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[1] Coupled atmosphere-ocean-land-sea ice climate
models (AOGCMs) are often tuned using physical
variables like temperature and precipitation with the goal
of minimizing properties such as the root-mean-square
error. As the community moves towards modeling the earth
system, it is important to note that not all biases have
equivalent impacts on biology. Bioclimatic classification
systems provide means of filtering model errors so as to
bring out those impacts that may be particularly important
for the terrestrial biosphere. We examine one such
diagnostic, the classic system of Köppen, and show that it
can provide an ‘‘early warning’’ of which model biases are
likely to produce serious biases in the land biosphere.
Moreover, it provides a rough evaluation criterion for the
performance of dynamic vegetation models. State-of-the art
AOGCMs fail to capture the correct Köppen zone in about
20–30% of the land area excluding Antarctica, and
misassign a similar fraction to the wrong subzone.
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1. Introduction

[2] The process of developing climate models involves a
vast array of choices. Numerical schemes, parameterizations
of subgrid-scale processes, parameter values within these
parameterizations- a host of issues face any model devel-
opment team. The recent process of model development for
the Intergovernmental Panel on Climate Change (IPCC)
Fourth Assessment Report (AR4) at the Geophysical Fluid
Dynamics Lab (GFDL) involved both qualitative metrics
(e.g. maintenance of a reasonable thermohaline overturning
and El Nino) and quantitative metrics (e.g. minimization of
the maximum error and RMS error in sea surface temper-
ature, minimization of the near-surface air temperature and
precipitation errors). An implicit assumption for many such
metrics, however, is that biases in temperature and precip-
itation are weighted equally regardless of location. For
example, a 0.3 m/yr underprediction in precipitation in the
Amazon rainforest (where the mean precipitation is high) is
weighted the same as a 0.3 m/yr underprediction in the
middle of North America (which could flip a region from
grassland to desert).

[3] From the point of view of physical climate, this is a
very defensible approach. It protects modelers from being
accused of tuning the ‘‘skill score’’ of their particular model
so as to maximize the good points of that model. However,
as we will demonstrate in this note, not all model errors are
equivalent in how they impact biology. There is evidence
that the terrestrial biosphere is affected by key thresholds
which must be properly simulated in order for models to be
able to simulate the present-day biosphere and to be credible
in simulating its future evolution. This demands that devel-
opers of coupled models consider not only the raw physical
fields such as temperature and precipitation, but additional
diagnostics which are sensitive to the impact of these fields
on biospherically relevant processes.
[4] An illustration of how models are evaluated from a

physical point of view is shown in Figure 1, which shows
surface temperatures and precipitation over land in a sim-
ulation using the CM2.1 global coupled climate model
[Delworth et al., 2006] recently developed at GFDL. This
model consists of ocean, sea ice, and atmosphere models,
with a land model based on that of Milly and Shmakin
[2002] that does not include vegetative feedback. Exami-
nation of the mean and RMS precipitation errors (Figure 1)
shows that there are large errors over the tropical regions,
particularly the Amazon, and smaller errors over the tem-
perate midlatitudes. Large temperature errors are also seen
over the Sahara. At the edges of mountainous areas (par-
ticularly the Tibetan plateau), smoothing of topography
within the model leads to significant errors in temperature.
The percentage precipitation errors are largest over the
Sahara, where precipitation rates are low, and in mountain-
ous regions.
[5] Different errors, however, will not have equivalent

impacts when considered from the point of view of indi-
vidual organisms. An example of this that is familiar to
every gardener is the ability of plants to survive cold
winters. A 2C cold bias may well mean that a particular
plant is unable to survive a winter, while a 2C warm bias
may have little effect. Similarly, vegetation may be very
sensitive to whether or not the ground dries out during the
summer. This paper examines these effects using a classic
bioclimatic model, proposed originally by the climatologist
W. Köppen. We show that the distribution of Köppen
climate types within models provides a way of isolating
errors that can be important for land biology, thus providing
guidance for developers of physical climate models.

