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Abstract we examine links between tropical Pacific mean state biases and El Nifio/Southern Oscillation
forecast skill, using model-analog hindcasts of sea surface temperature (SST; 1961-2015) and
precipitation (1979-2015) at leads of 0-12 months, generated by 28 different models from the fifth phase
of the Coupled Model Intercomparison Project (CMIP5). Model-analog forecast skill has been
demonstrated to match or even exceed traditional assimilation-initialized forecast skill in a given model.
Models with the most realistic mean states and interannual variability for SST, precipitation, and 10-m
zonal winds in the equatorial Pacific also generate the most skillful precipitation forecasts in the central
equatorial Pacific and the best SST forecasts at 6-month or longer leads. These results show direct

links between model climatological biases and seasonal forecast errors, demonstrating that model-analog
hindcast skill—that is, how well a model can capture the observed evolution of tropical Pacific
anomalies—is an informative El Nifio/Southern Oscillation metric for climate simulations.

Plain Language Summary Research institutions around the world have developed computer
models to conduct simulations of Earth's climate to support the Intergovernmental Panel on Climate
Change Assessment. Therefore, it is necessary to assess aspects of these models using historical observations.
Here, we develop a new model metric that involves making forecasts over several seasons, using existing
long simulations of Earth's preindustrial climate conducted by many research institutions and provided

to the community for use in climate studies. Within each simulation, we find the best matches, or
“model-analogs,” to historical observations of tropical Indo-Pacific Ocean surface temperatures and sea
level. The evolutions of these analogs over the next several months within the simulation are then used as
forecasts. Long-term accuracy of the forecasts indicates how well a model reproduces the time evolution of
the observations. Precipitation forecast accuracy (regardless of lead) and sea surface temperature forecast
skill (at 6-month or longer leads) emerge as key identifiers of the models that best simulate tropical
Indo-Pacific climate.

1. Introduction

The El Nifio/Southern Oscillation (ENSO) is the dominant mode of interannual climate variability in the
tropical Pacific (e.g., Philander, 1990; Timmermann et al., 2018). ENSO events are characterized by devia-
tions of 1-4 °C from the sea surface temperature (SST) mean state in the central and eastern equatorial
Pacific. These SST anomalies (SSTAs) exert a significant influence on convective activity and the atmo-
spheric circulation, affecting weather and climate worldwide (Alexander et al., 2002; Trenberth et al.,
1998). Therefore, skillful forecasts of ENSO events, typically made using coupled general circulation models
(CGCMs), are of great socioeconomic interest.

Many CGCMs simulate an excessive westward extension of the cold tongue into the tropical Pacific warm
pool. The resulting equatorial cold SST bias (e.g., Bellenger et al., 2014; Davey et al., 2002; Lin, 2007) has been
associated with poor representation of other tropical Pacific mean state variables, including excessive surface
easterly winds and deficient rainfall, and these errors can be mutually intensified via ocean-atmosphere
interactions including those associated with ENSO (e.g., Li & Xie, 2014; Lin, 2007; Wittenberg et al., 2018;
Zheng et al., 2011), causing climate variability errors (e.g., Chen et al., 2017; Choi et al., 2015; Graham
et al., 2017; He et al., 2018).

