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Future changes in boreal winter
ENSO teleconnections in a large
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climate simulations

Nathaniel C. Johnson1*, Andrew T. Wittenberg1,

Anthony J. Rosati1,2, Thomas L. Delworth1 and William Cooke1

1Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration,

Princeton, NJ, United States, 2University Corporation for Atmospheric Research, Boulder, CO,

United States

The impacts of the El Niño-Southern Oscillation (ENSO) are expected to

change under increasing greenhouse gas concentrations, but the large internal

variability of ENSO and its teleconnections makes it challenging to detect

such changes in a single realization of nature. In this study, we explore both

the internal variability and radiatively forced changes of boreal wintertime

ENSO teleconnection patterns through the analysis of 30-member initial

condition ensembles of the Seamless System for Prediction and EArth System

Research (SPEAR), a coupled global climate model developed by the NOAA

Geophysical Fluid Dynamics Laboratory. We focus on the projected changes of

the large-scale circulation, temperature, and precipitation patterns associated

with ENSO for 1951–2100 under moderate and high emissions scenarios

(SSP2-4.5 and SSP5-8.5). We determine the time of emergence of these

changes from the noise of internal climate variability, by determining the time

when the amplitude of the ensemble mean change in the running 30-year

ENSO composites first exceeds the 1951-1980 composite anomaly amplitude

by at least one ensemble standard deviation. Overall, the high internal variability

of ENSO teleconnection patterns primarily limits their expected emergence to

tropical and subtropical regions before 2100, where some regions experience

robust changes in ENSO-related temperature, precipitation, and 500 hPa

geopotential height patterns by the middle of the twenty-first century. The

earliest expected emergence generally occurs over tropical South America

and Southeast Asia, indicating that an enhanced risk of ENSO-related extreme

weather in that region could be detected within the next few decades.

For signals that are expected to emerge after 2050, both internal climate

variability and scenario uncertainty contribute similarly to a time of emergence

uncertainty on the order of a few decades. We further explore the diversity of

ENSO teleconnections within the SPEAR large ensemble during the historical

period, and demonstrate that historical relationships between tropical sea
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surface temperatures and ENSO teleconnections are skillful predictors of

projected changes in the Northern Hemisphere El Niño 500 hPa geopotential

height pattern.

KEYWORDS

El Niño-Southern Oscillation, teleconnection patterns, time of emergence, climate

change, internal climate variability

Introduction

The El Niño-Southern Oscillation (ENSO) is the dominant

mode of global climate variability and predictability on seasonal

to interannual timescales. Although the dynamics of ENSO are

primarily rooted in the interactions between the atmosphere and

ocean in the tropical Pacific Ocean, the global reach of ENSO

owes to the convective excitation of atmospheric teleconnection

patterns that modify the large-scale atmospheric circulation

(e.g., Ropelewski and Halpert, 1987; Trenberth et al., 1998;

L’Heureux et al., 2015). These teleconnection patterns modify

the temperature and precipitation patterns and contribute to

high-impact extreme weather far removed from the ENSO

action centers in the equatorial Pacific.

There is growing evidence that the teleconnection patterns

excited by ENSO will undergo changes in response to increasing

greenhouse gas concentrations (Yeh et al., 2018; Taschetto

et al., 2020). Despite uncertainties in how the properties of

ENSO itself will change (e.g., Stevenson et al., 2021), the latest

generation of coupled global climate models (GCMs) project

robust changes in certain facets of these teleconnection patterns

in response to global warming, particularly during the boreal

cold season when both ENSO and its teleconnections peak in

amplitude. Most GCMs project that the anomalously strong

Aleutian low associated with El Niño, a feature that projects

onto the positive phase of the Pacific-North American (PNA)

pattern (Johnson and Feldstein, 2010), will strengthen and

shift slightly northeastward under increasing greenhouse gas

forcing (Meehl and Teng, 2007; Müller and Roeckner, 2008;

Kug et al., 2010; Maloney et al., 2014; Zhou et al., 2014; Michel

et al., 2020), although this strengthening is less consistent at

the surface (Meehl and Teng, 2007; Stevenson, 2012) than at

middle and upper tropospheric levels. These changes in North

Pacific circulation have notable downstream effects, particularly

over North America, including an increase in El Niño-induced

precipitation over California (Kug et al., 2010; Maloney et al.,

2014; Zhou et al., 2014). The projected strengthening and

eastward displacement of the Aleutian low is consistent with a

robust projected increase in equatorial eastern Pacific convective

precipitation in future El Niño events (Kug et al., 2010; Power

et al., 2013; Cai et al., 2014; Zhou et al., 2014; Stevenson et al.,

2021).

Although such radiatively forced changes may be robust,

this conclusion only holds in an ensemble mean sense, whereby

many realizations of internal climate variability are averaged

out. Both ENSO itself (Wittenberg, 2009; Stevenson et al.,

2012; Fedorov et al., 2020) and the atmospheric circulation

accompanying ENSO-related SST anomalies (Hoerling and

Kumar, 1997; Kumar and Hoerling, 1997; Sardeshmukh et al.,

2000; Sterl et al., 2007; Brands, 2017; Deser et al., 2017, 2018)

exhibit substantial internal variability, greatly reducing the

likelihood that a single realization of nature will experience

the expected changes owing to increasing greenhouse gas

concentrations. Therefore, we ask the following questions: (1)

Which of the projected changes in ENSO teleconnections are

most likely to be experienced by humanity? (2) When can

we expect such changes to emerge from the noise of internal

climate variability? (3) How can the internal variability of ENSO

teleconnection patterns in the historical climate inform what to

expect from the response to increasing greenhouse gases?

Here, we address each of these questions for changes

in boreal winter ENSO teleconnection patterns, as simulated

in a coupled global climate model developed by the NOAA

Geophysical Fluid Dynamics Laboratory (GFDL), the Seamless

System for Prediction and EArth System Research (SPEAR). As

described more thoroughly below, SPEAR is a next-generation

GFDL coupled GCM that has moderately high horizontal

resolution in the atmosphere (∼0.5◦) and that is optimized

for prediction and projection from seasonal to centennial

timescales. SPEAR accurately simulates the historical variability

of ENSO (Delworth et al., 2020), including the amplitude,

seasonal timing, and rate of onset, and, as shown below, its

boreal winter teleconnection patterns. SPEAR also provides real-

time seasonal predictions each month to the NOAA National

Centers for Environmental Prediction through the North

American Multi-Model Ensemble (NMME) project (Kirtman

et al., 2014), and through this effort is a key contributor to

NOAA’s operational seasonal ENSO forecasts. To overcome the

sampling limitations that a single realization of nature poses for

this problem, we analyze a 30-member initial condition large

ensemble that allows us to evaluate the role of internal climate

variability in the uncertainty of ENSO teleconnection changes.

