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Abstract

In regions of sloping isopycnals, isopycnal mixing acting in conjunction with biological cycling can
produce patterns in the nutrient ®eld which have negative values of tracer in light water and unrealistically
large values of tracer in dense water. Under certain circumstances, these patterns can start to grow un-
stably. This paper discusses why such behavior occurs. Using a simple four-box model, it demonstrates that
the instability appears when the isopycnal slopes exceed the grid aspect ratio (Dz=Dx). In contrast to other
well known instabilities of the CFL type, this instability does not depend on the time step or time-stepping
scheme. Instead it arises from a fundamental incompatibility between two requirements for isopycnal
mixing schemes, namely that they should produce no net ¯ux of passive tracer across an isopycnal and
everywhere reduce tracer extrema. In order to guarantee no net ¯ux of tracer across an isopycnal, some
upgradient ¯uxes across certain parts of an isopycnal are required to balance downgradient ¯uxes across
other parts of the isopycnal. However, these upgradient ¯uxes can cause local maxima in the nutrient ®eld
to become self-reinforcing. Although this is less of a problem in larger domains, there is still a strong
tendency for isopycnal mixing to overconcentrate tracer in the dense water. The introduction of eddy-in-
duced advection is shown to be capable of counteracting the upgradient ¯uxes of nutrient which cause
problems, stabilizing the solution. The issue is not simply a numerical curiosity. When used in a GCM,
di�erent parameterizations of eddy mixing result in noticeably di�erent distributions of nutrient and large
di�erences in biological production. While much of this is attributable to di�erences in convection and
circulation, the numerical errors described here may also play an important role in runs with isopycnal
mixing alone. Ó 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

In recent years it has become clear that most mixing in the ocean interior occurs along is-
opycnal surfaces (Jenkins, 1980; McDougall, 1987; Ledwell et al., 1993). The implications of this
fact for biogeochemical cycling are just becoming clear, but there is preliminary evidence (Clark,
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1997) that transport of nutrient along isopycnals may be as important as the vertical diapycnal
¯ux of nutrient as a source to the nutrient-poor mixed layer. Since the nutrient ¯ux to the mixed
layer is vitally important for a wide range of biogeochemical processes (ecosystem dynamics,
carbon uptake, and trace metal cycling to name a few) it is important to include such ¯uxes in
large-scale numerical models. In most published numerical model studies which of global bio-
geochemical cycles, however, much or all of the eddy mixing occurs in the horizontal direction
(Toggweiler et al., 1989; Najjar et al., 1992).

The reason that large horizontal mixing coe�cients were applied to these models was to prevent
the solutions from becoming excessively noisy. Although Redi (1982) and Cox (1984) proposed
schemes whereby mixing predominantly along isopycnals could be included in ocean models,
these schemes were found to require signi®cant background horizontal mixing coe�cients (10±
40% of the isopycnal mixing coe�cient) in order to produce solutions without signi®cant negative
values in passive tracers, and excessive noise in active tracers like temperature and salinity. Early
e�orts to include isopycnal mixing in models with biological cycling also ran into problems with
the appearance of noise (Murnane, personal communication). The linkage of mixing to the
generation of variance is troubling ± since one would expect mixing to eliminate small-scale
variability ± not to increase it. When modelling nutrients, which are only taken up when they
exceed certain threshold values, the appearance of noise can have serious consequences, turning
o� biological activity altogether in one grid box while enhancing it in the next.

The purpose of this paper is to discuss why general circulation models can have trouble sim-
ulating biological cycling in the presence of isopycnal mixing. It argues that truncation errors
implicit in attempting to mix along isopycnals using coarse-resolution grids can lead to unrealistic
nutrient ®elds, which under some circumstances can grow unstably. This instability should be
distinguished from numerical instabilities familiar to numerical oceanographers, which arise when
the time step becomes too large, or when an inappropriate time-stepping scheme is used. Instead,
it can be shown to be a natural mode of the equations when they are discretized in space, but
continuous in time. It can also be distinguished from recent work which shows how inaccurately
coding the process of isopycnal mixing can lead to unstable solutions. The paper proceeds as
follows. Section 2 reviews recent work on isopycnal mixing and demonstrates the instability of the
nutrient ®eld for a simple case. Section 3 presents a four-box model with isopycnal mixing and
nutrient cycling, showing that the nutrients can develop unstably growing patterns. Section 4
shows that the instability can be eliminated by using eddy-induced advection of the form pro-
posed by Gent et al. (1995). Section 5 shows that these results are not just important for idealized
cases but that eddy mixing parameterizations can have important e�ects in general circulation
models as well. Section 6 concludes this paper.

