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comparison with the NMME assimilation-initialized hindcasts, and how the CMIP5 19 
“best-10” ensemble is chosen. 20 

Text S1. 21 

The RMS distance 22 
Ding et al (2018) defined a root-mean-square (RMS) distance to choose analogs. 23 

The RMS distance between a target state 𝐱𝐱(𝑡𝑡) and a library state 𝐲𝐲(𝑡𝑡′) is given by 24 

𝑑𝑑2(𝑡𝑡, 𝑡𝑡′) =  ∑ ∑ (
𝑥𝑥𝑗𝑗
𝑖𝑖(𝑡𝑡)

𝜎𝜎𝑋𝑋
𝑖𝑖 −

𝑦𝑦𝑗𝑗
𝑖𝑖(𝑡𝑡′)

𝜎𝜎𝑌𝑌
𝑖𝑖 )2𝐽𝐽

𝑗𝑗=1
2
𝑖𝑖=1 , with superscripts 𝑖𝑖 = 1 indicating SSH anomalies 25 

(SSHAs) and 𝑖𝑖 = 2 SST anomalies (SSTAs), and subscript 𝑗𝑗 representing a gridpoint 26 
index with J total gridpoint indices within the training region. In the distance equation, 𝜎𝜎𝑋𝑋𝑖𝑖  27 
and 𝜎𝜎𝑌𝑌𝑖𝑖  indicate respective area averaged standard deviations for the target and library 28 
states. Readers can refer to Ding et al (2018) for more details on the model-analog 29 
technique.  30 
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Text S2. 31 
The North American Multi-model Ensemble (NMME) hindcasts 32 
We obtained retrospective forecast (hindcasts) from eight different models in the current 33 
North American Multi-model Ensemble (NMME) project (Kirtman et al. 2014); see 34 
Table S1 for details. To calculate anomalies, all hindcasts are “bias-corrected”: the mean 35 
hindcast drift as a function of lead and calendar month is removed separately for each 36 
ensemble member of each model, as is common practice with CGCM seasonal forecasts 37 
(Stockdale 1997; Saha et al. 2006; Kirtman and Min 2009). Following Barnston et al. 38 
(2015), the grand multi-model ensemble mean (NMME grand ensemble mean) forecasts 39 
were then determined using the bias‐corrected ensemble members of all the models. 40 

Text S3. 41 
Accounting for externally-forced trends 42 

First, we assume that the externally-forced component is separable from internal 43 
variability; then, following the method in Dai et al. (2015), any anomaly x is 44 

 45 
𝑥𝑥(𝑗𝑗, 𝑡𝑡) = 𝑥𝑥𝐹𝐹(𝑗𝑗, 𝑡𝑡) + 𝑥𝑥𝐼𝐼(𝑗𝑗, 𝑡𝑡) 

where 𝑗𝑗 and 𝑡𝑡 denote grid point and time, respectively, 𝑥𝑥𝑭𝑭(𝑗𝑗, 𝑡𝑡) is the externally forced 46 
component, and 𝑥𝑥𝑰𝑰(𝑗𝑗, 𝑡𝑡) is the internal climate anomaly. Suppose that 𝑇𝑇(𝑡𝑡) represents the 47 
best estimate of the evolving global mean surface temperature response to historical 48 
external forcing (Dai et al., 2015). The externally-forced component is then estimated by 49 
linear regression of 𝑥𝑥(𝑗𝑗, 𝑡𝑡) onto 𝑇𝑇(𝑡𝑡): 50 
 51 

𝑥𝑥𝑭𝑭(𝑗𝑗, 𝑡𝑡) = 𝑏𝑏(𝑗𝑗) × 𝑇𝑇(𝑡𝑡) , 52 

where 𝑏𝑏(𝑗𝑗) is the regression slope at grid point 𝑗𝑗 determined over the entire period. The 53 
initial internal (i.e., detrended) anomaly is then the residual  54 
 55 