Although we analyze only a single model, we focus on general

insights that are most likely to hold for multi-model ensembles.
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Through an analysis of El Niño and La Niña composites

spanning 1951–2100 under historical and Shared Socio-

economic Pathway (SSP) 2–4.5 and 5–8.5 anthropogenic

emissions, we evaluate the robustness of global, boreal winter

changes in near-surface air temperature, precipitation, and

mid-tropospheric circulation. We further examine the leading

patterns of ENSO teleconnection uncertainty in the mid-

tropospheric height field, and seek commonalities between the

drivers of internal teleconnection variability and the projected

changes of boreal winter ENSO teleconnections.

Data and methods

SPEAR simulations

Our study focuses on the analysis of 30-member initial

condition large ensemble simulations from the GFDL SPEAR

coupled GCM (Delworth et al., 2020). SPEAR shares the same

component models as GFDL’s Global Climate Model version

4 (CM4, Held et al., 2019), which is a contributor to the

Coupled Model Intercomparison Project, phase 6 (CMIP6),

including the recently developed atmospheric (AM4), oceanic

(MOM6), sea-ice (SIS2) and land (LM4) component models.

The configuration and physical parameterization choices,

however, are optimized for climate prediction and projection

from seasonal to centennial timescales. The version of SPEAR

we analyze here [SPEAR_MED in the notation of Delworth et al.

(2020) but referred here as SPEAR for simplicity] has 33 vertical

levels with a model top at 1 hPa in the atmosphere, a horizontal

grid spacing of 0.5◦ in the atmosphere and land components,

and approximate 1◦ horizontal spacing (telescoping to 0.33◦

meridional spacing near the equator) in the ocean and sea

ice components. SPEAR has been successfully used for studies

of climate variability, prediction, and projection spanning

subseasonal (Xiang et al., 2022), seasonal (Bushuk et al., 2021,

2022; Tseng et al., 2021; Zhang et al., 2021; Jia et al., 2022),

decadal (Joh et al., 2022), and multidecadal (Murakami et al.,

2020; Pascale et al., 2020; Zhang and Cooke, 2021; Tseng et al.,

2022) timescales.

We analyze simulations covering the period from 1951 to

2100, with historical radiative forcing for 1951–2014 and forcing

under two emissions scenarios for 2015–2100, a “middle of

the road” SSP2-4.5 scenario and the SSP5-8.5 high emissions

scenario. We focus on the results of the SSP5-8.5 scenario

but discuss comparisons with the SSP2-4.5 results. The initial

conditions for the 30 ensemble members were chosen from

a 600-yr period of a long pre-industrial control simulation,

with each initial condition separated by 20 years, starting with

year 101, in the control simulation. Each ensemble member

is subjected to identical radiative forcing, and therefore all

within-ensemble differences are attributed to the chaotic climate

variability arising from differences in these initial conditions.

Additional description of the GFDL SPEAR Large Ensembles,

including instructions for accessing data, is available at https://

www.gfdl.noaa.gov/spear_large_ensembles/.

Observational data sources

To evaluate SPEAR’s performance in simulating boreal

winter ENSO teleconnection patterns, we use several

observational and reanalysis datasets covering 1951–2020. The

observational SST data are from the Extended Reconstructed

SST version 5 (ERSSTv5) (Huang et al., 2017). We analyze global

land near-surface temperature from the Berkeley Earth Surface

Temperature project (Rohde et al., 2013), and precipitation data

from NOAA’s Precipitation Reconstruction over Land (PREC/L;

Chen et al., 2002), both of which are monthly datasets over land

on a 1◦ latitude–longitude grid. Finally, we use gridded 500

hPa geopotential height data from the NCEP/National Center

for Atmospheric Research (NCAR) Reanalysis (Kalnay et al.,

1996).

ENSO composites

Our analysis focuses on the changes of global ENSO

composites of 500 hPa geopotential height (z500), 2-m air

temperature (T2m), and precipitation during boreal winter

(December–February, DJF). Given that ENSO teleconnections

are often strongest in late winter (e.g., Brönnimann, 2007),

we also examined composites for January-March (JFM). The

JFM composite changes are very similar to those of DJF (not

shown), and so we only show the DJF results. We calculate

anomalies of each variable by subtracting the calendar month

means over the 1991–2020 base period (ensemble mean for

the SPEAR simulation data) and then removing the long-term

trend. We determine the trend by applying a locally weighted

smoothing (LOESS) with a 21-year window to the anomalies

of each calendar month separately (the removal of the trend

eliminates any sensitivity to the choice of base period). By

calculating the trends for each calendar month, we distinguish

anomalies from any changes in the annual cycle.

To calculate ENSO composites, we follow conventions used

by the NOAA Climate Prediction Center (CPC) to define

El Niño and La Niña events. An El Niño occurs when the

Niño 3.4 index, i.e., the SST anomaly averaged in the eastern-

central equatorial Pacific (5◦S – 5◦N, 120◦W– 170◦W), exceeds

0.5◦C for at least five consecutive overlapping 3-month seasons.

Similarly, a La Niña occurs when the Niño 3.4 index falls below

−0.5◦C for at least 5 consecutive overlapping seasons. The

only distinction between our criteria with those of NOAA CPC

is the method by which the long-term trend is removed. We
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then calculate composite anomalies for all DJF seasons that are

classified as El Niño or La Niña.

For the comparison between observed and simulated

teleconnections, we composite over the full 1951–2020 period.

For the analysis of teleconnection changes, we calculate 30-

yr composites starting from 1951–1980 and at increments

of 10 years, finishing at 2071–2100. We then evaluate the

composite changes for each 30-yr period relative to the 1951–

1980 base period.

Statistical significance of the composite anomalies and their

changes are evaluated through the identification of local t-tests

or F-tests that control the false discovery rate (FDR) at the 10%

level. The FDR is the expected percentage of local null hypothesis

test rejections (i.e., the composite anomalies or composite

changes are different from zero) for which the respective null

hypothesis is actually true (Benjamini and Hochberg, 1995;

Wilks, 2016). This evaluation, which is determined by evaluating

the full distribution of gridded p values and determining the

critical p value that controls the specified FDR, provides a

straightforward approach that guards against overinterpretation

of local significance for multiple hypothesis tests, which is a

common pitfall in conventional significance testing for gridded

climate fields (Wilks, 2016). For the local t-tests, we assume that

the data are temporally independent. We tested the sensitivity

of this assumption by performing t-tests with the degrees

of freedom adjusted for the lag-1 autocorrelation, and the

differences were negligible (not shown).

