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Front: ©Photo by Joe Raedle/Getty Images—A vehicle drives through flooded streets The flood was 
caused by a combination of the lunar orbit which caused seasonal high tides and what many believe is 
the rising sea levels due to climate change. (on September 30, 2015, in Fort Lauderdale, Florida) South 
Florida is projected to continue to feel the effects of climate change, and many of the cities have begun 

programs such as installing pumps or building up sea walls to combat the rising oceans.
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1. Uncertainties in observational data for the 
Niño-4 region. 

The surface temperature anomalies for the Niño-
4 region are widely available since the 1950s from 
the HadCRUT4v3, considering time periods with at 
least 33% regional coverage (Fig. S2.1a). To extend 
our study period, we use two gridded sea surface 
temperature datasets, the ERSSTv4 and HadIS-
STv1.1, which are SST reconstructions back to 1856 
and 1861, respectively. These datasets are generated 
using statistical methods and ocean models to fill 
missing observational data, particularly before the 
1950s, which still includes critical uncertainties for 
the Niño-4 region.

2. Histogram of the control run decadal 
variances from the 23 CMIP5 models with 
observed decadal variances. 

For the Niño-4 region, we construct the histo-
gram of the control run decadal variances from 
the 8 GCMs (bcc-csm1-1, CanESM2, CNRM-CM5, 
CSIRO-Mk-3-6-0, HadGEM2-ES, IPSL-CM5A-LR, 
IPSL-CM5A-MR, and NorESM1-M) in main text. 
Here, we use 23 CMIP5 models for the histogram and 
compute the observed decadal variances from three 
different surface temperature datasets (Fig. S2.1b). 
For the observed decadal variances, the series are 

pre-filtered by subtracting the CMIP5-ALL ensemble 
mean anomalies from the observed anomalies. The 
range of the control run decadal variances is from 
0.016° through 0.078°C2. The decadal variances of 
the observed residuals derived from the ERSSTv4, 
HadCRUT4v3, and HadISSTv1.1 are 0.032°, 0.037°, 

Fig. S2.1. (a) Annual time series (°C) of the Niño-4 re-
gion from the HadCRUT4v3 (black thick line), ERSSTv4 
(red line), HadISSTv1.1 (blue line) datasets. Gray bars 
represent annual time series of fractional area with 
available data over the Niño-4 region. (b) Histogram 
of the control run decadal variances (°C2) from the 
23 CMIP5 climate models. The dotted lines depict the 
observed decadal variances from the HadCRUT4v4 
(black), ERSSTv4 (red), and HadISSTv1.1 (blue).
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Fig. S2.2. Histograms of the control run decadal variances (°C2) from the 8 CMIP5 climate 
models. The dotted lines depict the observed decadal variances from HadCRUT4v4 (black) 
and NOAA NCDC (red in (a)).

Fig. S2.3. Annual time series of the number of months with available observed data in Sep–Nov 2015 
over Southern India/Sri Lanka from (a) CRUTEMP, (b) HadSST. (c) Annual time series of the total 
numbers of grid cells with all three monthly available observations over Southern India/Sri Lanka.
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and 0.054°C2, respectively, which were overestimated 
by roughly half of the models. The decadal variances 
of the observed residuals and the control run decadal 
variances from the eight GCMs over the globe and 
Southern India/Sri Lanka are represented in Fig. S2.2.

3. Uncertainties in observed temperatures 
over Southern India/Sri Lanka. 

To address the HadCRUT4v4 temperature data 
uncertainties over Southern India/Sri Lanka, we plot-
ted the number of months with available observed 
data in 2015 (September–November; the maximum 
number is 3) over Southern India/Sri Lanka from 
the CRUTEMP4.4.0 and HadSST3.1.1. datasets (Fig. 
S2.3). Also, we plotted the annual time series of the 
total numbers of grid cells with all three monthly 
available observations over the study region from 
CRUTEMP4.4.0 (maximum number of grid cells: 7) 
and from HadCRUT3.1.1 (maximum number of grid 
cells: 5), respectively. 

4. Commentary on the FAR estimates for 
global mean temperature anomalies

The FAR estimates for global mean temperature, 
as shown in main text Fig. 2.2d, have been made using 
some conservative assumptions that reduce the FAR 
estimates relative to those obtained with more con-
ventional assumptions. The FAR estimates shown use 
a value for the observed global temperature anomaly 
threshold (2nd ranked in observed series) of 0.83°C, 
which is based on a commonly used method of com-
puting global averages—the mean of the  anomalies 
averaged over the Northern Hemisphere and the 
Southern Hemisphere, computed separately and with 
each hemispheric mean receiving equal weight. An 
alternative 2nd-ranked threshold value, obtained 
as the global average over all available regions, 
without equal weighting of Northern and Southern 
Hemispheres, is notably higher (1.02°C). The model 
data used for the FAR calculations in main text Fig. 
2.2d, from the historical and historical-Nat runs, is 

based on the latter calculation method, that is, using 
a global average over areas with observed cover-
age, and without equal weighting of Northern and 
Southern Hemispheres. Using the higher observed 
global mean threshold of 1.02°C, which is also more 
consistent with the modeled values, results in higher 
FAR estimates, with all eight individual models then 
having FAR estimates greater than 0.98. 

The single individual model with the relatively low 
global FAR estimate of 0.68 in main text Fig. 2.2(d) 
is the CNRM-CM model, for which we had only a 
single ensemble member available for the historical-
Nat scenario. [The eight GCMs that we analyzed, 
and their number of historical and historical-Nat 
ensemble members were: bcc-csm1-1 (3,1); CanESM2 
(5,5); CNRM-CM5 (1,1); CSIRO-Mk-3-6-0 (9,4); 
HadGEM2-ES (4,1); IPSL-CM5A-LR (6,3); IPSL-
CM5A-MR (3,3); and NorESM1-M (3,1).] Thus, the 
estimation of the underlying natural forced signal for 
2015 is quite uncertain for the CNRM-CM5 model, 
as we did not have several ensemble members, or 
climate models, to average over to reduce the internal 
variability noise. As it happens, the single historical-
Nat ensemble member from CNRM-CM5 has a high 
anomaly value for 2012 (highest in the entire record 
of the historical-Nat global time series), and this last 
available year (2012) was used as the natural forced 
signal estimate for 2015. It is highly likely that if a 
larger ensemble were available, the mean modeled 
anomaly for 2012 would be lower than the one we 
used, that is, a revised (lower) estimated forced 
historical-Nat signal for this model. This would again 
increase the FAR estimate for this outlier model 
compared to the 0.68 estimate shown in the figure. 
In short, the global mean FAR estimates in Fig. in 
main text 2.2d are very conservative in terms of as-
sumptions used, and particularly for the case of the 
outlier CNRM-CM model, are very likely substantial 
underestimates of the actual FAR derivable from 
these models. 
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