𝑥𝑥𝑰𝑰(𝑗𝑗, 𝑡𝑡) = 𝑥𝑥(𝑗𝑗, 𝑡𝑡) − 𝑏𝑏(𝑗𝑗) × 𝑇𝑇(𝑡𝑡) .  56 

Note that 𝑥𝑥𝑰𝑰(𝑗𝑗, 𝑡𝑡)is now used to determine analogs within the fixed climate control 57 
simulation, instead of 𝑥𝑥(𝑗𝑗, 𝑡𝑡) as was done by D18. Finally, the linear estimate of the 58 
externally-forced component is added back to each model-analog forecast ensemble 59 
member, resulting in the final forecast ensemble {𝑦𝑦�t1′ + 𝜏𝜏� + 𝑏𝑏 × 𝑇𝑇(𝑡𝑡 + τ), … ,𝑦𝑦�tk′ +60 
𝜏𝜏� + 𝑏𝑏 × 𝑇𝑇(𝑡𝑡 + τ), … ,𝑦𝑦(tK′ + 𝜏𝜏) + 𝑏𝑏 × 𝑇𝑇(𝑡𝑡 + τ)},  which is then verified against 61 
𝑥𝑥(t + τ).   62 

Note that 𝑇𝑇(𝑡𝑡 + τ) is used instead of 𝑇𝑇(𝑡𝑡), to determine externally-forced 63 
contributions to the seasonal forecast. The trend clearly has a large impact on skill; for 64 
example, Fig. S1 shows that the skill coming from just the predicted trend component 65 
alone is quite large for SST hindcasts (although not for precipitation) in the Indian and 66 
west Pacific oceans. However, the impact of predicting the trend over the forecast lead 67 
time is very small, as is also shown in Fig. S1, which shows that the skill due to merely 68 
persisting the trend component (that is, using 𝑇𝑇(𝑡𝑡) in the forecast instead) is almost the 69 
same. That is, the primary benefit of including the trend component is to allow the initial 70 
state to better match observations, especially in regions where the trend dominates natural 71 
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variability. In other words, within each 1-year forecast period, the evolution of the 72 
externally-forced trend component is slight. It is not the externally-forced trend over the 73 
next 1-year forecast period that matters, but the external-forcing induced trend that 74 
accumulated over the past fifty years. 75 

 76 
This figure then also suggests that this skill is largely due to the skill metrics that 77 

are typically used for seasonal forecasts, so that a skill metric based on comparing 78 
detrended anomalies with detrended hindcasts would yield much lower values in the 79 
western Pacific and Indian ocean. 80 

 81 

 82 
 83 
Figure S1. Evaluation of external forcing as hindcasts for SST (a, c) and precip (b, d). In (a, b), time 84 
evolution of 𝑇𝑇(𝑡𝑡 + τ), arising from τ, is taken into account; while in (c, d), 𝑇𝑇(𝑡𝑡) is fixed for all lead time τ. 85 
See Text S3 for details.  86 
 87 
We determined 𝑇𝑇 as the global and ensemble mean surface temperature of the CMIP5 88 
multi-model historical (pre-2005) and RCP4.5 (post-2005) runs, rather than directly from 89 
observations, so that the model-analog technique can make forecasts as well as hindcasts. 90 
In essence, the CMIP5 ensemble mean predicts the externally-forced component, and the 91 
model-analog technique predicts the internal climate anomaly. We used all 45 CMIP5 92 
historical simulations to estimate the externally-forced signal, although using just those 93 
models corresponding to our model-analog ensemble yielded essentially the same results. 94 
For each initial state at time t, the regression coefficient 𝑏𝑏(𝑗𝑗) was separately determined 95 
from the 1961-2015 period except for data from the interval [t, t  + 5 yrs], which was 96 
withheld to ensure that the trend component of each hindcast was independent of the 97 
verification data.  98 
 99 
Text S4. 100 
Choosing the “best-10” CMIP models 101 

We note that a few models (e.g., CCSM4 and IPSL-CM5B-LR) are slightly more 102 
skillful than the 28-model mean in the central equatorial Pacific, perhaps because the 28-103 
model mean skill is reduced by including some models with very low skill. For example, 104 
Table S1 shows that CMIP5 model Niño3.4 SST 6-month forecast skill ranges between 105 
0.49-0.75. We explored the impact of adding models with less skill to the grand ensemble 106 
mean by ordering the models based on Nino3.4 SST 6-month forecast skill, and then 107 
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including them one at a time in the multi-model grand ensemble mean (see Fig. S5).  We 108 
found that the multi-model mean skill reached a maximum for an ensemble size of 109 
between 5-12 models, but beyond this point the forecast skill degraded as models with 110 
poorer performance were added. This suggests that only a subset of the 28 models is 111 
necessary to maximize forecast skill. Several recent studies also have found that an 112 
ensemble including only some models, determined using some suitable criteria, may 113 
yield higher forecast skill relative to using all available forecast models (e.g., Chen & van 114 
den Dool, 2017). However, note that the overall change in skill in predicting Nino3.4 115 
SST is modest: rising from ~0.75 for the best model to ~0.775 for 5-12 models and then 116 
declining to only 0.73 for all 28 models (Fig. S5). As an example, in Fig. 1 we also show 117 
the skill of the model-analog multi-model ensemble determined from the ten most skillful 118 
CMIP5 models from Fig. S5 (marked by stars in Table S2). This “best-10” grand 119 
ensemble mean modestly improves skill over the 28-model mean in the tropical Pacific, 120 
with 0.7 correlation covering a larger area, but does not much improve skill elsewhere. 121 
 122 
 123 