Time of emergence

To evaluate the robustness of the ENSO teleconnection

changes, as revealed in the composites, we first consider

conventional statistical significance tests, where we determine

the ensemble mean composite changes relative to 1951–1980

that control the false discovery rate at the 10% level based

on a two-sided t-test. Conventional statistical tests, however,

are strongly sensitive to ensemble size, and so they do not

clearly convey the likelihood that a single realization of nature

will experience the radiatively forced changes as shown in

the ensemble mean. Therefore, we further examine metrics

conveying the time of emergence (ToE), which convey the

time at which the signal of anthropogenically forced changes

emerges from the noise of internal climate variability (Giorgi

and Bi, 2009; Diffenbaugh and Scherer, 2011). There is no single

definition of ToE, and in this study, we adopt a definition

similar to though more lenient than that of Diffenbaugh and

Scherer (2011): ENSO teleconnection changes emerge when the

forced ensemble mean composite change relative to the 1951–

1980 composite first exceeds the ensemble standard deviation,

and remains outside that standard deviation until the end

of the simulation (2100). The ensemble standard deviation is

calculated separately for each 30-yr period. If these criteria are

met, the year of emergence is assigned to the last year in the 30-yr

composite period. We choose the last year because it represents

the earliest time that the full 30-yr composite can be calculated

and evaluated against preceding composites.

We also evaluate the uncertainty of our ToE estimates

through a bootstrap analysis. For this analysis, we calculate

the ToE as described above but with the ensemble mean and

standard deviation for each 30-yr composite calculated from a

bootstrap resampling (with replacement) from the 30 individual

ensemble members. We repeat this series of calculations to

obtain 1000 bootstrap ToE calculations for each grid cell, and

then we calculate the 5th and 95th percentiles of the ToE

distributions to quantify the degree to which internal variability

contributes to ToE uncertainty.

The signal-to-noise ratio threshold used to define the

ToE is arbitrary, and the year of emergence will exhibit

sensitivity to this choice. However, the patterns of emergence

and general conclusions about the most robust teleconnection

changes are not sensitive to this choice. In addition, we

provide complementary calculations of the fraction of ensemble

members that agree in sign with the ensemble mean composite

changes, a metric that does not exhibit this sensitivity to signal-

to-noise threshold.

Empirical orthogonal function analysis

We also use empirical orthogonal function (EOF) analysis

to investigate ENSO teleconnection variability and change. For

this purpose, we separately use EOF analysis to partition z500

variance across either the time or ensemble dimension. First,

we analyze the leading EOFs (across the time dimension)

of DJF Northern Hemisphere (0–90◦N) ensemble mean z500

composites; in this case the leading EOFs and corresponding

principal component (PC) time series describe the spatial

patterns and temporal evolution of the radiatively forced ENSO

teleconnection changes. Later, we apply EOF analysis across

the ensemble dimension of the DJF Northern Hemisphere

1951–2000 El Niño z500 composites. In this case, the leading

EOFs describe the El Niño teleconnection diversity in the late

twentieth century, and the corresponding PCs correspond with

EOF amplitudes for each ensemble member. In both cases, we

weight the z500 data by the square root of cosine of latitude to

account for the differences in grid point density between higher

and lower latitudes.

We also develop linear regression models for the historical

El Niño teleconnection PCs based on a partial least squares

regression (PLSR) method (Wold, 1966; Smoliak et al., 2010;

Johnson et al., 2018). The goal of PLSR is to predict one or

more dependent variables Y with a set of independent variables

X. The predictors in the linear regression, Z, which are called

latent vectors or PLS components, are linear combinations of X

that maximize the variance explained in Y and the correlation
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betweenX andY (Smoliak et al., 2010). For multivariateY, PLSR

is similar to other well-known methods including canonical

correlation analysis (CCA), maximal covariance analysis (MCA,

also known as singular value decomposition, SVD, analysis), and

redundancy analysis. Like redundancy analysis, PLSR clearly

delineates between predictor (X) and predictand (Y) variables,

and both methods identify patterns with corresponding time

series that maximize the fractional variance of Y explained by

X. PLSR is applied to the full X and Y matrices regardless of

whether the number of predictor elements in X exceeds the

number of samples, whereas redundancy analysis may require

truncation of both the X and Ymatrices (Smoliak et al., 2010).

In the present context, Y corresponds with the PC values

for the EOF analysis carried out across the ensemble dimension.

We apply PLSR separately to each PC so that Y is a univariate

predictand with 30 elements corresponding to each ensemble

member. X corresponds with the gridded tropical (30◦S−30◦N)

SST anomaly composites across all longitudes corresponding

with each ensemble member. Therefore, the goal of this analysis

is to predict the diversity of El Niño teleconnection patterns,

as represented by the EOF analysis of z500 composites, with

the composite tropical SST fields. Both the predictors and

predictand are standardized prior to determining the PLS

components. The PLSR procedure is described in the following

steps: (1) calculate the correlation map between the predictand

(PC values) and gridded predictors (tropical SST anomalies) to

determine the PLS predictor pattern; (2) project the gridded

predictors onto the PLS predictor pattern to determine the PLS

component Z; and (3) incorporate the PLS predictor time series

into a linear regression, as shown in Eq. (1):

PCi = βi

(

x
T
ri

)

+ ε, (1)

where PCi is the 30-element column vector of predicted PCs

for the ith EOF, βi is the regression coefficient, x is a matrix

of gridded tropical SST anomalies (weighted by the cosine

of latitude), ri is a column vector of SST/PC correlations for

the ith EOF, and ε is a residual term. The matrix product

x
T
ri corresponds with the PLS component Zi. Generally, the

PLSR algorithm incorporates additional iterations whereby the

influence of the first predictor is removed from all predictor

fields and the predictand time series, and steps 1–3 are repeated

until an appropriate stopping criterion to determine additional

predictors. In the present case, however, we only consider

one predictor per PC for the sake of parsimony and ease

of interpretation.

Results

Historical ENSO teleconnections

We first examine the ENSO composites during the historical

(1951–2020) period in both SPEAR and observational data.

Figures 1, 2 illustrate the composites of z500, precipitation,

T2m, and tropical SST for El Niño and La Niña, respectively.

Overall, SPEAR accurately simulates the composite ENSO SST

patterns (Figures 1g,h, 2g,h) in both structure and amplitude,

but small biases common to most coupled GCMs are evident.

The equatorial Pacific SST anomalies extend too far westward,

a bias that accompanies a pervasive negative equatorial Pacific

cold tongue bias (Guilyardi et al., 2009), and the meridional

extent of these SST anomalies is less than in observations.

SPEAR has slightly more ENSO-related SST variance than

observations, with a DJF Niño 3.4 SST standard deviation of

1.13◦C compared with 1.00◦C for observations, although the

range within the 30 SPEAR ensemble members (0.89 to 1.36◦C)

encompasses the observed value. The number of historical

DJF seasons identified as El Niño and La Niña is comparable

between observations and SPEAR, with 22 El Niño seasons in

observations compared with an average of 22.7 in SPEAR (range

of 12 to 28) and 20 La Niña seasons in observations compared

with an average of 22.5 in SPEAR (range of 18 to 27).

