidity

Egypt (Ch. 14)
India & Pakistan (Ch. 16)

Heat &  
Humidity

Ch. 14: weather@home modeling

Ch. 16: Non-stationary EV theory; C20C+ Attribution Subproject
2

Dryness
Indonesia (Ch. 22)

Tasmania (Ch. 25)
Dryness

Ch. 22: Observations; CMIP5 modeling

Ch. 25: Observations; Modeling with CMIP5 and weather@home
2

Heavy 
Precipitation China (Ch. 18)

Nigeria (Ch. 13)

India (Ch. 17)
Heavy 

Precipitation

Ch. 13: Observations; Modeling with CAM5.1 and MIROC5

Ch. 17: Observations; Modeling with weather@home, EC-Earth and CMIP5

Ch. 18: HadGEM3-A-N216 modeling; FAR

3

Sunshine United Kingdom (Ch. 10) Sunshine
Ch. 10: Hadley Centre event attribution system built on the high-resolution version

of HadGEM3-A
1

Drought
Canada (Ch. 9)

Ethiopia and Southern Africa (Ch. 15)
Drought

Ch. 9: Observations; CMIP5 modeling; Trend and FAR analyses

Ch. 15: CMIP5 modeling, land surface model simulations, and statistical analyses
2

Tropical 
Cyclones Western North Pacific (Ch. 26)

Tropical  
Cyclones Ch. 26: GFDL FLOR modeling; FAR 1

Wildfires Alaska (Ch. 4) Wildfires Ch. 4: WRF-ARW optimized for Alaska with metric of fire risk (BUI) to calculate FAR 1

Sea Ice 
Extent Arctic (Ch. 27)

Sea Ice 
Extent Ch. 27: OGCM modeling 1

HigH tide 
FloodS

SoutHeAStern u.S. (Ch. 6) HigH tide  
FloodS

Ch. 6: tide-gAuge dAtA; time-dependent eV StAtiSticAl model 1

SnowpAck 
drougHt

wASHington u.S. (Ch. 5) SnowpAck  
drougHt

Ch. 5: obSerVAtionS; ceSm1 modeling 1

totAl 23 2 5 30
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Table 28.1. Summary of Results

ANTHROPOGENIC INFLUENCE ON EVENT METHOD USED Total 
Events

INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Global Temperature (Ch. 2)

South India & Sri Lanka (Ch. 2)

Central Europe (Ch. 11)

Europe (Ch. 12)

Ethiopia and Southern Africa (Ch. 15)

N.W. China (Ch. 19)

W. China (Ch. 20)

Japan (Ch. 21)

Indonesia (Ch. 22)

S. Australia (Ch. 23)

Australia (Ch. 24)

 Central Equitorial Pacific (Ch. 2) Heat

Ch. 2: CMIP5 modeling

Ch. 11: Observations; weather@home modeling

Ch. 12: HadGEM3-A modeling

Ch. 15: CMIP5 modeling

Ch. 19: CMIP5 modeling with ROF; FAR 

Ch. 20: CMIP5 modeling with ROF; FAR 

Ch. 21: MIROC5-AGCM modeling

Ch. 22: Observations; CMIP5 modeling

Ch. 23: weather@home modeling; FAR

Ch. 24: BoM seasonal forecast attribution system and seasonal forecasts

12

Cold Northeastern U.S. (Ch. 7)
Mid-South Atlantic U.S. (Ch. 7)

N. America (Ch. 8)
Cold

Ch. 7: Observations; CMIP5 modeling
Ch. 8: AMIP (IFS model) modeling

3

Heat & 
Humidity

Egypt (Ch. 14)
India & Pakistan (Ch. 16)

Heat &  
Humidity

Ch. 14: weather@home modeling

Ch. 16: Non-stationary EV theory; C20C+ Attribution Subproject
2

Dryness
Indonesia (Ch. 22)

Tasmania (Ch. 25)
Dryness

Ch. 22: Observations; CMIP5 modeling

Ch. 25: Observations; Modeling with CMIP5 and weather@home
2

Heavy 
Precipitation China (Ch. 18)

Nigeria (Ch. 13)