 124 
 125 
Figure S2. Skill of NMME (a,b) assimilation-initalized and (c,d) model-analog hindcasts of SST (a, c) and 126 
precipitation (b, d) anomalies at six-month lead, for the years 1982-2009. Only anomaly correlation is 127 
shown. Panels (a-b) show the NMME grand mean conducted by the same four models (Table S2); panels 128 
(c-d) show the grand mean of multi-model analogs, based on the four models: CM2.1, CM2.5 FLOR, 129 
CCSM4 and CESM1. The projected response to external radiative forcing is added to model-analog 130 
hindcasts.  131 
 132 
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 133 
Figure S3. The same as Fig. S2 except for RMS skill score.    134 
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 135 
Figure S4. The same as Fig. S2 except for ranked probability skill score (RPSS).  136 

 137 

Figure S5. The red curves show model-analog multi-model mean 6-month lead forecast skill of Nino3.4 138 
SST anomalies, measured by (a) correlation and (b) RMS skill score, as a function of number of models 139 
(abscissa). The 28 grand ensembles are made as follows: 1) individual model-analog ensemble mean 140 
correlation skill of Nino3.4 SST is calculated at 6-month lead; 2) correlation values are ranked in 141 
descending order; 3) grand model-analog ensembles are constructed by beginning with the model with 142 
highest correlation, which is model 1 in abscissa and then adding one more model, with lower correlation 143 
than the previous models, to the grand ensemble until all the models are added. The “best-10” grand 144 
ensemble denotes 10 in abscissa. The black curves show the evaluation of individual model ensemble 145 
mean, and the models are shown in the descending order in 6-month lead correlation skill of Nino3.4 SST.  146 
  147 
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 148 
Figure S6. Model-analog hindcast skill for Nino3.4 SST during 1961-2015, as a function of forecast lead 149 
time (abscissa) and initial month (ordinate). Shading denotes correlation. Analog hindcasts are based on (a) 150 
the NMME models and (b) the “best-10” CMIP5 models, respectively. In all model-analog hindcasts, the 151 
projected response to external radiative forcing is included.  152 
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 153 

 154 

 155 

 156 
 157 
 158 
Figure S7. (top row) SSH and (bottom row) SST anomalies in June 1973 calculated from (a, c) 159 
observations and (b, d) corresponding CMIP5 CCSM4 model-analog ensemble-mean representation, 160 
respectively. The units for SSH and SST are cm and Celsius, respectively. 161 
 162 

 163 
Figure S8. The same as Fig. S7 except for June 2015.  164 
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 165 
  166 
 167 
 168 
 169 
Model Expanded model 

name 
Number of 
ensemble members  

Maximum lead 
month 

COLA-RSMAS-
CCSM4* 

COLA–University of 
Miami–NCAR 
coupled model 

10 12 

NCAR-CESM1* NCAR Community 
Earth System Model 1 

10 12 

GFDL-CM2pl-
aer04* 

Modified version of 
the GFDL CM2.1 
coupled model 

10 12 

GFDL-CM2p5-
FLOR* 

GFDL Forecast-
oriented Low Ocean 
Resolution version of 
CM2.5 

24 12 

CMC1-CanCM3 Canadian coupled 
model 1 

10 12 

CMC2-CanCM4 Canadian coupled 
model 2 

10 12 

NASA-GMAO-
062012 

Modified version of 
the NASA coupled 
model 

12 10 

NCEP-CFSv2 NOAA/NCEP 
coupled model 

24 10 

 170 

Table S1. A list of the eight NMME models whose hindcast experiments were employed in the 171 
NMME grand ensemble. The grand ensemble mean of all the eight NMME models is shown in 172 
Figure 4. Model-analog method is applied to the four models, marked by an asterisk, in order to 173 
compare with model-analog hindcasts with the corresponding NMME hindcasts (see Figs. S2-174 
S4).  175 
 176 
 177 
 178 
 179 
 180 
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Model name Expanded model 
name 