2. Problems which can arise when running models with isopycnal mixing

2.1. Previous work

In general one can write the evolution of a tracer in the following terms

oC
ot
� o

oxm
Amn oC

oxn
� sourcesÿ sinks; �1�
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where Amn is a tensor which de®nes the e�ect of the eddies on the mean ®eld. In general Amn can
have components corresponding to advection or di�usion. The tensor for isopycnal mixing was
de®ned by Gent and McWilliams (1990) as

Adiff � �Amn�diff � AI

1 0 Sx

0 1 Sy

Sx Sy S2
x � S2

y

0@ 1A; �2�

where Sx;y are the isopycnal slopes in the x and y directions, respectively and AI is the isopycnal
di�usion coe�cient.

Problems can arise with isopycnal mixing schemes in a number of ways:
1. In convective regions Sx;y are in®nite. This was handled in the original implementation of the

MOM model by setting the slope to some maximum value, following Cox (1984). Unfortunate-
ly, such a solution has the e�ect of producing negative di�usion in the vertical (Gerdes et al.,
1991; Gough, 1997; Gri�es et al., 1998)! This is completely unphysical and may have signi®cant
consequences (Gough, 1997). Gerdes et al. (1991) suggested that this might be removed by scal-
ing the di�usion coe�cient so that the product AScaled

I � �S2
x � S2

y � goes to AI as the slopes be-
come large.

2. The time step may be so large that the di�usion causes a CFL violation. This can be eliminated,
however, by treating the di�usion implicitly in the vertical.

3. The scheme may not reduce the variance of tracer ®elds which are not aligned with the is-
opycnals. This can happen because of inaccuracies relating to how the slopes Sx;y are estimated
along a coarse-resolution grid (Gri�es et al., 1998).

4. The scheme may not reduce all maxima and minima. The reasons for this and e�ects of such a
failure are considered in more detail later in this paper.
Although the ®rst three problems can be solved by more accurately coding the di�usion

equation, as discussed in Gri�es et al. (1998), solving the ®nal problem is much harder. In fact,
Beckers et al. (1998) argue that there is no solution of the problem which reduces variance, does
not ¯ux tracers across isopycnals, and eliminates spurious minima and maxima. The purpose of
this paper is to alert numerical modellers to these problems, which are unfortunately linked to the
incompatibility between mixing along isopycnals and casting the resulting ¯uxes on a Cartesian
grid.

2.2. An example of unstably growing nutrient ®elds

Consider the evolution of a nutrient ®eld subject only to isopycnal mixing and nutrient cycling.
Nutrient is incorporated into biota which are either eaten and incorporated into fecal pellets
which sink into the deep ocean, or die and sink into the abyss. As they sink, bacterial and physical
processes `remineralize' the nutrient, returning it to the water. If one does a thought experiment
about how such a system should evolve, the conclusion would be that isopycnal mixing would
bring nutrient to the surface along one isopycnal, then biological production and remineralization
would transport the nutrient to a deeper isopycnal. Over time, the nutrient would tend to become
concentrated in the densest water, and the production would drop to low values except where the
densest water outcropped at the surface.
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Discrete models of this process, however, do not necessarily give a ®nal state where all the
nutrient is concentrated in the densest water and the production is low. This can be illustrated
using a simple idealized model. The grid used has 300 km horizontal resolution and 100 m vertical
resolution. The initial nutrient ®eld (shown in Fig. 1(A)) is linearly correlated with the temper-
ature ®eld, so that isolines of temperature and nutrient coincide. The surface nutrient is then
restored to 0, producing a ¯ux of nutrient out of the mixed layer Fbio. If C is the nutrient con-
centration, Fbio is then

