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ABSTRACT

Values of the large-scale mountain torque between 10S and 80N are computed for each month of the five-
year period, May 1958 through April 1963. A careful comparison with earlier midseason values presented
by Newton using different data sources and different analysis techniques is made, The calculations appear
to be equally sensitive to differences in smoothing of the mountain profiles as to differences in basic geo-
potential height data used. Interannual variations in the monthly-mean mountain torques are found to be

large, especially during the winter half-year.

In general, the large-scale mountain torque gives only a minor contribution to the total surface torque
ag estimated by other investigators, However, when integrated over the Northern Hemisphere as a whole,
the mountain and frictional torques appear to be equally important. Both torques seem to act as a sink of

angular momentum in summer and a source in winter.

1. Introduction

The role of mountains in the general scheme of the
atmospheric circulation has recently been analyzed in
some detail in several numerical simulation experi-
ments. In these model experiments as described by
Kasahara et gl. (1973) mainly for the stratosphere
and by Manabe and Terpstra (1974) in more depth
for the global circulation, the January climate was
simulated with the present land-sea distribution. Two
cases were considered, one with realistic mountains
and the other without any mountains. The comparison
between the results from such sets of otherwise iden-
tical runs has provided valuable insight into the
qualitative effects of mountains, such as in the re-
distribution between transient and stationary wave
kinetic energy.

One of the important effects of mountains is the
drag (or possibly push) exerted by them on the atmo-
spheric flow. This effect can be discussed probably
best from the viewpoint of the angular momentum
balance as first suggested by Starr (1948) and later
evaluated from real atmospheric data by White (1949),
Widger (1949), and most recently by Newton (1971a).
In these studies, the mountain torque was shown to
be smaller than the frictional torque but not negligible,
and generally to act in the same direction, that is, as
a drag on the atmospheric flow. Since the numerical
experiments described earlier begin to approach a
realistic simulation of the atmosphere, it becomes

1 Present affiliation: National Environmental Satellite Service/
NOAA, Washington, D, C. 20031.

more and more important to supply from observations
accurate values for sensitive parameters describing the
climate. Some of these parameters are the frictional
and mountain torques.

In the first evaluation of the mountain torque,
White (1949) used climatological-mean pressure data

‘from the 1930’s in the latitude belt between 25

and 65N. With more extensive recent pressure data,
Newton (1971a) was able to extend the earlier analysis
to cover all major mountain ranges on the globe for
the midseason months. The agreement with White’s
results proved to be surprisingly good. In the present
paper, the principal aim is to estimate for each month
of the year the range of the year-to-year variations
in the mountain torque over the Northern Hemisphere.
It is of much interest to evaluate this range since it
gives a measure of the representativeness of data from
one particular year for the longer-term climatic mean
value, and thus provides a valuable parameter to test
the outcome of numerical experiments. Moreover,
because of considerable uncertainty as to the best
method of analysis, it will be useful to compare our
five-year mean torques based on an objective analysis
scheme with those given by Newton based on hand
analysis.

The net torque exerted by the earth’s surface on
the atmosphere can, as was discussed before, be
broken down into two components, one due to moun-
tains and the other due to small-scale frictional effects.
However, the breakdown is not unique at least from
the observational point of view. The presently avail-
able network of meteorological stations can only
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supply the large-scale features of the pressure fields
in the free atmosphere with a resolution of at best
about 5° latitude. This limitation means, of course,
that the computed mountain torques contain only the
large-scale effects of mountain ranges. The east-west
pressure differences across the unresolved mountains
[the “hill” torque (Lorenz, 1951)] are then often
lumped together with the real friction effects. In nu-
merical model experiments with their finite mesh,
similar ambiguities arise. Unfortunately, there is, up
to now, no conclusive evidence, either observational
or theoretical, that large-scale effects dominate in the
true mountain torque. Thus, the present torque values
might change appreciably if one would include the
finer details at a scale below a few hundred kilometers.
In this context, the work, for example, by Bretherton
(1969) and Lilly (1972) may be mentioned. These
investigators find that under certain conditions meso-
scale mountain features may have an important in-
fluence on the large-scale flow in the free atmosphere.
By and large, the presently measured mountain
torques seem to be determined by differences in the
large-scale thermal structure of the atmosphere at the
west and east sides of the major mountain ranges.

