
Use of f90 user-defined types
and operators in high-level code

V. Balaji
SGI/GFDL

GFDL Princeton University
14 March 2000



Overview

� Parallel shallow water model example

� Derived types, user-defined assignment and operators

� Treatment of halo regions

� f90 issues (pointers, etc)

� Comparison with C++

1



Parallel shallow water model
program shallow_water
use mpp_domains_mod
use distributed_grids
type(scalar2D) :: eta(0:1)
type(hvector2D) :: utmp, u, forcing
real :: dt, h, g
integer tau=0, taup1=1

...
f2 = 1./(1.+dt*dt*f*f)
do l = 1,nt

eta(taup1) = eta(tau) - (dt*h)*div(u)
utmp = u - (dt*g)*grad(eta(tau)) + (dt*f)*kcross(u) + dt*forcing
u = f2*( utmp + (dt*f)*kcross(utmp) )
tau = 1 - tau
taup1 = 1 - taup1

end do
end program shallow_water

2



� Runs and reproduces answers on t90, t3e, SGI.

� No parallel calls.

� Memory scaling (except for halo region overhead).

� 400 Mflops, 800 Mmops, on t90 � � � � � � � .

� 80% scaling on � � � PEs on t3e.

� MOM4 ( ��� � �� ) free surface comparison: 77 vs 52 sec on 2 PEs.

3



Modules
module distributed_grids
use mpp_domains_mod
implicit none
private
type, public :: scalar2D

real, pointer :: data(:,:)
integer :: is, ie, js, je

end type scalar2D
type, public :: hvector2D

type(scalar2D) :: x, y
integer :: is, ie, js, je

end type hvector2D

� Modules provide protected namespaces and data-hiding.

� User-defined types provide data encapsulation.

� use statements provide inheritance.

4



type, public :: scalar2D

real, pointer :: data(:,:)

integer :: is, ie, js, je

end type scalar2D

� Type component arrays in f90/95 must be pointer or static. This is
being remedied in f2k. Allocatable type components will be available
in cf90 3.5.

� is, ie, js, je contain the active domain.

5



Assignment of derived types
type(scalar2D) :: a, b, c
...
a = b

f90 provides an intrinsic assignment of derived types (“automatic inheritance”). However,
there is a problem in that the standard specifies that pointers must be redirected by an
assignment. Thus, certain constructs may not work as expected:

!interchange a and b
c = a
a = b
b = c

Also, this will begin to work as expected with allocatable components!

6



User-defined assignment

interface assignment(=)
!copy

module procedure copy_scalar2D_to_scalar2D
module procedure copy_hvector2D_to_hvector2D

!assign arrays of various ranks to grid field types
!scalar2D

module procedure assign_0D_to_scalar2D
module procedure assign_2D_to_scalar2D

!hvector
module procedure assign_2D_to_hvector2D

end interface

f90 requires the procedure to be a subroutine with exactly two arguments:
an intent(inout) LHS and an intent(in) RHS.

7



User-defined operators

use distributed_grids
type(scalar2D) :: a, b, c
...
c = a + b
...
module distributed_grids
interface operator(+)

module procedure add_scalar2D
module procedure add_hvector2D
module procedure add_scalar3D
module procedure add_hvector3D

end interface

f90 requires the procedure to be a function with exactly two arguments,
both intent(in).

8



add scalar2D
function add_scalar2D( a, b )

type(scalar2D) :: add_scalar2D
type(scalar2D), intent(in) :: a, b
add_scalar2D%data => work2D(:,:,nbuf2)

!addition is done on valid domain
add_scalar2D%is = max(a%is,b%is)
add_scalar2D%ie = min(a%ie,b%ie)
add_scalar2D%js = max(a%js,b%js)
add_scalar2D%je = min(a%je,b%je)

!dir$$ IVDEP
do j = add_scalar2D%js,add_scalar2D%je

do i = add_scalar2D%is,add_scalar2D%ie
work2D(i,j,nbuf2) = a%data(i,j) + b%data(i,j)

end do
end do
nbuf2 = mod( nbuf2+1,nbufs )
return

end function add_scalar2D

9



add scalar2D design issues: allocation

The function result is effectively intent(out).

� Space can’t be borrowed from the LHS, since you might have c = a
+ b or d = (a + b) + c.

� Allocating space for pointers is a) slow; b) potentially leaky.

real, pointer :: a(:)
allocate( a(100) )
...
a => b(1:100)

� Use of internal buffers seems to be the correct solution.