Fbio � ÿC=Trest � dz � ÿk � C � dz; C > 0; �3a�
Fbio � 0; C6 0; �3b�

where Trest is the restoring time and k � 1=Trest is the restoring rate. For the simulation in Fig. 1,
time constant Trest of 20 days was used. Eqs. (3a) and (3b) are commonly used representations of
the e�ects of biology, which will take up nutrient when it exceeds a certain threshold, but will not
take it up when it drops below this threshold (in this case, zero nutrient). The resulting ¯ux of
nutrient is remineralized over the water column.

Qremin � dFbio

dz
� Fbio=Lremin; �4�

where Qremin is the source of nutrient due to remineralization and Lremin is the length scale over
which remineralization occurs. For all the runs in this paper Lremin � 2 km. Any nutrient reaching
the bottom is remineralized in the bottom box.

Fig. 1. Unstable evolution of the nutrient ®eld in the presenceof isopycnal mixing. (A) Initial nutrient ®eld. Isolines

areidentical to the isotherms which are held ®xed throughout therun. (B) Nutrient ®eld after 100 years. Note that the

concentrationin most of the domain is now negative. (C) Fraction of the nutrient inthe leftmost column. Note the severe

overconcentration of nutrient.(D) Biogenic production.
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In the case shown in Fig. 1, there are some isopycnals which do not reach from the surface to
the bottom. Therefore one would expect biology and mixing acting in tandem to export all the
nutrient from those isopycnals which outcrop at the surface to those isopycnals which do not
outcrop. Over time, then, the deep concentrations of nutrient would increase and the biological
production would drop to near zero. This does not happen. Instead, nutrient is drained out of the
light water, producing negative concentrations over most of the domain (Fig. 1(B)). The fraction
of nutrient in boxes which do not outcrop is shown in Fig. 1(C). As time progresses more nutrient
ends up in these boxes than in the system as a whole ± so that the negative concentrations in some
parts of the domain are balanced by impossibly high concentrations in other parts of the domain.
As a result the biological production actually rises over the course of the simulation.

In realistic GCMs the instability shown in Fig. 1 may be counteracted to some degree by ex-
plicit horizontal di�usion as well as numerical di�usion caused by the advection scheme. In runs
with the Modular Ocean Model, the author found that that unstably growing patterns similar to
that seen in Fig. 1 were largely limited to shallow, marginal seas. Increasing the strength of the
di�usive coe�cient was found to greatly increase the size of negative concentrations and to in-
crease the biological production in these marginal seas. In other parts of the ocean negative
concentrations were found at the surface, dense waters were overly enriched with nutrient, and
biogenic production was extremely large. Although advection and vertical di�usion did seem to
reduce the strength of the instability, it was by no means clear that this would always be the case.

It is disturbing (and somewhat counterintuitive) that a di�usive process can lead to unstably
growing patterns. It should be emphasized that the pattern found in Fig. 1 is not the classic CFL-
type of instability, which arises when the time step becomes too large. In fact the unstable pattern
in Fig. 1 is found regardless of the time step. How can di�usion, which reduces variance, be linked
to such large increases in tracer variance? The simple answer is that forcing isopycnal mixing to
occur on a discrete grid introduces truncation errors. Because isopycnal mixing does not ¯ux
tracer across isopycnal surfaces in the mean, some of these truncation errors cause downgradient
diapycnal ¯uxes, while others cause upgradient diapycnal ¯uxes. The latter type of ¯uxes can
cause maxima to increase and minima to decrease. In some cases, which are detailed in the fol-
lowing section, this can lead to unstably growing patterns.