2. Formulation of the problem: Basic data and
analysis technique

In the present study, the angular momentum balance
will be formulated from the atmospheric viewpoint
and not from that of the solid earth. In other words,
a torque that contributes to an acceleration of the
eastward flow will be counted as a positive contribu-
tion, and vice versa.

The general balance equation for eastward angular
momentum in a (x,y,p) coordinate system relative to
the rotating earth may be written in the form

OM/dt=~V3 Mc—g(dZ/0%)a cosp+F.a cosp, (1)
where
a mean radius of earth
c three-dimensional velocity vector in (x,y,p) co-
ordinate system [ = (u,7,w)]
dx  acosgd\
dy adg
F.  irictional force in x direction
g acceleration due to gravity
M absolute angular momentum per unit mass

[= (#+Qa cosp)a cos¢ ]
¢ time
Z  geopotential height of an isobaric surface
Vs  three-dimensional del-operator
A, ¢ longitude, latitude
€  angular speed of the earth’s rotation.

According to Eq. (1), the angular momentum for a
unit of mass may change due to (i) the local con-
vergence of absolute angular momentum, (i) a pres-
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sure torque, and (iii) a frictional torque. The present
paper deals mainly with the second term. When one
integrates this term horizontally along a latitude circle
where not intersected by mountains (indicated by
Fd\) and vertically from sea level (at pressure po)
up to the top of the highest mountain range (at pres-
sure pr) along the latitude, one obtains the mountain
torque Tar(o):

Tule)=— / " f g(dZ/aN)a cospdNdp/g, (2a)
or

Tulp)=+ 3. (Z5—2Z%)a cospdp

pr

(2b)

where the superscript < indicates the 7th mountain
range intersecting the integration path in the x direc-
tion at the pressure p, and the subscripts E and W
indicate the east and west sides of the mountain
range, respectively.

The geopotential height data needed in the present
study were extracted from the MIT General Circula-
tion Library. This Library contains daily radiosonde
data taken at 0000 GMT for the five-year period,
May 1958 through April 1963. All data in the sample
of about 600 stations were checked on possible code
errors and hydrostatic consistency. Many general
circulation statistics were computed for each station
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Fie. 1a. Network of grid points used in present study to
analyze geopotential height fields. Resolution near 60N is about
500 km3<500 km. Isopleths of topography are in thousands of
meters.
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Fia. 1b. Distribution of radiosonde stations used in the present
computations of the mountain torque for the month of January.

separately at the different levels, but of these pa-
rameters only the monthly-mean height values of the
various isobaric surfaces are needed here. Following
the station calculations, the data were then inter-
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Fic. 2. Comparison of the topography used by Newton (solid
curve) and by present authors (dashed curve, area under curve
stippled) along 35N.

polated to a polar stereographic grid using an objective
analysis scheme. The resolution of the analysis grid
together with the topography is given in Fig. 1a, and
may be compared with an example of the actual data
distribution shown in Fig. 1b. Analyses were per-
formed at the levels 1000, 950, 900, 850, 700, 500, 400,
300, 200, 100 and S0 mb. Of course, in the case of the
mountain torque, only the first five or six levels con-
tribute. The vertical -integration in expression (2a)
was carried out with 50-mb increments. For more
detailed information on the data, data distribution
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Fic. 3. Annual-mean contribution from different pressure levels to the mountain torque. Present results are shown by
stippled area and curves labeled OB. The second set of curves shown by full lines without crosses or squares indicates the
results obtained by using Newton’s geopotential height fields, but our smoothed topography (labeled Newton-OB). The
third curve on the right in the diagram of the vertical integrals (labeled Newton) indicates Newton’s original results ob-
tained by using his detailed topography. Units are in Hadleys (37.5 mb)~! at 1000 mb, in Hadleys (50 mb)~* at 950, 900,

850 and 700 mb, and in Hadleys for the vertical integral.
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and analysis techniques, one is referred to a paper
by Oort and Rasmusson (1971).