2. Koppen Climate Index

[6] During the first part of the 20th century, the clima-
tologist W. Köppen developed a scheme for predicting
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biome distributions that took some of these thresholds into
account. Such bioclimatic classification schemes have advan-
tages over complex dynamic vegetation models in that they
are simple, empirical, and easy to apply to readily available
output from different models. A particular attraction of the
Köppen scheme is that it is sensitive to the details of the
seasonal cycle and takes account of the interactions between
temperature and precipitation. A Köppen-like scheme was
used by Henderson-Sellers [1990] to evaluate the feasibility
of estimating the parameters in ‘‘big-leaf’’ biosphere models
from climatic variables.Kleidon et al. [2000] used the scheme
to identify regions that may be particularly sensitive to
changes in the land parameterization.
[7] We have adapted the version published by Lamb

[1972, Chapter 11]. This defines 5 climate types: A, tropical
(coolest month warmer than 18C); B, arid (insufficient
rain to balance potential evaporation- criteria described in
Table 1); C, temperate (coolest month between �3C and
18C); D, boreal forest and snow (warmest month warmer
than 10C but coldest month less than �3C); E, cold snow
climates (warmest month less than 10C and coldest month
less than �3C). Each zone may be subdivided into classes,
depending on whether there is a summer dry season, a
winter dry season, a monsoon climate, or no dry season
(s,w, m or f) and whether the summers are hot (warmest
month warmer than 22C, subtype a), warm (more than
4 months warmer than 10C, subtype b) or cool (fewer than
4 months warmer than 10C, subtype c). Arid climates are
subdivided into steppe (S) and desert (W) depending whether
there is sufficient precipitation over the course of the year.
Polar regions are subdivided into tundra (T) and polar desert
(F, the division determined bywhether themaximummonthly
temperature reaches 0C). Sincewe are interested in the impact
of climate on vegetation, we chose to combine theDwa, Dwb,
Dfa andDfb types (which are said to gowith deciduous forest)

into a type which we designate Dab, and the Dwc and Dfc
types (which are said to go with needle-tree forest) into a type
which we designate as Dc. The full list of subtypes that we
will use, as well as the criteria determining the different
classes is given in Table 1.
[8] The real-world distribution of the Köppen climates as

evaluated using the University of East Anglia Climate Re-
search Unit half-degree monthly climatology (UEA CRU05
[New et al., 1999]) of precipitation and temperature is shown
in Figure 2a. The climatology covers the time period from
1961–1990. Examination of the map shows that the clima-
tology captures many known geographic features, such as the
distribution of deserts, semiarid regions and rain forests.
While it is easy to criticize the Köppen classification as being
too rigid in its boundaries [Prentice, 1990], and too simplistic
in its classification types [Sanderson, 1999], it can be thought
of as a nonlinear filter on the temperature and precipitation
that produces a first-order picture of biome distributions.
Our goal in this note is to use such distributions to
highlight potential biases in the physical climate of
modern climate models. We do not necessarily claim that
the biases seen will necessarily lead to changes in
biomes, only that they have the potential to do so. We
are currently developing a more detailed discussion of the
utility of the Köppen scheme compared with more
ecologically-based schemes (A. Gnanadesikan et al.,
Evaluating coupled climate models in the context of
nonlinear terrestrial ecosystem responses, manuscript in
preparation, 2006).
[9] The CM2.1 model does a reasonable job at simulating

the overall distribution of Köppen types (Figure 2b). How-
ever, a closer examination shows that there are many
differences between the simulation and the observational
inferred distribution. Particular regions of disagreement are
the midlatitude semiarid zones in both hemispheres. While

Figure 1. Temperature and precipitation errors computed relative to the UEA CRU05 [New et al., 1999] dataset in CM2.1.
Model output is mapped to dataset before differences are computed. (a) RMS temperature error in C. (b) RMS precipitation
error in m/yr. (c) Annual mean temperature error in C. (d) Relative precipitation error in %.
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the model does, for example, reproduce the Namib and
Atacama deserts, it does not capture the Argentinian Pam-
pas, the Kalahari, the Central Asian steppes or the rain
shadow of the Rockies. In fact, (Figure 2c) 45.2 Mkm2 of
the land surface is classified in the wrong type, or 30.8% of
the land area excluding Antarctica. Moreover, 38.0 Mkm2

(25.9%) is in the wrong subtype (Figure 2d), with a
particularly significant region being the Amazonian rain
forest. In total over half of the land outside Antarctica is
classified in the wrong Koppen type or subtype (using the
list in Table 1). Some of the regions (such as the Amazon)
are subject to large precipitation and temperature errors.

Table 1. Köppen Vegetation Types Used in This Paper With Nominal Vegetation Typesa

Type Name (Nominal Vegetation Types) Criteria

1. Af Tropical wet (Tropical evergreen rain forest) Tmin > 18C, not BS or BW, Pmin > 6
2. Am Tropical moist (Tropical evergreen rain forest) Tmin > 18C, not BS or BW,

6 > Pmin > (250 � Pyear)/25
3. Aw Tropical Dry (Savanna/Woodland) Tmin > 18C, not BS or BW,

6, (250 � Pyear)/25 > Pmin

4. BS Semiarid (Bush to grassland) 2(Tave + Poff) > Pyear > (Tave + Poff)
Poff = 0, > 30% of rain in winter
Poff = 7, no wet season
Poff = 14, > 30% of rain in summer

5. BW Desert (waste to cactus/seasonal vegetation) (Tave + Poff) > Pyear
6. Cs Temperate winter wet

(Evergreen broad-leaf forest)
18C > Tmin > �3C, not BS or BW,
Pmax > 3Pmin, winter max., summer min.