The global composites of z500, precipitation, and T2m are

quite similar between observations and SPEAR for both ENSO

phases, indicating that SPEAR accurately simulates the global,

boreal winter ENSO teleconnections. The z500 composites

(Figures 1a,b, 2a,b) show the familiar PNA-like wave train in

the Northern Hemisphere and the corresponding Pacific-South

American (PSA) pattern in the Southern Hemisphere. SPEAR

simulates the major ENSO-related precipitation anomaly

centers, including those of western and southern North

America, South America, northern Australia, the Maritime

Continent, southern and eastern Africa, and eastern China

(Figures 1c,d, 2c,d). SPEAR even accurately captures some of

the smaller-scale variations, such as the precipitation dipole in

Malaysia and Indonesia, suggesting the benefits of a relatively

high-resolution atmospheric model. In the T2m composites

(Figures 1e,f, 2e,f), the most noticeable discrepancy is the

absence of the temperature anomaly dipole over Eurasia in the

SPEAR simulations, which is evident in both the observational

El Niño and La Niña composites, although only a small fraction

of the observed composite anomalies is statistically significant in

this region.

To leading order, the La Niña composites are mirror

opposites of the El Niño composites. However, there are subtle

nonlinearities in both the SST composites and in the remote

ENSO impacts. For example, the North Pacific z500 anomaly

has a slight eastward shift in El Niño relative to La Niña

(Hoerling et al., 1997), a feature that also is captured in the

SPEAR composites. Therefore, SPEAR can simulate some of

the asymmetries between El Niño and La Niña, although some

features appear more symmetric than in observations (e.g., the

precipitation composites over western North America).

The area-weighted global pattern correlations between the

observed and SPEAR El Niño composites are 0.89, 0.69, and

0.84 for z500, precipitation, and T2m, respectively, whereas the
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FIGURE 1

(Left) observational and (right) ensemble mean SPEAR DJF El Niño composites of (a,b) 500 hPa geopotential height (m), (c,d) precipitation (mm

d−1), (e,f) T2m (◦C), and (g,h) SST (◦C) anomalies for the 1951–2020 period. Stippling indicates statistically significant composites that control

the false discovery rate at the 10% level based on a two-sided t test.

corresponding pattern correlations for the La Niña composites

are slightly lower at 0.78, 0.63, and 0.72, respectively. The

differences between the SPEAR and observational composites

are illustrated in Supplementary Figure 1. These T2m and

precipitation correlations appear to be substantially higher

than those of CMIP5 models, as reported in Perry et al.

(2017), although a direct comparison with the results of

Perry et al. (2017) is not possible due to differences in data

sources and methods of identifying teleconnection patterns.

Nevertheless, Figures 1, 2 provide confidence that SPEAR

exhibits strong performance in simulating the boreal winter

ENSO teleconnection patterns.

Although Figures 1, 2 provide an assessment of the

mean response to ENSO in both observations and SPEAR,

the inter-event climate variability for winters classified as

El Niño or La Niña also plays an important role in

determining the time of signal emergence. Therefore, we show in

Supplementary Figures 2, 3 the standard deviations of DJF z500,

precipitation, and T2m for El Niño and La Niña, respectively,

in observations and SPEAR. Overall, SPEAR reproduces the

patterns of within-El Niño and within-La Niña variability,

but SPEAR generally exhibits more tropical and subtropical

temperature and precipitation variability than observations,

especially in South America, northern Australia, Indonesia,
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FIGURE 2

As in Figure 1 but for La Niña composites.

and southern Africa. This excessive variability suggests that

SPEAR may overestimate the noise of the ENSO composites

in these regions, and so the corresponding ToE estimates may

be conservative, and the error bars on these estimates may be

excessively wide.

Ensemble mean ENSO teleconnection
changes

We next examine the projected ensemble mean ENSO

composite changes under the SSP5-8.5 emissions pathway.

Figures 3, 4 illustrate the ensemble mean El Niño and La

Niña composite anomalies in the 1951–1980 base period and

the composite anomaly changes in 2011–2040 and 2071–2100.

Unsurprisingly, the base period composites in the left column of

each figure closely resemble the composites for the 1951–2020

period illustrated in Figures 1, 2. The total number of seasons in

each composite increases slightly with time, as the sample size

for the El Niño composites is 289 for 1951–1980, 298 for 2011–

2040, and 308 for 2071–2100. The La Niña sample sizes increase

even more from 275 to 315 to 321 over these three periods. This

increase in El Niño and La Niña occurrences reflects the increase

in ENSO-related SST variability discussed below.

For both El Niño and La Niña, the ensemble mean

composites show an intensification of the tropical Pacific SST
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FIGURE 3

(Left) ensemble mean SPEAR DJF El Niño composites of (a) 500 hPa geopotential height (m), (d) precipitation (mm d−1), (g) T2m (◦C), and (j) SST

(◦C) anomalies for the 1951–1980 period. The middle and right columns show the corresponding ensemble mean composite (b,c) z500, (e,f)

precipitation, (h,i) T2m, and (k,l) SST changes in (middle) 2011-2040 and (right) 2071-2100 relative to the 1951–1980 base period. Stippling in

the middle and right columns indicates ensemble mean statistically significant composite changes that control the false discovery rate at the

10% level based on a two-sided t-test. The colorbars in the left column apply to the 1951–1980 composites, and the colorbars on the right side

apply to the middle and right columns.

anomaly pattern and the global ENSO teleconnections through

the twenty-first century, with statistically significant ensemble

mean changes over much of the globe by late in the twenty-

first century. The enhancement of the composite tropical SST

anomalies (bottom panels of Figures 3, 4) indicates a projected

increase in ENSO-related SST variability by SPEAR, a projection

that agrees with the majority of the latest coupled global

climate models, particularly those that simulate realistic ENSO

variability (Cai et al., 2021; Cai et al., 2022; Lopez et al.,

2022). In the SPEAR simulations, the ensemble mean Niño

3.4 SST standard deviation increases from 1.09◦C in 1951–

1980 to 1.29◦C in 2071–2100. Cai et al. (2022) recently showed

that the Niño 3.4 SST standard deviation increases under the

SSP5-8.5 scenario in 38 of 43 CMIP6 models in the twenty-

first century relative to the twentieth century, with a multi-

model ensemble mean increase of 16.1%. Therefore, the SPEAR

ensemble mean increase in Niño 3.4 SST variability is consistent

with the CMIP6 consensus. We note, however, that there is

considerable overlap in the ensemble distributions of the Niño

3.4 SST standard deviations between the two periods (ranges

of 0.79–1.36◦C in 1951–1980 and 0.92–1.58◦C in 2071–2100

among the 30 ensemble members), which underscores the large

internal ENSO variability in SPEAR, as in other coupled climate

models (Wittenberg, 2009; Stevenson et al., 2012).