3. Description of the instability

3.1. A simple analytical problem

In order to analyze what causes the unstably growing patterns seen in Fig. 1, it is helpful to
simplify the system to minimal complexity. This can be done by reducing the problem to a simple
four box model such as that shown in Fig. 2(A), in which the isopycnals slope up towards the left
with slope Sq. The initial condition is such that there is no nutrient in the surface box in the right-
hand column (box 2) and that the nutrient ®eld is such that are no ¯uxes of nutrient due to is-
opycnal mixing. In order for this to be true on a discrete grid, Sq � SC so that tracer and density
have the same slopes. This can only be true if there is a locally linear relationship between nutrient
and density.
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C � Dq� E; �5�
where D and E are undetermined constants. Since the isopycnals slope upwards to the left, box 1
will be denser than box 2 and will have some nutrient in it. Biology acts on the nutrient ®eld as in
Eqs. (3a) and (3b), reducing it to zero in the surface layer when it is greater than zero, and the
resulting ¯ux is then exported to the lower box. Supposing that the isopycnal slopes on all faces
are the same, then one may de®ne for notational convenience

dx � AI

Dx2
; dz �

AIS2
q

Dz2
; dxz � AISq

DxDz
: �6�

Assuming that biological ¯uxes are parametrized as in Eq. (6), the system of linear equations is
then

oC1

ot
� ÿ�k� dx � dz ÿ dxz�C1 � dxC2 � dzC3 ÿ dxzC4; �7a�

oC2

ot
� dxC1 ÿ �dx � dz � dxz�C2 � dxzC3 � dzC4; �7b�

oC3

ot
� �k� dz�C1 � dxzC2 ÿ �dx � dz � dxz�C3 � dxC4; �7c�

oC4

ot
� ÿdxzC1 � dzC2 � dxC3 ÿ �dx � dz ÿ dxz�C4; �7d�

when the di�usion tensor is coded following Gri�es et al. (1998). The biology does not act in the
right-hand column (boxes 2 and 4), because the surface nutrient is already zero there.

Because the system of Eqs. (7a)±(7d) is linear, it can be decomposed into a system of eigen-
values and eigenvectors. De®ning C as the vector of concentrations

Fig. 2. Schematic of how isopycnal instability can react unstably with nutrient cycling. (A) Schematic of a simple four-

box model. (B) If the isopycnals slope more steeply than the grid and the nutrient ®eld is initially in equilibrium with

isopycnal mixing, then there will be a simple linear relationship between the nutrient ®eld and the isopycnals as shown.

Biology will act to drive down the concentration in box 1, while remineralization will act to increase it in box 2 as

shown. (C) Isopycnal mixing then tries to restore the nutrient ®eld to a new linear relationship with density. This new

relationship has a steeper slope than the old one, and thus there is more nutrient in the denser water column for the

biology to work on.
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oC

ot
�
X4

n�1

an
oVn

ot
�
X4

n�1

angnVn; �8�

where Vn is the nth eigenvector associated with eigenvalue gn. Analysis of the eigenvalues shows
that there are positive eigenvalues when the isopycnal slope Sq exceeds the grid aspect ratio Dz=Dx.
This means that for such cases, some pattern or normal mode will grow unstably with an ex-
ponential growth rate given by gn. Over time the pattern associated with the largest positive ei-
genvalue will come to dominate the spatial distribution. The largest positive eigenvalue de®nes the
growth rate of the most unstably growing mode.

The growth rate of the fastest-growing mode (max�gn�) is shown in Fig. 3 for two grids, one
with aspect ratio of 1:1000, the other with aspect ratio 1:2000. The growth rate is a strong
function of slope and of the restoring time. Maximum growth rates are found when Sq, the is-
opycnal, slope is twice the aspect ratio. Decreasing the damping time (thus increasing the dam-
ping rate) results in a faster growth of instability. The unstably growing modes have the structure
shown in Fig. 4, with high concentrations in the dense water and low concentrations in the light
water. Over time, the unstably growing patterns shown in Fig. 4 will come to dominate the tracer
®eld, with large positive concentrations in the dense water and large negative concentrations in
the light water.