Some studies have found direct links between these CGCM biases and ENSO seasonal forecast skill, while
others have not (e.g., Gualdi et al., 2005; Lee et al., 2010; DelSole & Shukla, 2010; Magnusson et al., 2013;
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Smith et al., 2013; Vecchi et al., 2014; Ding et al., 2015; Kim et al., 2017; Scaife et al., 2019; Dippe et al., 2019).
For example, Manganello and Huang (2009) found that a CGCM warm SST bias off the South American
coast degrades ENSO forecast skill. Lee et al. (2010) noted pattern correlations in the global tropics between
mean climate and 1-month lead forecast skill. Magnusson et al. (2013) obtained slightly improved accuracy
for 6-month lead SST forecasts in the eastern equatorial Pacific, by correcting mean state biases using heat
flux adjustments. In contrast, in a recent study of 14 CGCMs used for seasonal prediction, Scaife et al.
(2019) found no intermodel relationship between precipitation forecast skill and local precipitation mean
bias in the tropical Indo-Pacific. Richter et al. (2018) concluded that reducing SST mean biases did not
necessarily improve an atmospheric model's ability to simulate the zonal wind and precipitation responses
to prescribed observed SSTAs. Thus, there is no consensus on connections between model mean biases and
seasonal forecast skill, including how the cold tongue bias may impact ENSO forecast skill. Such
connections may have been obscured in past studies for at least two reasons: (1) They may require large sets
of retrospective forecasts (or “hindcasts”) of ENSO from a large number of models to identify, especially in
the presence of decadal variations in forecast skill, and (2) initialized forecasts are subject to model
initialization shock and drift, which also affect the bias-skill relationship.

To address these challenges, we here use a “model-analog” method developed by Ding et al. (2018; hereafter
D18), where seasonal forecasts are initialized by searching a CGCM's preexisting long control simulation for
anomalous model states that are similar to the initial anomalous observed state. (This is in contrast to
traditional forecast initialization methods, which use full-field assimilation of observations into the forecast
model.) The subsequent evolution of these states in the preexisting control simulation then provides fore-
casts at various lead times. Tropical Pacific SST and precipitation forecast skill from the North American
Multi-Model Ensemble (NMME; Kirtman et al., 2014), in which models are initialized using the traditional
approach, is generally matched or exceeded by applying the model-analog method to the corresponding long
control runs from each NMME model (D18). Ding et al. (2019; hereafter D19) subsequently showed that
model-analogs could be used to estimate forecast skill for the years 1961-2015, from 28 different models
drawn from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Many of the CMIP5
models had skill comparable to the NMME hindcasts. That is, D19 used model-analogs to nearly double both
the length of the available hindcast period, and the number of seasonal forecast models.

Here, we leverage D19's large hindcast data set to assess how forecast skill relates to model biases. First, we
use the model-analogs to determine each model's tropical Pacific SST and precipitation hindcast skill at leads
of 0-12 months and use this skill as a metric for ENSO, measuring how well each CMIP5 model captures the
spatiotemporal evolution of observed ENSO events. We then examine the relationship between the cold
tongue bias and the model-analog seasonal hindcast skill for SST and precipitation, within a multimodel
context of 28 CMIP5 CGCMs.

2. Model-Analog Forecasts

The model-analog technique (D18; D19) is simply analog forecasting (e.g., Barnett & Preisendorfer, 1978;
Lorenz, 1969; Van den Dool, 1994), except that the closest matches to the observed initial conditions are
drawn from a long CGCM control simulation, typically several hundred years in length, rather than from
the much shorter observational record. To make ENSO forecasts, the K anomalous model states that best
match (i.e., have the smallest root-mean-square [RMS] distance to) the initial observed SST and sea surface
height (SSH) anomalies within the tropical Indo-Pacific (30°E to 70°W, 30°S to 30°N), are chosen as the
initial ensemble. The subsequent evolution of these model-analogs then provides the forecast ensemble.
This method initializes the model on its own attractor and therefore avoids any initialization shock. The
model-analog technique can be used to make forecasts of not only tropical Indo-Pacific SSH and SST but also
any other model quantity. For further details, including sensitivity to the analog-selection method, size of
the model-analog ensemble, and length of the CGCM simulation, along with the skill comparison to
traditionally initialized hindcasts, see D18 and D19.