The projected changes in the z500 composites (Figures 3b,c,

4b,c) show the strengthening and northeastward shift of the

Aleutian low anomaly reported in several previous studies,

as discussed in the introduction. The PSA-like Southern

Hemisphere counterpart exhibits a similar strengthening and

eastward shift. Over the North Atlantic region, a z500 dipole

pattern that projects onto the North Atlantic Oscillation

(NAO) becomes more prominent, indicating an increasing

connection between El Niño and the negative phase of the

NAO and between La Niña and the positive phase of the NAO

with increasing greenhouse gas concentrations. This projected

strengthening of the NAO/ENSO relationship has been noted

in several previous studies (Müller and Roeckner, 2008;

Herceg Bulic et al., 2012; Drouard and Cassou, 2019). Overall,
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FIGURE 4

As in Figure 3 but for La Niña.

the projected ensemble mean changes in the ENSO-induced

mid-tropospheric circulation in the SPEAR Large Ensemble

qualitatively agree with the projected changes reported in other

coupled GCMs.

The temporal evolution of the forced z500 ENSO

teleconnection changes is illustrated more clearly through

consideration of the leading two EOFs of ensemble mean

Northern Hemisphere El Niño composite z500 anomalies

(Figure 5). The leading EOF (Figure 5a), which explains 74.3%

of the variance, closely resembles the composite z500 change

patterns in Figures 3b,c. The second EOF (Figure 5b), which

explains 16.6% of the variance, is in approximate spatial

quadrature with EOF1 over the PNA region and is roughly

in phase with the historical El Niño-induced PNA pattern

(Figures 1b, 3a). The corresponding principal component (PC)

for EOF1 undergoes a consistent upward trend, particularly

after the year 2000 (Figure 5c). The second PC increases

until a peak ∼2035 and then decreases until the end of the

twenty-first century. The combined influence of EOFs 1 and

2 clearly captures a gradual northeastward shift of the PNA

teleconnection pattern, and EOF1 captures the strengthening

influence of El Niño on the North Atlantic and European

region. The corresponding EOFs for La Niña are very similar,

although PC2 exhibits more of a plateau between 2000 and 2040

rather than a pronounced peak (Supplementary Figure 4).

The changes in the ENSO-related T2m and precipitation

composites shown in Figures 3, 4 generally indicate a

strengthening of the ENSO teleconnection, although the

regions of largest change do not necessarily coincide with

the regions of highest anomaly amplitude in the base period.

The robust increase in ENSO-driven precipitation variability

in SPEAR agrees with many previous studies (e.g., Seager

et al., 2012; Bonfils et al., 2015; Fasullo et al., 2018; Power and

Delage, 2018; Brown et al., 2020; Hu et al., 2021). Given that

the ENSO impact on the seasonal mean climate is generally

much larger than the impact on the spread of the probability

density function in the present climate (Chen and Kumar,

2015), the ENSO-induced seasonal mean precipitation changes

are strongly linked to extremes. To the extent that this holds

in future climates, these changes imply an increased intensity

of El Niño-driven droughts in Brazil, Indonesia, and northern

Australia and La Niña-driven droughts in southeastern North

America, southern Brazil, Uruguay, and the Horn of Africa. On

the other hand, ENSO-driven flood risk may increase in these

same regions but for the opposite ENSO phase. Future work will

provide a more thorough investigation of ENSO-related changes
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FIGURE 5

The (a) first and (b) second empirical orthogonal functions (EOFs) of Northern Hemisphere DJF ensemble mean El Niño z500 composite

anomalies, expressed as linear regressions on the standardized principal components (m). The leading EOFs explain 74.3% and 16.6% of the

temporal variance of 30-year ensemble-mean El Niño composites of Northern Hemisphere z500. (c) The time series of the corresponding

principal components (PCs). In (c), the year is assigned to the middle of the 30-yr composite period (e.g., 1965 for the 1951–1980 composite

period).

in the tails of the temperature and precipitation distributions

and the resulting impacts on extremes.

Similarly, ENSO-driven temperature variability increases

in many regions, especially in subtropical regions, including

the Southwest U.S., Mexico, southern Brazil and Bolivia,

and northern Australia. This implies an increased risk of

heat extremes in regions where the ENSO-driven positive

temperature anomalies are superimposed upon the long-term

warming trend. This increase in ENSO-related temperature

variability also agrees with previous findings from other

coupled GCMs (Fasullo et al., 2018; Power and Delage, 2018;

Brown et al., 2020; Perry et al., 2020). These changes are

not linear in all regions, however. For example, northwest

North America appears to show an amplification of the

temperature teleconnection until at least 2040 (Figures 3h,

4h) but then a reversal of these changes, particularly over

Alaska (Figures 3i, 4i). These changes appear to mirror

the time series of ensemble mean ENSO composite z500

EOF2 (Figures 5b; Supplementary Figure 4b), which reflects

a strengthening or weakening of the historical PNA-like

ENSO teleconnection pattern. The PC2 time series (Figure 5c;

Supplementary Figure 4c) indicate a sudden weakening after

around 2035, which is an indication that the PNA-region

teleconnection pattern has shifted far enough northeast that

there is a reversal of the wind and temperature advection

over northwestern North America. Beverley et al. (2021)

found a robust weakening of the northwest North America

ENSO temperature teleconnection in CMIP6 abrupt 4xCO2

experiments. The findings shown here suggest that this

conclusion may be sensitive to the time period and radiative

forcing scenario considered.

The corresponding composites for the SSP2-4.5 scenario

(Supplementary Figures 5, 6) are similar to those of the SSP5-8.5

scenario but, unsurprisingly, the composite changes are lower

in amplitude. Most conspicuously, for SSP2-4.5, almost none

of the La Niña composite changes is statistically significant

in 2011–2040 (Supplementary Figure 6), while coverage of

statistically significant changes is much higher for the El Niño

composites than for those of La Niña, especially in the z500 field

(Supplementary Figure 5b).
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FIGURE 6

Percentage of ensemble members that agree on the sign of the ensemble mean SSP5-8.5 SPEAR DJF El Niño composite change relative to

1951–1980 in (left) 2011–2040 and (right) 2071-2100. The rows correspond with (a,b) z500, (c,d) precipitation, (e,f) T2m, and (g,h) SST

composite changes. Note that blue shading indicates that all members agree on the sign of the change.