3.2. Conceptual picture

A conceptual understanding of the instability may be gained by returning to Fig. 2(B). If the
isopycnals slope more steeply than the grid aspect ratio, then both boxes on the right-hand side
will be lighter than both boxes on the left-hand side. Biology will then reduce the concentration in
box 1 and remineralization will increase the concentration in box 3. This in turn increases the
mean least-squares slope between nutrient and density as shown in Fig. 2(B) and (C). Isopycnal
mixing will then act on the ®eld to restore it towards the new linear relationship as shown in

Fig. 3. Instability of the four box model for two di�erent grid aspect ratios as a function of restoring time T and

isopycnal slope Sq for the basic scenario illustrated in Fig. 2. Growth rates for the most unstably growing normal mode

are in yearÿ1. Horizontal axis is log10 isopycnal slope and vertical axis is restoring time. (A) Growth rate for a grid

aspect ratio of 1:1000 (boxes 100 m thick in the vertical and 100 km wide in the horizontal) given AI � 1000 m2=s. (B)

Growth rate for a grid aspect ratio of 1:2000 (boxes 100 m thick in the vertical and 200 km wide in the horizontal) given

AI � 1000 m2=s. Note that growth rates are smaller, but the range of slopes for which instability occurs is larger.
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Fig. 2(C) (see Appendix A for a proof that isopycnal mixing restores the nutrient in the four-box
model towards the least-squares slope and that this slope is in fact increased by the production±
remineralization cycle). Note that the arrows for boxes 2 and 4 both point downwards in Fig. 2(C),
so that the e�ect of isopycnal mixing is to decrease the concentration in both boxes in the lighter
column. This means that the horizontal isopycnal ¯ux is upgradient. The result will be a larger
contrast in nutrient between the left-hand and right-hand columns, further increasing the nutrient
available for biological production. Additionally, since the new linear relationship implies a
higher concentration for box 1 than initially, the ¯ux in the dense water will increase, resulting in a
positive feedback.

In the event that the isopycnal slope is less steep than the grid aspect ratio, the positions of
boxes 1 and 4 in Fig. 2(A) will be reversed. This means that after the production and reminer-
alization cycle, the e�ect of the isopyncal mixing will be to restore the tracer in box 1 to a lower
value than the initial. This situation is governed by a negative feedback loop and the ®nal state is
one with high tracer concentrations in both of the deep boxes and low biological production. This
in turn explains why the maximum growth rate is zero for this range of slopes in Fig. 3.

The problem appears to be fundamental to discretizing the equations on a Cartesian grid.
Beckers et al. (1998) recently pointed out that isopycnal di�usion should obey a number of
constraints:
1. It should not ¯ux tracer when tracer isolines and isopycnals are identical. Over the four-box

domain in Fig. 3 this amounts to requiring a linear relationship between tracer and density
at di�usive equilibrium.

2. It should reduce variance over the domain.
3. It should not create minima and maxima.

Fig. 4. Structure of the fastest-growing unstable mode for various combinations of restoring time and isopycnal slope.

Ai is 1000 m2=s, Dx is 100 km and Dz is 100 m. The modes shown have a normalized amplitude, actual ®elds would be

some multiple of that shown. Growth rate of each mode g is listed underneath each table. (A) Slope�ÿ0:002, restoring

time� 30 days. (B) Slope�ÿ0:002, restoring time� 200 days. Note that while the growth rate of the most unstable

mode has changed a lot (from 0.86ÿ1 to 0.17ÿ1, a factor of 5), the structure of the unstable mode has not changed

signi®cantly relative to that in A. (C) Slope�ÿ0:01, Restoring time� 200 days. Now the structure of the fastest-

growing unstable mode is what changes, with a greater contrast between the boxes in the horizontal and a smaller

contrast in the vertical.
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The Gri�es et al. (1998) scheme obeys the ®rst and second constraints, but not the third, unless
the isopycnals line up with the grid. The essential reason is that the di�usion equation corresponds
to the following matrix equation

oCi

ot
� BikCk; �9�

where Bik represents an exchange coe�cient between two boxes i and k. Beckers et al. (1998)
demonstrate that in order for condition 1 to be satis®ed, some o�-diagonal Bik have to be negative
when the grid does not line up with the isopycnals. However in order for condition 3 to be satis®ed
no o�-diagonal element can be less than zero. Looking at Eq. (7a), it can easily be seen that either
B12 or B14 must be negative, unless the slope is zero. This means that any discretization which has
no diapycnal ¯uxes has the potential to develop the basic problem in Fig. 2.