7. Cfa Hot temperate moist (Broad-leaf forest) 18C > Tmin > �3C, not BS or BW,
Not Cs or Cw, Tmax > 22C

8. Cfb Warm temperate moist (Broad-leaf forest) 18C > Tmin > �3C, not BS or BW,
Not Cs or Cw, Tmax < 22C.
4+ months warmer than 10C.

9. Cfc Cool temperate moist (Needle-tree forest) 18C > Tmin > �3C, not BS or BW,
Not Cs or Cw, Tmax < 22C.
Less than 4 months warmer than 10C.

10. Cw Temperate summer wet (Evergreen forest) 18C > Tmin > �3C, not BS or BW,
Pmax > 10Pmin, summer max., winter min.

11. Dab: Cold winters/warm summers (deciduous forest) Tmax > 10C, �3C > Tmin, not BS or BW
4+ months warmer than 10C.

12. Dc: Cold winters/cool summers (evergreen forest) �3C > Tmin, not BS or BW
4+ months warmer than 10C.

13. Et: Tundra (tundra, dwarf trees, mosses) 10C > Tmax > 0C, Tmin < �3C
14. Ef Polar desert (permanent ice or rock, little plant life) Tmax < 0C

aAs discussed by Prentice [1990], actual vegetation may differ. Tmin,max,ave are the minimum monthly, maximum monthly,
and annual-average temperature in C. Pmin,max,year are the minimum monthly, maximum monthly, and annually-integrated
precipitation in cm.

Figure 2. Biases in the climate model revealed using the Köppen scheme. (a) Köppen types from data. (b) Köppen types
in CM2.1. (c) Regions (data) misidentified in CM2.1 by type. (d) Regions (data) misidentified in CM2.1 by subtype.

L22701 GNANADESIKAN AND STOUFFER: ATMOSPHERE-OCEAN GCM ERRORS L22701

3 of 5



However, in other regions (such as steppes of central Asia)
the errors are less obvious.
[10] It is interesting to compare the distributions of errors

across 10 models submitted to the IPCC AR4 (Table 2).
While it is obvious that a perfect simulation of temperature
and precipitation would produce a perfect simulation of
Koppen climate types (assuming perfect observations of
precipitation and temperature), larger errors do not neces-
sarily correspond to worse simulation of climate types. This
can be clearly seen by comparing the two models from the
Hadley Centre. The newer HadGEM model [Johns et al.,
2006] has the best simulation of the distribution of Köppen
climates of any of the 10 models considered here, despite
ranking 9th in RMS temperature error and 6th in RMS
precipitation error. By contrast the HadCM3 model [Gordon
et al., 2000] ranks 1 and 2nd in temperature and precipita-
tion errors respectively while ranking 8th with respect to the

Köppen type simulation. It is worth noting that the signif-
icant improvement in, for example, the distribution of the
Am type (which accounts for much of the improvement in
the distribution of subtypes) is not obvious from an exam-
ination of the figures of Johns et al. [2006].
[11] By running the Köppen diagnostic in different mod-

els, it is possible to make some statements about the source
of the important biases. Figures 3a and 3b show the errors in
Köppen type and subtype in a slab model [e.g., Manabe and
Stouffer, 1979], run with the same atmosphere and land
model as in the CM2.1 coupled model, but with a slab
ocean whose mean temperatures are computed using flux
adjustments that significantly reduce errors in temperature
[Findell et al., 2006]. Significant improvements over the
AOGCM are seen in Southern Africa and in the southern
part of the rain shadow of the Rockies, but the failure to
produce enough precipitation in the Amazon basin and to
capture the semiarid regions in the Caucasus remains.
Interestingly, when the model is run with the dynamic land
model (LM3) of Shevliakova et al. [2006] the errors do not
change substantially (Figures 3c and 3d). This shows that
our land model does not cause the climate to shift to a new
state, implying no strong feedbacks between the land and
the large-scale atmospheric circulation that impact our
simulation. It also suggests that certain errors in the land
model simulation (such as the putting forest in semiarid
zones throughout Midwest North America) can be attributed
to biases in the physical simulation.