Time of emergence

Although the previous section identified several robust

ensemble mean changes in the ENSO composites, this

robustness benefits from the suppression of internal

climate variability through the averaging across 30

independent realizations. This analysis, therefore, does

not clearly reveal the likelihood that a single realization

of nature will experience the radiatively forced changes

captured by the ensemble mean changes. To address

this question, we show in Figure 6 the percentage of

ensemble members with changes in El Niño composites

from the 1951–1980 base period that agree with the sign

of the ensemble mean changes illustrated in Figure 3; the
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corresponding plot for the La Niña composites is shown in

Supplementary Figure 7.

Overall, Figure 6 indicates that for the z500 composites,

ensemble agreement exceeds 80% throughout the tropics and

in the PNA, PSA, and NAO action centers by 2100 (Figure 6b).

In contrast, outside the tropics there is less ensemble agreement

on the sign of El Niño composite change, even by the end of

the twenty-first century. For precipitation, the area of strong

ensemble agreement is more limited and mainly confined

to the equatorial eastern Pacific, western North Pacific, and

North Pacific storm track regions. Ensemble agreement on the

temperature composite changes is strongest over tropical and

subtropical regions, especially over South America between the

equator and 30◦S, where ensemble agreement frequently reaches

100% by 2100 (Figure 6f). Consistent with previous studies

focusing on multi-model ensembles (Power et al., 2013; Cai

et al., 2014; Stevenson et al., 2021), the ensemble agreement

for equatorial eastern Pacific precipitation increases exceeds

the agreement for eastern Pacific SST changes (Figure 6h).

Interestingly, the ensemble agreement on SST changes is

strongest in the central equatorial Pacific in 2011–2040

(Figure 6g), but the largest agreement shifts to the eastern Pacific

in 2071–2100 (Figure 6h), which suggests a possible evolution in

preference for ENSO types. This topic is left for future study,

as we focus on a single definition for ENSO events in this

study. The corresponding maps for La Niña composite changes

(Supplementary Figure 7) are similar to those of El Niño.

The maps of El Niño composite change time of emergence

(Figure 7), as defined in Section 2.4, correspond closely with

the ensemble agreement maps in Figure 6. The z500 composite

change signal emerges from the noise of internal variability by

2050 over most of the tropics, but in the extratropics only a few

regions generally associated with PNA and PSA action centers

emerge between 2050 and 2100 (Figure 7a). Interestingly, the

regions with a signal that emerges by 2100 in SPEAR correspond

closely with the regions that have the most robust z500 ENSO

teleconnections in the present climate (Brands, 2017).

For precipitation (Figure 7b), the earliest emergence occurs

in the vicinity of the Philippines, suggesting that increasing

intensity of El Niño-driven droughts in this region should be

among the first detectable changes in ENSO teleconnections.

The other major land region with emergence by 2100 is central

and southern South America, with increasing El Niño-driven

droughts in Bolivia and southern Brazil and increasing El Niño-

related flood risk in Uruguay by 2050–2100. Some of these same

regions in South America are projected to experience the earliest

emergence of El Niño-related temperature changes (Figure 7c),

indicating that El Niño-driven anomalous heat, like the extreme

heat in Bolivia during the 2015/16 El Niño (Gaulter, 2016), may

become noticeably more severe from 2020 to 2050. El Niño-

related temperature changes also emerge from 2050 to 2100

in other tropical and subtropical regions, including northern

and western Australia, Indonesia, central and southern Africa,

FIGURE 7

DJF El Niño teleconnection change time of emergence (ToE),

defined as the time when the SSP5-8.5 SPEAR ensemble mean

30-yr composite changes relative to 1951–1980 first exceed

one ensemble standard deviation and remain outside the

ensemble standard deviation through 2100. Dark gray regions

indicate that the signal does not emerge before 2100. The ToE is

shown for (a) z500, (b) precipitation, (c) T2m, and (d) SST.

and southwest North America. However, the noise of internal

climate variability dominates the changes to both temperature

and precipitation impacts over most extratropical regions.

In the SPEAR simulations, the El Niño-related equatorial

tropical Pacific SST changes overcome the noise of internal

variability by 2100 only in a meridionally narrow region from

120◦W to the date line, reflecting the increase in ENSO-related

SST variability discussed earlier. Outside of equatorial Pacific,

limited regions of composite SST changes, particularly in the

subtropical North Pacific and southwest Indian Ocean, emerge

later in the twenty-first century.

The corresponding ToE maps for La Niña

(Supplementary Figure 8) are quite similar to those of El

Niño, but some subtle differences are evident. The tropical

z500 anomaly changes emerge a couple of decades later than

for El Niño, though the equatorial Pacific rainfall changes

emerge a couple of decades earlier. This difference in equatorial

Pacific precipitation ToE may relate to lower La Niña-related
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precipitation variability in this region owing to the absence of

deep convection regardless of the details of the SST anomaly

pattern, given that SSTs remain below the convective threshold

for all La Niña events. Additionally, the precipitation change

signal near the Philippines is not as strong for La Niña, but the

emergence of a precipitation signal is stronger in the Horn of

Africa. Despite these subtle differences, the general conclusions

regarding El Niño teleconnection changes also hold for La Niña.

We also show in Supplementary Figures 9, 10 the

uncertainty of the ToE estimates, as determined by the 5th

and 95th percentiles of the bootstrap ToE calculations described

in Section 2.4. Generally, the 5th percentile ToE has much

greater spatial coverage than in Figure 7, with a larger fraction

of extratropical area, especially Southern Hemisphere land

regions, experiencing emergence late in the twenty-first century.

The 95th percentile, in contrast, only shows small areas with the

strongest signals, generally in the tropics, that emerge before

2100. Overall, Supplementary Figures 9, 10 indicate that large

internal variability within the ENSO composites contributes to

ToE uncertainties on the order of several decades.

The ToE patterns under the SSP2-4.5 scenario

(Supplementary Figures 11, 12) broadly match those of the

SSP5-8.5 scenario but with lower spatial coverage and later

emergence due to the reduction in radiative forcing. For

example, the El Niño tropical z500 composites emerge about 30

years later under SSP2-4.5, and almost none of the extratropical

z500 composites emerges by 2100 (Supplementary Figure 11).

Additionally, coverage of precipitation emergence over land is

very limited, generally confined to spotty regions in Southeast

Asia, South America, and central Africa. As expected, the effect

of scenario uncertainty is small for signals that emerge earliest

in the twenty-first century, given that radiative forcing scenarios

exhibit little divergence by that time. For signals thatmay emerge

later in the twenty-first century, Supplementary Figures 9–12

suggest that scenario uncertainty and internal climate variability

contribute similarly to ToE uncertainty.