The problem could be solved by demanding that the horizontal grid be ®ne enough so that the
isopycnal slope never exceeds the grid aspect ratio. However, this is not feasible in the general
case. Isopycnals often slope quite steeply, especially in boundary currents and in the Southern
Ocean, where slopes of 1:500 are not uncommon. However, in order to resolve the thermocline,
grid boxes near the surface have small Dz, as small as 50 m. This would then require 25 km
resolution in the horizontal. Given that models run at 200 km resolution require over 1000 h of
supercomputer time to come to equilibrium such high resolution in the horizontal is simply im-
practical for long-term climate runs.

Given this fact, it is clear that some additional physics must be added. Given that the main
problem is the upgradient horizontal ¯ux which leads to the nutrient in the dense column in-
creasing and that in the light column decreasing, the additional physics would need to counteract
this ¯ux. A solution which has been used in the past has been to impose background horizontal
mixing. This has the basic problem that it leads to large diapycnal ¯uxes in regions where the
isopycnals slope steeply. The e�ective diapycnal di�usivity goes as

Kdiapyc � Ahoriz � S2
q: �10�

Given slopes of order 0.002, and Ahoriz � 200 m2/s, the e�ective diapycnal di�usivities which result
are of order 10ÿ3 m2/s, two orders of magnitude larger than those associated with observed
diapycnal di�usion (Ledwell et al., 1993). Alternatively, one can limit the total ¯uxes out of the
mixed layer to some value. Again this is not completely physical and does not address the un-
derlying problem of upgradient ¯uxes. In the following section it is argued that there are more
physically justi®able alternatives for addressing this problem.

4. Solutions

4.1. Eddy thickness advection

Eddies not only act as di�usive agents, but as advective agents as well (Plumb and Mahlman,
1987), producing residual velocities or Stokes drifts. One recent parameterization postulates that
these advective velocities act to homogenize the thickness of isopycnal layers (Gent and
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McWilliams, 1990; Gent et al., 1995). Gri�es et al. (1998) noted that the advective e�ect of eddies
on the tracer ®eld could be expressed by de®ning the antisymmetric tensor

Aadv � �Amn�adv � Athick

0 0 ÿ Sx

0 0 ÿ Sy

Sx Sy 0

0@ 1A: �11�

If Athick � AI the total tensor becomes the sum of the tensors in Eqs. (12) and (11).

Atot � Amn
adv � Amn

diff � AI

1 0 0
0 1 0

2Sx 2Sy S2
x � S2

y

0@ 1A �12�

so that the horizontal ¯uxes

F x
C � ÿAI

oC
ox
; �13a�

F y
C � ÿAI

oC
oy
; �13b�

are equivalent to those given by downgradient horizontal di�usion. The Gent±McWilliams ¯ux
thus acts to cancel the portion of the isopycnal ¯ux which causes the instability, namely the
horizontal upgradient ¯uxes.

Fig. 5 shows the e�ect of including the eddy-induced advective ¯ux on the instability in the
four-box model. The growth rate when the isopycnal slope is twice the grid aspect ratio is shown
as Athick is varied. For Athick > 0:5AI the instability is essentially eliminated for the four-box model.

It should be pointed out, however, that although the GM parameterization may produce good
results in the present case, the eddies which it parametrizes may actually behave quite di�erently.
In particular near boundaries and boundary currents eddy advection may behave quite di�erently
than in the idealized case discussed here (Starr, 1953). In some cases it may even be characterized

Fig. 5. Growth rate in the four-box model as a function of the ratio of the thickness di�usion coe�cient Ath to the

isopycnal di�usion coe�cient AI and the restoring time in days.
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by a negative di�usion coe�cient (whereas by de®nition the stirring terms will always have a
positive di�usion coe�cient).