3. Summary

[12] One of the great challenges in modeling the bio-
sphere is that global biogeochemical cycles may be sensi-
tive to aspects of the physical climate which may not be at

Table 2. Errors in Koppen Type and Subtype Compared With

RMS Temperature and Precipitation Errorsa

Model

Area in
Wrong

Type, Mkm2

Area in
Wrong

Subtype, Mkm2

RMS
Temp.

Error, �C

RMS
Precip.

Error, m/yr

HadGEM 36.1 36.0 3.71 0.69
MPI 41.9 37.7 2.58 0.62
GFDL CM2.1 45.1 37.7 3.17 0.68
CCSM 3.0 44.9 39.9 2.95 0.70
CSIRO 47.6 39.9 3.43 0.70
MIROC-med 51.8 40.4 3.27 0.66
IPSL 50.9 42.3 3.70 0.80
HadCM3 51.8 44.2 2.91 0.60
CCCMA T63 54.2 50.1 3.68 0.68
PCM 58.7 45.3 4.14 0.87

aCompared with Koppen types and subtypes computed from the UEA
CRU dataset.

Figure 3. Biases in the Koppen diagnostic in two slab models run with the same atmosphere as the GFDL coupled climate
model. (a and b) Models with the same land model as in CM2.1, the so-called LM2 model which is based on the LaD model
ofMilly and Shmakin [2002] in which vegetation is fixed. (c and d) An early version of the LM3 model of Shevliakova et al.
[2006] in which vegetation is allowed to evolve.
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the top of the list for physical climate modelers to evaluate
when building a model or which may have very subtle
signatures. This is particularly true when looking at systems
which exhibit nonlinear responses (of which the threshold-
type ecosystem responses we examine here are a special
case). Other examples include deep watermass formation
due to open-ocean convection, which responds asymmetri-
cally to heating and cooling [Stouffer and Manabe, 2003]
and disease patterns, which can depend on the spectrum of
interannual variability as well as the mean state of climate
[Koelle et al., 2005]. Nonlinear responses can result in
relatively small errors in regions whose climate is near a
threshold having a bigger impact than larger errors in
regions whose climate is far from a threshold. In our
models, for example, the errors associated with the failure
to reproduce the semiarid zones in Central Asia are smaller
than those found in the coastal North China Plain- which is
nonetheless relatively well simulated from a bioclimatic
point of view.
[13] While we have argued looking at threshold-type

behavior can make a significant difference when diagnosing
the realism of coupled models, this paper does not purport
to be a complete study of all the issues surrounding such
responses. We wish to conclude by highlighting a number of
critical issues.
[14] 1. Which thresholds are actually important? Some

thresholds, like whether the ground freezes or dries out can
clearly be linked to biogeochemical responses. But what
about the boundary between the temperate zone and tropical
zones (determined by whether the minimum monthly tem-
perature dips below 18C)?
[15] 2. How sharp are thresholds in reality? It is not clear

that the boundary between ecosystems should be anywhere
near as sharp as in a Köppen-type scheme. If a physical
model is close to one side of an overly sharp threshold, the
result will be to make the model far too sensitive to changes
in climate that push it across that threshold.
[16] 3. To what extent are thresholds based on mean

monthly behavior actually proxies for other behavior? For
many organisms, it is not the mean monthly temperature
which is important, but whether or not temperatures drop
below the frost damage point for buds or leaves on
individual organisms for a single day during that month
[Loehle, 1998].
[17] Further exploration of these issues, particularly in the

context of land models, is clearly warranted. The Köppen
scheme can be thought of as a simple, empirical, but not
particularly sophisticated land model. It should prove inter-
esting to revisit these issues using some more recently
developed schemes. Feddema [2005] presents a revision
of the Thornthwaite [1948] classification, long favored by
physical climatologists as being more mechanistically based
than the Köppen scheme. Hofmann et al. [2005] suggest
using a multivariate spatial clustering scheme that picks out
separate regimes based on the raw climate variables-
essentially allowing the data to choose where thresholds
occur. Jolly et al. [2006] propose a bioclimatic classifi-
cation scheme which evaluates whether foliar phenology
is limited by minimum daily temperature, photoperiod, or
maximum vapor pressure deficit- using satellite products
and in-situ data to evaluate key thresholds that determine
whether or not foliage is evergreen or deciduous. It will be

important for Earth SystemModelers to identifywhether their
own land models are governed by similar thresholds and to
make a good case for the realism of such thresholds. Only by
doing this will the community be able to evaluate whether a
simulation is truly skillful, or whether errors in the physics
have been buried by unrealistic assumptions (and incorrect
thresholds) in biospheric models. In the meantime, we rec-
ommend that bioclimatic schemes such as theKöppen climate
classification be considered a standard part of future efforts to
develop and evaluate AOGCMs.
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