ENSO teleconnection diversity

The limited robustness of the projected ENSO

teleconnection changes, as illustrated in the ToE maps of

Figure 7, is a reflection of substantial ENSO teleconnection

diversity in the present climate, resulting in substantial

ensemble spread of the simulated ENSO composites in

both the historical and future projection scenarios. This

teleconnection variability may arise from ENSO diversity

(Capotondi et al., 2015), whereby diverse ENSO-related SST

patterns force distinct extratropical teleconnections, or by

atmospheric internal variability (Deser et al., 2017, 2018),

whereby chaotic atmospheric variability independent of

ENSO leaves a substantial imprint on the seasonal mean

climate anomalies during ENSO events. In this section, we

explore ENSO teleconnection diversity in the historical SPEAR

simulations, the link between teleconnection diversity and

tropical SST diversity, and possible ways that this link may

inform expected changes to ENSO teleconnection patterns.

For this analysis, we focus on the leading EOFs of the

Northern Hemisphere DJF El Niño 1951–2000 z500 composite

anomalies, whereby the EOFs are calculated across the ensemble

dimension, in contrast with the analysis shown in Figure 5. We

focus on the 50-yr composites instead of the 30-yr composites

to cover a broader period in the 20th and later in the twenty-

first centuries, but the analysis is not sensitive to this choice.

We show the two leading EOFs in Figure 8 and EOFs 3-10

in Supplementary Figure 13. We choose to illustrate 10 EOFs,

which account for 85.9% of the ensemble variance, because they

provide insight into the projected composite z500 changes in

the analysis that follows. In addition to showing the regressions

of the z500 fields on the standardized PCs, we also show the

regressions of the tropical Pacific SSTs and precipitation.

The EOFs in Figure 8 illustrate the diversity of El Niño

teleconnection patterns within the historical climate that may

arise from internal variability alone. For example, EOF1 (20.6%

of the variance) captures both the strength of the Aleutian

low and an NAO-like pattern over the North Atlantic, whereas

EOF2 (13.7% of the variance) is even more focused over the

North Atlantic and Europe. Many of these EOFs, such as EOFs

5 and 10 (Supplementary Figure 13), have prominent tropical

SST regression coefficients, suggesting that variations in the El

Niño SST amplitude and pattern contribute to the variations

in composite z500 patterns that we may experience in a single

realization of the current climate.

To what extent can the ENSO teleconnection diversity

within the current climate and its relationship with tropical

SSTs inform the expected changes under increasing greenhouse

gases? The SST composites in Figure 3 indicate substantial

changes in the projected El Niño SST pattern, with intensified

warming in the equatorial Pacific but also off-equatorial

cooling; both features are evident in some of the regressions

shown in Figure 8 and Supplementary Figure 13. To provide a

quantitative estimate that addresses this question, we apply a

PLSR model described in Section 2.5 to calculate the predicted

change in the 2051–2100 El Niño Northern Hemisphere z500

composite. We focus only on the winter hemisphere in this

analysis, but this methodology could be extended to the

Southern Hemisphere in future studies. Specifically, we calculate

δz500(λ,φ) = 610
i=1βi

(

xδSST
T
ri

)

Ei(λ,φ). (2)

The left-hand side of (2) represents the change in El Niño

z500 composite at longitude λ and latitude φ. On the right-

hand side, βi

(

xδSST
T
ri

)

represents the predicted PC for the ith

EOF (Ei) shown in Figure 8. Here, xδSST represents the change

in El Niño composite SST anomaly from 30◦S – 30◦N across

all longitudes (Figure 9c), whereas ri is the correlation pattern
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FIGURE 8

Linear regressions of simulated z500 (top panels, color shading, units of m), SST (bottom panels, color shading, units of ◦C), and precipitation

anomalies (bottom panels, green contours at values of 0.2 and 0.5mm day−1 and brown contours at values of −0.2 and −0.5mm day−1) on the

standardized principal components of the (a) first and (b) second EOFs of DJF El Niño 1951–2000 z500 composite anomalies. Stippling in the

top (bottom) panels indicates statistically significant z500 (SST) regression coe�cients that control the false discovery rate at the 10% level based

on an F-test. The percentages at the top left of each upper panel indicate the amount of variance explained by the EOF.

between the ith PC and the tropical SST from the 30 ensemble

members during the historical (1951–2000) period, and βi is

the corresponding regression coefficient. We emphasize that the

only information about future changes included in the right-

hand side of (2) is the change in tropical SST anomaly (xδSST); all

other quantities are derived from relationships during the 1951–

2000 period. Therefore, Equation (2) represents the predicted

change in the El Niño z500 composite resulting solely from

changes in the El Niño tropical SST composite. We limit the

summation to 10 EOFs because the pattern correlation between

actual and predicted changes does not improve when we include

additional EOFs.

We show in Figure 9 the comparison between the actual

simulated El Niño z500 composite changes (Figure 9a) and the

changes predicted by Eq. (2) (Figure 9b). Overall, the predicted

changes bear some notable similarities with the actual simulated

changes, including the eastward shift of the Aleutian low,

the strengthening negative NAO-like pattern over the North

Atlantic and Europe, and the reduced heights over southern

North America. The pattern correlation between actual and

predicted changes is 0.68. The similarity between the actual and

predicted z500 composite changes suggests the following: (1) the

projected changes in the El Niño tropical SST anomaly play a

crucial role in the projected changes of boreal winter El Niño

teleconnection patterns, and (2) these projected changes are

consistent with relationships between El Niño-related tropical

SSTs and the z500 field in the twentieth century climate.

We also acknowledge that there are notable differences

between the actual and predicted z500 changes, including the

strength of the high east of Japan and the low near the

Aleutians. These differences may relate to errors in the linear

regression or to other factors that influence the teleconnection

change, including changes in the tropical and extratropical mean

state (Meehl and Teng, 2007; Zhou et al., 2014; Drouard and

Cassou, 2019; Hu et al., 2021). For example, Zhou et al. (2014)

demonstrate that the projected pattern of tropical mean sea

surface warming, with enhanced warming in the tropical eastern

Pacific, is sufficient to induce a strengthened and eastward-

shifted ENSO-related PNA teleconnection pattern even without

a change in ENSO-related SST anomalies. Drouard and Cassou

(2019) similarly demonstrate that projected mean state changes

may result in the strengthened relationship between ENSO and

North Atlantic region climate variability. The results presented

here, however, indicate that the projected changes in ENSO-

related SST anomalies may be at least as important for the

teleconnection changes as the projected mean state changes.

We also note that the projected changes in tropical mean state

disagree with the recent tropical Pacific climate trends, which

have featured an enhancement of the zonal SST gradient and

a strengthening of the Walker circulation over the past several

decades (Seager et al., 2019; Lee et al., 2022).

Discussion and conclusions

In this study, we examine the changes in boreal wintertime

ENSO teleconnection patterns in a large ensemble of a global

climate model of moderately high resolution, SPEAR. We

specifically focus on the time when projected teleconnection

changes will emerge from the noise of internal climate

variability, finding that robust changes emerge earlier over

some tropical and subtropical regions, suggesting that noticeable

changes in ENSO-induced droughts, floods, seasonal heat, and

cold may be observed in these regions over the next several

decades. In contrast, over the extratropics the internal variability

generally dominates the radiatively forced changes, at least

until 2100.