India (Ch. 17)
Heavy 

Precipitation

Ch. 13: Observations; Modeling with CAM5.1 and MIROC5

Ch. 17: Observations; Modeling with weather@home, EC-Earth and CMIP5

Ch. 18: HadGEM3-A-N216 modeling; FAR

3

Sunshine United Kingdom (Ch. 10) Sunshine
Ch. 10: Hadley Centre event attribution system built on the high-resolution version

of HadGEM3-A
1

Drought
Canada (Ch. 9)

Ethiopia and Southern Africa (Ch. 15)
Drought

Ch. 9: Observations; CMIP5 modeling; Trend and FAR analyses

Ch. 15: CMIP5 modeling, land surface model simulations, and statistical analyses
2

Tropical 
Cyclones Western North Pacific (Ch. 26)

Tropical  
Cyclones Ch. 26: GFDL FLOR modeling; FAR 1

Wildfires Alaska (Ch. 4) Wildfires Ch. 4: WRF-ARW optimized for Alaska with metric of fire risk (BUI) to calculate FAR 1

Sea Ice 
Extent Arctic (Ch. 27)

Sea Ice 
Extent Ch. 27: OGCM modeling 1

HigH tide 
FloodS

SoutHeAStern u.S. (Ch. 6) HigH tide  
FloodS

Ch. 6: tide-gAuge dAtA; time-dependent eV StAtiSticAl model 1

SnowpAck 
drougHt

wASHington u.S. (Ch. 5) SnowpAck  
drougHt

Ch. 5: obSerVAtionS; ceSm1 modeling 1

totAl 23 2 5 30

gFdl Flor: Geophysical Fluid Dynamics Laboratory Forecast version 
Low Ocean Resolution

ghCn: Global Historical Climatology Network

IFS: Integrated Forecast System

MIROC5–AGCM: Model for Interdisciplinary Research on Climate–
Atmospheric General Circulation Model

OGCM: Ocean General Circulation Model

ROF: Regularized Optimal Fingerprinting

weather@home: http:www.climateprediction.net/weatherathome

wrF-arw: Advanced Research (ARW) version of the Weather 
Research and Forecasting (WRF) model

ACRONYMS:
aMip: Atmospheric Model Intercomparison Project

boM: Bureau of Meteorology, Australia

bui: Buildup Index

CaM: Community Atmosphere Model, http:www.cesm.ucar.edu

CesM: Community Earth System Model

CMip: Coupled Model Intercomparison Project 

Far: Fraction of Attributable Risk

eC-earth: https://verc.enes.org/

ev: Extreme Value
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literature. For example, investigators f ind that 
human-induced climate change has increased the 
likelihood of a fire season as extreme as the one that 
occurred in 2015 in Alaska, which is consistent with 
numerous studies in recent years that indicate climate 
change is increasing fire risk in parts of the United 
States (Melillo et al. 2014). The 2015 Alaska fire sea-
son burned the second largest number of acres since 
records began in 1940.

Another example was the extreme tropical cyclone 
activity in 2015 in the western north Pacific (WNP) 
as measured by accumulated cyclone energy (ACE). 
In this report, a study finds that warm sea surface 
temperatures associated with El Niño played a major 
role, but human-caused climate change substantially 
increased the odds of the extremely active 2015 WNP 
tropical cyclone season. The observed extreme ACE 
was mostly due to the anomalously high frequency 
of category 4–5 storms, which is consistent with 
projections of increased category 4–5 storms in the 
WNP region under anthropogenic warming (Walsh 
et al. 2016). 

Five years in review. In this fifth year of the Special 
Supplement on Explaining Extreme Events from a 
Climate Perspective, we have hit an exciting milestone 
of over 100 papers examining extreme events over half 
a decade. Approximately 65% of these papers have 
shown that human-caused climate change influenced 
an event’s frequency and/or intensity in a substantial 
and measurable manner. Around 35% did not find an 
influence for climate change. While these reports rep-
resent a small and non-random sampling of extreme 
events from around the world, these results add to 
the preponderance of evidence that climate change is 
influencing extreme events (Field et al. 2012; Melillo 
et al. 2014).  

It is worth commenting on some patterns we have 
started to see after five years. For example, of the 104 
papers published in this report over the last five years, 
the event types most studied are overwhelmingly 
heat (29 papers, 28%), precipitation (24 papers, 23%) 
and drought (17 papers, 16%). In total, these three 
event types comprise approximately two-thirds of 
all submissions.