As in D19, initial observed states are obtained from monthly mean SST and SSH anomalies during 1961-
2015, where SST is from the Hadley Sea Ice and Sea Surface Temperature v1.1 data set (Rayner et al.,
2003) and SSH is from the European Centre for Medium-Range Weather Forecasts Ocean Reanalysis
System 4 data set (Balmaseda et al., 2013). These were also used for hindcast verification, along with
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precipitation from the Global Precipitation Climatology Project Version 2.3 (Adler et al., 2003). The “library”
data sets from which the model-analogs are drawn consist of monthly mean anomalies from preindustrial
control simulations of 28 different CMIP5 models (Table S1 in the supporting information; Taylor et al.,
2012). All model and observed data are interpolated onto a common 2° longitude by 2° latitude grid, prior
to analysis. For each simulation, monthly anomalies are calculated by subtracting each model's own
monthly climatology determined using the full data set; that is, the forecasts have their mean biases removed
by construction.

We use the tropical Indo-Pacific model-analog hindcasts from D19 for both SST (1961-2015) and precipita-
tion (1979-2015), at leads of 0-12 months. The contribution of the external radiatively forced trend,
determined by D19 from the ensemble mean of all the CMIP5 model ensembles, is removed; including this
trend did not improve ENSO forecasts, nor is there a detectable secular trend in ENSO forecast skill (D19).
An ensemble of 10 analogs (K = 10) was drawn from each simulation, with little change in skill for K = 15.
All ensemble members were equally weighted.

Hindcast skill was evaluated using two deterministic skill measures that relate the ensemble mean forecast
anomaly to the observed (verification) anomaly: (1) anomaly correlation (AC) and (2) standardized RMS
error (SRMSE), where the RMS error is expressed as a fraction of the observed climatological
standard deviation.

3. Results
3.1. Model-Analog Forecast Skill as a Model-Evaluation Metric

Figures 1a and 1b show the 6-month lead SST and precipitation hindcast skill for the grand 28-model ensem-
ble mean. The hindcasts clearly have skill for central and eastern equatorial Pacific SSTs, where the correla-
tion reaches 0.7. The grand ensemble mean also displays tropical Pacific precipitation skill, with correlations
of about 0.5-0.6 in the central and eastern equatorial Pacific (Figure 1b), despite precipitation not being used
to select model-analogs. Individual CMIP5 models also generate hindcasts with skill in the central and
eastern equatorial Pacific (Figures S1 and S2), depending on model and region. These skill maps generally
resemble those determined from operational models, such as the NMME (Kirtman et al., 2014; D18),
although some CMIP5 models exhibit less skill (D19).

To develop a uniform ENSO skill metric, we evaluate CMIP5 SST and precipitation hindcast skill within the
Nifi03.4 region (5°S to 5°N, 170-120°W) for forecast leads of 0-12 months. Nifio3.4 SST is a commonly used
index to measure ENSO (e.g., Trenberth & Stepaniak, 2001), and a majority of the models display maximum
forecast skill within the Nifo3.4 region (Figures S1 and S2). Following Newman and Sardeshmukh (2017),
we display skill for a particular model at a specific lead time by using the forecast amplitude (normalized by
the observed climatological standard deviation) and the arccosine of the AC between forecasted and
observed time series as the radius and azimuth, respectively, of a point on a Taylor diagram (Taylor,
2001). The distance from this point to the reference point (REF) is then, by construction, the SRMSE of
the forecast (Newman & Sardeshmukh, 2017; Taylor, 2001). This is repeated for each lead time to yield
13 points (Month 0 to Month 12) for each model, connected with line segments to produce a curve indicating
the evolution of model skill with forecast lead time. Note that “Month 0” skill is not a forecast measure but
instead measures the match between the model-analog ensemble mean initial state and observations; that is,
how well observed anomalies can be reconstructed within the model space (“reconstruction skill”). This
permits a comprehensive evaluation of the spatiotemporal structure of model variability relative
to observations.