The growing development and analysis of large initial-

condition ensembles of coupled global climate models have

enhanced our ability to determine the simulated radiatively

forced changes in the face of large internal climate variability, but

the increased robustness of ensemble-mean radiatively forced
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FIGURE 9

(a) SPEAR ensemble mean change in DJF El Niño z500 composites (m) from 1951–2000 to 2051–2100. (b) The predicted z500 change

corresponding to (a) based on the application of Equation (2) to the ensemble mean change in tropical SST anomaly composite (c, color

shading and units of ◦C). Panel (c) also shows the change in ensemble mean precipitation composites (green contours for positive change and

brown contours for negative change at an interval of 1mm day−1).

changes does not equate to increased likelihood that a single

realization of nature will experience these changes in the near

future. Therefore, we may increasingly identify statistically

significant ensemble mean changes in ENSO teleconnections

despite a relatively low probability that nature will experience the

change. However, the increasing application of large ensembles

improves our ability to quantify the uncertainty associated with

internal variability and to identify the earliest signals that are

expected to be detectable.

Our study is limited to a single GCM, but the projected

changes in ENSO and its boreal winter teleconnection patterns

in SPEAR are generally consistent with changes reported from

other state-of-the-art GCMs. Therefore, we expect some of

our findings to extend beyond the specifics of the SPEAR

simulations. Specifically, the limited emergence of ENSO

teleconnection changes outside the tropics and subtropics likely

will hold more generally, given the large internal variability of

ENSO teleconnections reported in previous studies (Deser et al.,

2017, 2018; Michel et al., 2020). Additionally, we have presented

a new method for connecting historical ENSO variability to

projected changes that combines empirical orthogonal function

and partial least squares regression analysis. This method may

be applied to other models and to other problems that attempt

to link historical climate variability to projected climate changes.

Although we believe that our general conclusions are robust,

many details are likely sensitive to the choice of model and

emissions scenario. Therefore, an obvious next step would

be to extend this analysis to multi-model ensembles and to

multiple emissions scenarios, as well as to additional seasons

beyond boreal winter. Lopez et al. (2022) recently reported

robust projections of faster onset and increased persistence of

El Niño, which lead to significant changes in boreal autumn and

spring teleconnection patterns. Additionally, we considered only

a single definition of El Niño and La Niña, and so all discussion

of ENSO diversity is in the context of variations within the

constraints of these definitions. It would be worthwhile to

perform more thorough analyses of the variations and changes

of distinct ENSO flavors, notably the central Pacific and eastern

Pacific types.

Another potential limitation of this study is the relatively

low stratospheric resolution of the model analyzed, as

SPEAR has only 33 vertical levels, 10 of which are above

100 hPa, and a model top at 1 hPa. ENSO can alter

the winter stratospheric circulation through the anomalous

vertical propagation of planetary waves, and subsequent

stratosphere-troposphere interaction may impact the ENSO

teleconnection patterns, particularly over the North Atlantic-

European region (Brönnimann, 2007), although the robustness

of the ENSO/stratosphere connection is not yet fully resolved

(Domeisen et al., 2019). Consistently, Butler et al. (2016) provide

evidence that seasonal forecast models with a well-resolved

stratosphere (“high-top” models) produce higher wintertime

forecast skill in the Atlantic-European region than models

with a more poorly resolved stratosphere (“low-top” models).

Jia et al. (2017) similarly demonstrated a prominent role of

stratospheric initial conditions for skillful boreal spring seasonal

predictions over this region. These findings suggest that changes

in stratosphere-troposphere interaction induced by ENSO

potentially may have a substantial impact on changes in ENSO

teleconnection patterns, but progress in our understanding

will require models with a well-resolved stratosphere and

that correctly simulate the relevant stratosphere-troposphere

coupling processes.

We also note that our definition of “time of emergence”

only applies to signals that are expected to amplify in time.

For signals that undergo a clear nonlinear evolution, such as

the surface air temperature signal in northwest North America,

emergence would not be determined even if there are robust
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changes evolving in time. This limitation may apply to the

composite tropical SST anomaly patterns as well, as there is some

evidence of a preference for amplification in the central Pacific

earlier in the twenty-first century (see Figures 3k, 6g) and eastern

Pacific later in the twenty-first century (see Figures 3l, 6h). This

evolution will be examined further in future work.

Although ENSO teleconnection diversity owing to internal

variability in the historical climate limits the robustness of

projected changes, this diversity also provides an opportunity

to understand relationships that may inform our understanding

of projected ENSO teleconnection changes. We show that

there are significant relationships between the diversity of

twentieth century El Niño composite 500 hPa geopotential

height patterns and the corresponding tropical SST patterns,

and that these relationships lead to a reasonably accurate

prediction of the forced El Niño composite 500 hPa geopotential

height when only considering the projected change in El

Niño ensemble mean tropical SST pattern. This predictive

relationship between historical variability and radiatively forced

changes is in the same spirit as that of emergent constraints.

Recently, Stevenson et al. (2021) demonstrated the possible

existence of emergent constraints for projected changes in

extreme El Niño, whereby the simulation of twentieth century

climate, namely the tropical zonal SST gradient and the

precipitation sensitivity to SST, provides some skill in predicting

extreme El Niño change across a multi-model ensemble. The

results presented here suggest that emergent constraints may

also exist for ENSO teleconnection changes, whereby the

simulated relationships between tropical SSTs and the mid-

tropospheric height field in the present climate may provide

predictive power for the projected teleconnection changes in a

future climate.

These connections with historical climate variability also

may facilitate a “storylines” approach (Shepherd, 2019; Shepherd

and Sobel, 2020) to describe potential changes in ENSO

teleconnection patterns, given the large uncertainties in how

both the tropical mean climate and ENSOproperties will change.

Storylines follow from conditional statements, such as “If the

equatorial eastern Pacific warms more than the tropical average,

and if El Niño strengthens, then we would expect El Niño

teleconnection patterns to change in a particular way.” Large

ensemble studies enhance our confidence in such conditional

statements through our ability to quantify the model’s

forced (ensemble-mean) signals, their ToE, the distribution

of projected changes, and intra-ensemble relationships among

the changes.

To advance the potential identification of emergent

constraints and to fully develop a storylines approach to

ENSO teleconnection changes, the ideas presented here would

need to be extended to a multi-model ensemble. Additionally,

it may be worthwhile to consider additional predictors

that incorporate background climate variations and other

predictands, such as surface air temperature and precipitation,

that may be more sensitive to changes in background

horizontal gradients.
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