Of the 29 papers that looked at heat events, only 
one did not find a role for climate change. In contrast, 
over the past five years this supplement has published 
24 attribution studies on precipitation, and the ma-
jority (~62%) did not find human influences on the 
event. This more divided set of precipitation results 
indicates that either the ability to detect a climate 

change signal is more challenging for precipitation 
events because of observational or modeling limita-
tions, or that the impact of climate change on pre-
cipitation is more complex or less pronounced than 
it is for heat. The ~62% of “no signal” found in these 
precipitation papers is also influenced by the broad 
variety of questions authors asked for precipitation 
events. For example, Tett et al. (2013) asked, “Are re-
cent wet northwestern European summers a response 
to sea ice retreat?” They concluded the answer was no, 
but given the numerous ways climate change could 
influence precipitation in this region, a no result for 
the role of arctic sea ice should not be interpreted 
as an absence of any role at all for climate change. 
In general, precipitation analyses have looked at a 
small subset of the possible physical drivers. Also, the 
geographic location of each event must be taken into 
consideration when considering the confidence of a 
yes or no result. This is because changes in precipita-
tion trends are anticipated to vary by location (Field 
et al. 2012), and the strength of the observational 
record, the ability of models to reproduce extremes, 
and the understanding of physical processes also can 
vary regionally. 

Analyses of drought are also split with about 50% 
finding and 50% not finding a role for climate change, 
and again this overall percentage does not tell the 
full story. For example,  multiple reports on the 2013 
California drought looked at many variables. Swain et 
al. (2014) found an influence on geopotential heights 
that were associated with blockage of storms off the 
California coast, but the influence on actual changes 
in precipitation or temperature remain uncertain. 
Funk et al. (2014) found the long-term sea surface 
temperature warming did not contribute to the 
California drought risk. Wang and Schubert (2014) 
identified increases in anomalies that divert storms 
away from California (increase drought risk) but 
also found increases in humidity (decrease drought 
risk). These conflicting influences resulted in no net 
impact from climate change. So while these papers 
were neatly binned into the “no influence” category 
for the purposes of the Summary Table 28.1, a clear 
picture of how long-term climate change impacted the 
2013 California drought is yet to emerge.  

The overall message to our readers remains that 
when interpreting the results of individual event at-
tribution assessments the binary yes or no answer 
may not tell the full story. Readers must have a clear 
understanding of the exact nature of the question the 
researchers were asking in their study and the areas 
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of uncertainty to fully understand the implications 
of the results.

A look ahead. As we look ahead to the future of this 
report, a few very exciting opportunities are evident 
to the editors. On the attribution science front, the 
National Academy report (NAS 2016) on event attri-
bution had several recommendations that this supple-
ment could help implement. For example, the NAS 
report notes that standards have not yet been estab-
lished for presenting results. They suggest that event 
attribution could be improved by the development 
of transparent, community standards for attributing 
classes of extreme events. That development would 
be an interesting discussion for future attribution 
community meetings. While community standards 
are under discussion, this report will continue to 
encourage authors to include an assessment of model 
quality in relation to the event class, use multiple lines 
of evidence, and clearly communicate the sensitivities 
of the result to how event attribution questions are 
framed. This information could be useful in develop-
ing these community standards.  

In addition to improving event attribution science, 
we see opportunities for event attribution to become 
increasingly relevant to society through impacts at-
tribution. This will include both intersecting with 
other scientific disciplines to apply attribution results 
to risk management in sectors such as human health, 
and including other aspects of human influence in 
understanding the causes of events. For example, 
flooding in the Canadian prairies in 2014 was more 
likely due to human impacts on precipitation along 
with land use changes that affect drainage mecha-
nisms (Szeto et al. 2015). These types of mechanical 
factors reemphasize the various pathways beyond 
climate change by which human activity can increase 
regional risk of extreme events. 

A look ahead would not be complete without ac-
knowledging that the continued success and relevance 
of this report is dependent on the attribution science 
community. The editors would like to thank all of 
our contributing authors to date, because without 
the voluntary contributions of literally hundreds of 
authors from around the world this report would not 
be possible. From our beginnings in 2011 with just 
six papers to the over 100 published to date, no part 
of this journey has been more enjoyable for the edi-
tors than our engagement with the authors. Over the 
years this report has evolved in large part from both 
criticism and praise from contributors. The editors 
are grateful for the authors’ thoughtful input and 

hope this dialog continues. Looking ahead we hope 
for their continued engagement as we work together 
to advance this exciting frontier of science.
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