The resulting Taylor diagrams are shown in Figure 1c for SST skill and Figure 1d for precipitation skill. For
each curve, skill generally recedes monotonically away from the perfect skill reference point (REF) with
increasing forecast lead, with (roughly) counterclockwise evolution (Newman & Sardeshmukh, 2017).
Each curve may therefore be viewed as a “skill trajectory,” a metric capturing the evolution of model
hindcast skill as a function of forecast lead. At long leads the curves spiral toward the origin, as each model's
analog ensemble disperses toward the climatological probability density function and the ensemble mean
anomaly tends toward 0. Although there is a wide spread of SST skill trajectories, they all have similar shapes
and are distributed about the intermodel ensemble mean skill (heavy black line). In contrast, the
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Figure 1. (a) SST and (b) precipitation model-analog hindcast anomaly correlation skill for observed variations at 6-month lead, calculated from the 28-model
grand ensemble means. Black boxes indicate the Nifio3.4 region. (c and d) Taylor diagrams of model-analog forecast skill at leads of 0-12 months for (c)
Nifio3.4 SST and (d) Nifio3.4 precipitation. Each curve represents a “skill trajectory” from one CMIP5 model, with one dot per forecast lead month. In these
diagrams, the distance of a point from the origin (indicated by dashed gray semicircles) is the forecast standard deviation, and the angular coordinate represents
anomaly correlation. The radial distance from the reference point (REF, the verification field) (indicated by thin solid gray semicircles) represents the RMS forecast
error, which is mathematically related to the other two quantities. Both the forecast amplitude and error are normalized by the observed standard deviation.
Colored curves/red dots indicate the twelve models with the best initial representation of Nifio3.4 precipitation in (c) and (d), respectively; remaining models are
indicated with thin gray lines.

precipitation skill trajectories are clustered into two groups (one representing generally good skill and the
other representing very poor skill), with the ensemble mean skill trajectory lying between them.
Interestingly, there is no obvious correspondence between each model's SST and precipitation skill
trajectory. That is, knowing that a model is in either the high (rainbow colored) or low (gray)
precipitation skill group does not tell us what its SST skill trajectory looks like, as can be seen by
comparing the trajectories of these groups in the two panels.

3.2. Relating Model-Analog Forecast Skill to Model Biases in Mean States and Variability

We now use our ENSO skill metric to compare each model's hindcast error to its time mean bias. In Figure 2
we plot each model's model-analog forecast error (SRMSE, the distance to the REF point in Figure 1) for
either Nifio3.4 precipitation (Figures 2a and 2b) or SST (Figures 2c and 2d), against the corresponding pre-
industrial control run's climatological cold tongue bias, measured by the Nifio3.4 SST bias. The SST bias is
strongly related to both the reconstruction error and 6-month lead hindcast error of precipitation anomalies,
with a correlation of about —0.7 (Figures 2a and 2b), significant at the 99% level. However, the relationship of
the SST bias to SSTA forecast error is relatively weak and depends on lead time. There is no obvious relation-
ship between the SST bias and the initial reconstruction error for SSTAs (Figure 2c), although the correlation
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Figure 2. Scatterplots of model-analog standardized root-mean-square forecast error (SRMSE) versus control-run
Nifo3.4 SST bias (°C), for forecasts of Nifi03.4 precipitation at leads of (a) 0 and (b) 6 months, and for forecasts of Nifio3.4
SST at leads of (c) 0 and (d) 6 months. Black lines indicate linear regressions. The correlation between bias and error is at
the top left of each panel.

between the SST bias and the 6-month lead forecast error reaches about —0.43, significant at the 95% level
(Figure 2d). Note that if the group of models with very large precipitation forecast error and mean SST
bias colder than —1.7°C is removed, a significant relationship still remains between precipitation forecast
error and mean SST bias, while the relationship between SST forecast error and mean SST bias remains
weak. We also obtained similar results when relating the SST bias to AC between model-analog forecasts
and observations (Figure S3).

We next examine links between Nifio3.4 forecast skill and tropical Pacific model biases in both mean states
and variances. Again, we define two groups of 12 models each—a “high skill” group and a “low skill” group
—using Nifno3.4 SRMSE for either SST or precipitation, and either reconstruction skill at lead 0 or forecast
skill at lead 6 months. (Results are similar if the models are instead classified using AC, not shown.) For each
group, the ensemble mean bias for the corresponding preindustrial control runs is then determined for the
means and standard deviations of four fields: SST, SSH, precipitation, and 10-m zonal wind.