Additionally, the Gent±McWilliams scheme will not be su�cient to ®x problems arising from
inaccuracies in the advective scheme. Gough (1997) and Shchepetkin et al. (1998) provide a dis-
cussion of such errors, which occur when the advection is discretized in a form which allows for the
creation of maxima and minima in the tracer ®eld. Such overshoots frequently occur in coarse-
resolution models near topography due to the poor representation of the transition from cross-
shore geostrophic ¯ow in the model interior to along-shore frictional ¯ow in the boundary current.

4.2. Other possible solutions and their problems

A number of other solutions to the instability were tried, and found to be relatively unsuc-
cessful. These included the following:
1. Increasing the vertical di�usion. For the four-box model, it was found that very large values of

vertical di�usion were needed to suppress the instability (of order 10 cm2=s). Such large values
of di�usion would have major e�ects on the thermohaline circulation and are not acceptable.

2. Horizontal mixing within the mixed layer alone. Relatively modest values of horizontal mixing
within the mixed layer were found to stabilize the four-box model. The di�usion coe�cients
required were approximately 50% of the isopycnal mixing coe�cient. Such mixing is physically
justi®able on the grounds that particles do not follow density surfaces within the mixed layer
but interact strongly with the atmosphere as they are stirred from place to place. However,
when horizontal mixing was added within the ocean general circulation model, it was found
to have a relatively minor e�ect on ®nal solution The model did reach a ®nal state somewhat
sooner than with isopycnal mixing alone but otherwise the di�erences were small. In a few ar-
eas, adding horizontal mixing actually made the situation worse by causing convection which
increased the local isopycnal slope.

3. Smoothing the remineralization horizontally so that particles produced at one point are remin-
eralized at surrounding points. Siegel et al. (1990) noted that turbulent motions cause a spread-
ing of particles produced by individual blooms. In regions where the isopycnals slope steeply
this has the e�ect of counteracting some of the upgradient horizontal transport. It has been
found, however, that this e�ect is not strong enough to eliminate the instability (even within
the four-box model), although it does reduce the growth rates.

5. E�ect of the parameterizations in a full OGCM

One reason that these e�ects are not purely numerical curiosities is that eddy parameterization
can have important e�ects on the biological productivity predicted by general circulation models.
Gnanadesikan (1999) presents results from one such set of simulations, examining the oceanic
cycle of silicon. The following cases were run:
1. A case with horizontal mixing alone, following Toggweiler et al. (1989) referred to as HOR.
2. A case with isopycnal mixing using the parameterization of Gri�es et al. (1998) with a coe�-

cient of 1000 m2=s with a background horizontal mixing coe�cient of 10 m2=s, referred to as
ISO.
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3. A case with Gent±McWilliams eddy-induced advection, referred to as GMc.
This work showed that the GMc model produced the most realistic export ¯ux and nutrient

distribution. There were clear physical reasons for some of the improvement. In particular, a
better simulation of Antarctic surface water resulted in reducing convection and vertical exchange
in the Southern Ocean. Similar results were reported by Robitaille and Weaver (1995). As a result
the ¯uxes in this region were far smaller in the GMc model than in the HOR or ISO models,
producing predictions far closer to observations.

However, numerical issues still played a role in some regions. An example is shown in Fig. 6,
for Hudson's Bay. In the HOR and GMc models, the concentrations are within reasonable
limits, and the total production is small. In the ISO model is used, large positive concentrations
develop on the northern side of the basin and the ¯uxes are quite large. For larger values of
mixing coe�cient, the nutrient ®eld was found to become numerically unstable when isopycnal
mixing alone was used. This demonstrates that even with an isopycnal scheme which is stable for
active tracers (temperature and salinity) biological cycling can still generate unrealistic nutrient
®elds.

It should also be pointed out that in general the ISO models overconcentrated nutrient in the
densest waters. Dissolved silicate has a maximum at about 2500 m in the North Paci®c. While the
HOR and GMc models tended to reproduce this feature, the ISO model tended to produce the
largest values of dissolved silicate right on the bottom. At present it is unclear how much of a role
numerical truncation errors played in this phenomemon.