10



add scalar2D design issues: allocation
subroutine grid_domain_init

...
allocate( work2D(isd:ied,jsd:jed,nbufs) )

function add_scalar2D( a, b )
type(scalar2D) :: add_scalar2D
type(scalar2D), intent(in) :: a, b
add_scalar2D%data => work2D(:,:,nbuf2)

...
nbuf2 = mod( nbuf2+1, nbufs )

end function add_scalar2D

nbufs must be greater than the length of your longest chain.

a = b + c + d + e + f ... !probably only requires 2 buffers
a = (b + c) + (((d + e) + f) + (g + h))

11



add scalar2D design issues: aliasing

!dir$ IVDEP

do j = add_scalar2D%js,add_scalar2D%je

do i = add_scalar2D%is,add_scalar2D%ie

work2D(i,j,nbuf2) = a%data(i,j) + b%data(i,j)

end do

end do

Since arguments are pointers, the compiler cannot know whether they
point to the same or different memory. IVDEP provides a hint.

12



add scalar2D design issues: active domains

The function result is effectively intent(out).

!addition is done on active domain

add_scalar2D%is = max(a%is,b%is)

add_scalar2D%ie = min(a%ie,b%ie)

add_scalar2D%js = max(a%js,b%js)

add_scalar2D%je = min(a%je,b%je)

� All operators act on active domain, which includes all points in the data
domain that contain valid data.

� Sum is done over intersection of active domains.

13



Inheritance
type, public :: hvector2D

type(scalar2D) :: x, y
integer :: is, ie, js, je

end type hvector2D
...

function add_hvector2D( a, b )
type(hvector2D) :: add_hvector2D
type(hvector2D), intent(in) :: a, b
add_hvector2D%x = a%x + b%x
add_hvector2D%y = a%y + b%y
add_hvector2D%is = add_hvector2D%x%is
add_hvector2D%ie = add_hvector2D%x%ie
add_hvector2D%js = add_hvector2D%x%js
add_hvector2D%je = add_hvector2D%x%je
return

end function add_hvector2D

14



div and grad

� � ��� � � �	� 
 �� �
 �	
 � � (1)

� �� � �� � � �� 
 � (2)

� �� �
 � �
 �� � � (3)

�

�

� � �
� � �

15



function grad_scalar2D(scalar)
type(hvector2D) :: grad_scalar2D
type(scalar2D), intent(inout) :: scalar

...
if( scalar%ie.LE.ie .OR. scalar%je.LE.je )then

call mpp_update_domains( scalar%data, domain, EUPDATE+NUPDATE )
scalar%ie = ied
scalar%je = jed

end if
grad_scalar2D%is = scalar%is; grad_scalar2D%ie = scalar%ie - 1
grad_scalar2D%js = scalar%js; grad_scalar2D%je = scalar%je - 1

!dir$ IVDEP
do j = grad_scalar2D%js,grad_scalar2D%je

do i = grad_scalar2D%is,grad_scalar2D%ie
tmp1 = scalar%data(i+1,j+1) - scalar%data(i,j)
tmp2 = scalar%data(i+1,j) - scalar%data(i,j+1)
work2D(i,j,nbuf2) = gradx(i,j)*( tmp1 + tmp2 )
work2D(i,j,nbufy) = grady(i,j)*( tmp1 - tmp2 )

end do
end do

16



Features of differencing operators

� Details of numerics are hidden from high-level code.

� Highly optimized numerical kernels without sacrificing readability.

� Extensible: can overload different algorithms as required or desired.

� Grid metrics are set once, at initialization.

� Update domains only as required, with no user intervention, including one-sided
updates.

� Builtin use of wide halos for balancing computation with communication.

17



Wide halos
On a machine with a slow interconnect, we can choose to replace communication by
redundant computation:

� Points in the active domain may be computed on more than one PE.

� Active domain is reduced until there are not enough points left to update the compu-
tational domain.

� Then update halos. This may only occur once every several timesteps.

call mpp_update_domains( ..., xhalo=1, yhalo=1 )
call mpp_update_domains( ..., xhalo=6, yhalo=6 )

18



Comparison with C++
“With the advent of f90, we finally have a compiler that runs as slow as C++.”

Features of f90 we use:

� Class libraries with objects and methods.

� Namespaces and data hiding.

� Inheritance.

� Polymorphism.

“f90 is C++ with fast computational kernels.”

19