The models with the lowest initial precipitation reconstruction skill suffer from severe climatological biases
at the equator (Figures 3a and 3e), including an SST bias of —2 °C, rainfall biases of —2 to —3 mm/day, and an
easterly wind bias of about —3 m/s in the western equatorial Pacific, with a corresponding positive SSH bias
in the west with maxima straddling the equator (not shown). In addition, they also display cold SST biases in
the north and south tropical Pacific, a warm SST bias near the coast of South America, and excessive rainfall
off the equator (Lin, 2007; Zheng et al., 2011; Li & Xie, 2014). The systematic errors at the equator are
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Figure 3. Multimodel biases in mean states (left) and standard deviations (right) for (a-d) precipitation and (e-h) SST (shading) and 10-m zonal winds (vectors).
Biases are calculated from the preindustrial control simulations of the 12 models with the (a, b, e, and f) worst and (c, d, g, and h) best initial model-analog
reconstruction error (SRMSE) for Nifio3.4 precipitation. In the right column, all quantities are normalized by the observed climatological standard deviation, and
vectors pointing east (west) indicate standard deviation values greater (less) than observed for the 10-m zonal winds.

mitigated for the high-skill models (Figures 3c and 3g), which exhibit a modest cold bias of around —0.6 °C,
close-to-observed rainfall in the western and central equatorial Pacific, and a much weaker easterly wind
bias and low-SSH bias in the western Pacific. The differences between the two ensembles are significant
at the 95% level in the equatorial Pacific (Figure 4a). (Regressing the model mean states onto the model-
analog Nifo3.4 precipitation reconstruction skill gives similar results, not shown.) The high-skill models
also exhibit significantly less central equatorial cold SST bias year-round than the low-skill models, with
some seasonal variation (Figure S4). However, the high-skill models still have some off-equatorial Pacific
biases, and warm SST biases off the west coast of South America, which are almost as severe as in the
low-skill models, suggesting that the varying ENSO prediction skill among the models is mainly driven by
their variations in mean states within the ocean equatorial waveguide.

The models with the lowest Nifio3.4 precipitation reconstruction skill also exhibit too little climate variabil-
ity in the central/east equatorial Pacific (Figures 3b and 3f). Compared with observations, the SST variability
is 20% weaker in the central/east Pacific and 40-50% stronger in the west (Figure 3f), indicative of a west-
ward displacement of the ENSO SSTA pattern in the presence of a cold SST bias within the cold tongue
(e.g., Guilyardi et al., 2009; Joseph & Nigam, 2006; Newman & Sardeshmukh, 2017). Correspondingly, the
variability of precipitation and 10-m zonal winds are around 60% and 50% weaker than observed, respec-
tively (Figures 3b and 3f). In contrast, the high-skill models simulate much more realistic variability of these
quantities at the equator (Figures 3d and 3h), though they still have too much SST variability in the western
equatorial Pacific (Figure 3h). The difference between the high- and low-skill models is significant at the 95%
level in the equatorial Pacific (Figure 4b). The high-skill models also more realistically simulate the seasonal
cycle of equatorial SST variability (Figure S5).
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observed climatological standard deviation, and vectors pointing east (west) indicate greater (less) standard deviations for the 10-m zonal winds.

Grouping models based on 6-month lead Nifio3.4 precipitation skill again results in the high-skill models
having much more realistic mean states and variability (Figure S6). The high- and low-skill model equatorial
Pacific differences are again significant at the 95% level for both mean states (Figure 4c) and variability
(Figure 4d). Similar results are obtained for other forecast leads (not shown).

We further examined systematic errors in CMIP5 historical simulations, driven by observed changes in
radiative forcing over the twentieth century, for each set of models used to generate Figure 4. The low-
and high-skill models display nearly the same errors in the historical simulations as those in the preindus-
trial control runs (not shown). Results were also generally similar when using Nifio4 rather than Nifio3.4
precipitation skill (not shown).