6. Conclusions

This paper has demonstrated that isopycnal mixing with no background di�usion can lead to
the overconcentration of nutrients in dense water. For some cases this overconcentration can

Fig. 6. Illustration of the e�ect of mixing parameterization in a shallow closed basin. Left: Averaged silica down to

150 m. Bold lines are observed, solid are for the HOR model, dashed for the ISO model mixing (note negative con-

centration in south), chain-dot with o is for the GMc model. Right: Silica ¯uxes in mol/m2/yr predicted for the three

model cases. Lines as at left.
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result in exponential growth of patterns of nutrient. This instability is intrinsic to modelling
steeply sloping isopycnals on coarse-resolution Cartesian grids. The instability can be controlled
with the Gent and McWilliams eddy-induced advection parameterization which has some physical
justi®cation. The results are of considerable importance, since parameterization of subgridscale
mixing by eddies can have a major e�ect on the biological production predicted by an OGCM
(Gnanadesikan, 1999). Numerical models which aim to predict biological production on basin or
global scales must consider these e�ects. Areas of particular sensitivity include the deep ocean, the
Southern Ocean, and shallow marginal seas.

It is appropriate to inquire at this point whether the solution to these problems is simply to
switch to an isopycnal coordinate numerical model. Unfortunately, such models also have
problems in regions where the isopyncals slope steeply. In most isopycnal models, if more than
one isopycnal layer outcrops between two grid boxes, it is e�ectively insulated from the surface
boundary. Examples of this can be seen in Jia and Richards (1996) who simulate tritium pene-
tration into the Atlantic thermocline. Certain of their isopycnal layers are completely isolated
from the atmosphere. For simulations with biology, this would mean that nutrients would tend to
build up in some interior layers. Although this problem could be resolved in isopycnal models by
reducing the number of layers, such a solution would create the opposite problem of giving too
fast a connection between the deep layers where remineralization occurs and the surface mixed
layer. In general truncation errors will be a problem in both classes of models, unless some sort of
thickness mixing is used.
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Appendix A. Proof that isopycnal mixing drives the nutrient towards the local least-squares slope

There are two eigenvectors of the four-box system with zero eigenvalues.

V1 � �1=4; 1=4; 1=4; 1=4�; �A:1a�

V2 � �q1 ÿ qm;q2 ÿ qm;q3 ÿ qm;q4 ÿ qm������������������������������������������������������������������������������������������������������
�q1 ÿ qm�2 � �q2 ÿ qm�2 � �q3 ÿ qm�2 � �q4 ÿ qm�2

q ; �A:1b�

where qm is the mean density. The ®rst eigenvector corresponds to a uniform ®eld, the second to a
linear slope between density and nutrient. The other eigenvectors have negative eigenvalues. Thus
when the system is changed to a state vector C it goes towards

Cfinal � �C � V1� � V1 � �C � V2� � V2: �A:2�
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But C � V2 is just

C � V2 � �hC � qi ÿ hCihqi�
������������������������
hq2i ÿ hqi2�

q�
; �A:3�

where the brackets note averaging. This is just the least-squares slope. The e�ect of biology and
remineralization is to increase this slope. Suppose that the initial values for

Cinit � �C1;C2;C3;C4� � Rinit � �q1 ÿ qm; q2 ÿ qm; q3 ÿ qm; q4 ÿ qm� � S �A:4�
so that

C � V2 � Rinit: �A:5�
When biology reduces the nutrient in box 1 by dC and remineralization increases that in box 3 by
dC.

Cnew � �C1 ÿ dC;C2;C3 � dC;C4�: �A:6�
The new slope

Rnew � Cnew � V2 � Rinit � dC�q3 ÿ q1� > Rinit �A:7�
since q3 > q1. Thus the e�ect of biology and remineralization in the four-box model is to increase
the slope of the linear relationship between nutrient and density and isopycnal mixing will drive
the tracer towards the new slope.
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