Length of run 
(yr) 

Month 6 
correlation skill 
of Nino3.4 SST 

ACCESS1-0 Australian 
Community 
Climate and Earth 
System Simulator 
Coupled Model 

500 0.667 

ACCESS1-3 Australian 
Community 
Climate and Earth 
System Simulator 
Coupled Model 

500 0.569 

CanESM2* Second Generation 
Canadian Earth 
System Model 

995 0.720 

CCSM4* Community 
Climate System 
Model, 
version 4 

1050 0.758 

CMCC-CESM CMCC Carbon 
Earth System 
Model  

277 0.656 

CMCC-CM CMCC Climate 
Model  

330 0.629 

CMCC-CMS* CMCC Climate 
Model with a 
resolved 
Stratosphere  

500 0.691 

CNRM-CM5* Centre National de 
Recherches 
M_et_eorologiques 
Coupled Global 
Climate Model, 
version 5 

850 0.688 

GFDL-CM3* Geophysical Fluid 
Dynamics 
Laboratory, 
Climate Model 
versions 3.0 

500 0.695 

GFDL-ESM2G* Geophysical Fluid 
Dynamics 
Laboratory Earth 
System Model 
with Generalized 
Ocean Layer 

500 0.690 
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Dynamics (GOLD) 
component 

GFDL-ESM2M Geophysical Fluid 
Dynamics 
Laboratory Earth 
System Model 
with Modular 
Ocean Model 4 
(MOM4) 
component 

500 0.687 

GISS-E2-R* Goddard Institute 
for Space Studies 
Model E2, coupled 
with the Russell 
ocean model 

550 0.721 

GISS-E2-R-CC Goddard Institute 
for Space Studies 
Model E2, coupled 
with the Russell 
ocean model, 
Interactive Carbon 
Cycle  

251 0.676 

HadGEM2-CC Hadley Centre 
Global 
Environment 
Model, version 2–
Carbon Cycle 

240 0.595 

HadGEM2-ES Hadley Centre 
Global 
Environment 
Model, version 2-
Earth System 

575 0.514 

INMCM4 Institute of 
Numerical 
Mathematics 
Coupled Model, 
version 4.0 

500 0.558 

IPSL-CM5A-LR L’Institut Pierre-
Simon Laplace 
Coupled Model, 
version 5, coupled 
with Nucleus for 
European 
Modelling of 
the Ocean 
(NEMO), low 

1000 0.605 
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resolution 
IPSL-CM5A-MR L’Institut Pierre-

Simon Laplace 
Coupled Model, 
version 5, coupled 
with NEMO, mid 
resolution 

300 0.670 

IPSL-CM5B-LR* L’Institut Pierre-
Simon Laplace 
Coupled Model, 
version 5, coupled 
with NEMO, new 
atmospheric 
physics low 
resolution 

300 0.722 

MIROC-ESM Model for 
Interdisciplinary 
Research on 
Climate, Earth 
System Model 

630 0.494 

MIROC-ESM-
CHEM 

Model for 
Interdisciplinary 
Research on 
Climate, Earth 
System Model, an 
atmospheric 
chemistry coupled 
version 

255 0.522 

MIROC5 Model for 
Interdisciplinary 
Research on 
Climate, version 5 

670 0.587 

MPI-ESM-LR Max Planck 
Institute Earth 
System 
Model, low 
resolution 

1000 0.573 

MPI-ESM-MR Max Planck 
Institute Earth 
System 
Model, medium 
resolution 

1000 0.574 

MPI-ESM-P Max Planck 
Institute Earth 
System 
Model, low 

1155 0.592 
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resolution, and 
paleo mode  
 

MRI-CGCM3 Meteorological 
Research Institute 
Coupled 
Atmosphere–
Ocean 
General 
Circulation Model, 
version 3 

500 0.665 

NorESM1-M* Norwegian Earth 
System Model 1, 
medium resolution 

500 0.694 

NorESM1-ME* Norwegian Earth 
System Model 1, 
medium resolution 
with capability to 
be fully emission 
driven 

252 0.697 

 181 
 182 

Table S2. A list of the 28 CMIP5 models whose preindustrial control simulations were employed 183 
as the data library for model-analogs. Models, marked by an asterisk, are employed in the “best-184 
7” grand ensemble.  185 
 186 
 187 
 188 
 189 
 190 
 191 
 192 
 193 
 194 
 195 
 196 
 197 
 198 
 199 
 200 
 201 
 202 
 203 
 204 
 205 
 206 
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