Finally, we also grouped models using high and low SST skill. As suggested by Figure 2c, Figure 4e confirms
that there is little significant difference in the mean states of either SST or precipitation between models with
high or low SST reconstruction skill, although low-skill models have a positive SSH bias in the eastern part of
the basin (not shown). In contrast, models with high 6-month lead SST skill display significantly more
realistic mean states than the low-skill models (Figure 4g) and more realistic variability of precipitation
and 10-m zonal wind (Figure 4h). However, these differences are generally much smaller than when
grouping by precipitation skill (Figures 4a-4d).

4. Summary and Discussion

In this study, model-analog hindcasts of SST (1961-2015) and precipitation (1979-2015) anomalies, gener-
ated from the preindustrial control runs of 28 different CMIP5 models, demonstrate a direct relationship
between seasonal forecast skill and model systematic errors. There are significant intermodel correlations
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between the equatorial Pacific cold tongue bias and the model-analog initial reconstruction/forecast skill for
precipitation anomalies. Models with the best model-analog precipitation anomaly skill showed the most
realistic mean states and interannual variability for precipitation, SST, and 10-m zonal winds in the
equatorial Pacific. Surprisingly, the cold tongue bias was only weakly linked to SSTA forecast skill.
Models with better hindcast skill for SSTAs at Month 6 or longer leads also simulated more realistic mean
states and variability than models with lower hindcast skill, but this relationship did not extend to initial
reconstruction skill for SSTAs. Moreover, the difference between the two model groups with the lowest
and highest 6-month lead SSTA hindcast skill is less than that between the two model groups with the lowest
and highest reconstruction/hindcast skill for precipitation anomalies. Thus, even though precipitation is not
used to select the model-analogs, model-analog precipitation hindcast skill emerges as a key identifier of
better tropical Indo-Pacific simulations. Our results also suggest that reproducing the time evolution of
SSTAs is an important additional metric beyond simply reproducing static aspects of SST variability.

Recent studies have noted that the SST bias in the equatorial Pacific cold tongue strongly impacts the
air-sea coupled “Bjerknes feedbacks” that are important for ENSO (Bayr et al., 2018, 2019). A cold
equatorial Pacific SST bias induces a westward displacement of the rising branch of the Walker circula-
tion, thereby weakening the atmospheric convective response to equatorial Pacific SSTAs and degrading
precipitation forecast skill as shown in the present study. While our study and others (e.g., Bayr et al.,
2019; Dommenget et al., 2014) have found that some climate models can simulate realistic SST variability
despite a severe cold SST bias, the SST variability in those models is prominently driven by unrealistic
positive shortwave cloud feedbacks associated with excessive stratus cloud, rather than by Bjerknes feed-
backs (Bayr et al., 2019; Dommenget et al., 2014).

Standard metrics (Bellenger et al., 2014; Guilyardi et al., 2009) have been proposed to diagnose, understand,
and evaluate ENSO in CGCMs, to support CMIP and the Intergovernmental Panel on Climate Change
Assessment Reports (Meehl et al., 2007; Taylor et al., 2012). These metrics assess the main features and pro-
cesses important for ENSO, including the tropical Pacific mean state, annual cycle, anomaly patterns and
evolution in the central/eastern equatorial Pacific, teleconnections to remote regions, and key dynamic
and thermodynamic feedbacks. Additional ENSO metrics have been proposed, for example, to measure
ENSO nonlinearity in CMIP5 simulations (Karamperidou et al., 2017) and to assess ENSO's spatiotemporal
diversity (Capotondi et al., 2015; Kug et al., 2010; Lee et al., 2014; Lemmon & Karnauskas, 2019). Our study
introduces two further metrics—model-analog reconstruction skill and forecast skill—which measure the
ability of a model to represent observed ENSO events and their spatiotemporal evolution, offering a powerful
new way to evaluate a model and its potential utility for seasonal predictions.
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