To obtain the necessary computational accuracy for
the mountain torque, the basic height fields were
interpolated from the original polar stereographic to a
latitude-longitude grid, ranging in latitude between
15S and 80N, and in longitude between 176W and
176E. On this last grid in the case of no mountains,
the sum of the finite ‘geopotential height differences
along a latitude circle, and thus also the mountain
torque, will vanish exactly as they should. Because of
computational convenience, the distance between grid
points was chosen to be 8° in longitude and 2.5° in
latitude. Therefore, only topographic features with
an east-west scale of at least 8° longitude and a north-
south scale of at least 2.5° latitude are included in
the present computations.

The mountain heights, as derived from the basic
Scripps topographical data, were interpolated to the
same latitude-longitude grid to make the analysis of
mountain topography compatible with the geopoten-
tial height analyses. Resulting mountain profiles at
35N are shown in Fig. 2 and compared with those
adopted by Newton (1971a). In this study, Newton
attempted to incorporate by hand analysis the smaller-
scale features of the profiles, but using at the same
time geopotential height fields that are only known
at a much coarser scale. Further in the paper, the
two methods will be discussed in more detail.

As a last point of possible significance, let us men-
tion that the geopotential height analyses used here
are based only on actual observed height data. Thus,
for example, no wind data were used through the
geostrophic or thermal wind relations to aid the
analyses.
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3. Normal annual cycle

The computed mountain torque and its vertical
structure for the year and the four midseason months
are shown in Figs. 3 and 4. For comparison, Newton’s
(1971a) results are added. The curves represent the®
values of the mountain torque as defined by (2b),
but in addition, integrated meridionally over 5° lati-
tude belts. The resulting integrals are expressed in
Hadley units (1 Hadley=10% gm cm? sec™2), which
will be used throughout the paper. These units have
been proposed first by Newton.

In Figs. 3 and 4, three different evaluations are
shown to illustrate the uncertainty involved in the
computation of the mountain torque. Shown are:

(i) The present torque values (stippled area de-
lineated by curves labeled OB, with crosses).

(i) The torque values computed by using Newton’s
geopotential height data as taken from Crutcher
and Meserve (1970), our topography (resolu-
tion 8° in longitude and 2.5° in latitude), and
our method of computation (curves labeled
Newton-OB).

Newton’s torque values as taken from his
paper (curves labeled Newton, with squares).

(i)

The differences between cases (i) and (i) can only
be due to differences in the geopotential height data,
between cases (i) and (iii) only due to differences in
topography and method of computation, and between .
cases (1) and (iii) due to both differences in geo-
potential height data and in topography and method
of computation.

Thus, one would expect that the case (il) curves
would lie in between Newton’s and the present results.

TasLE 1. Vertically integrated mountain torque (Hadleys)* for 5° latitude-wide belts and for the Northern Hemisphere, based on
geopotential height data from May 1958 through April 1963.

Latitudes
Month 10S 5S 0 - 5N 10N 1ISN 20N 25N 30N 35N 40N 45N 50N 55N 60N 65N 70N 75N NH
Jan 02 0.2 0.3 0.7 0.4 0.1 0.1 19 241 03 —13 —-2.6 —23 —13 0.1 04 1.2 08 1.5
Feb 02 02 0.3 0.7 0.2 00 —0.1 1.5 11 01 —06 —-12 —15 —04 0.5 0.5 1.0 0.6 3.1
Mar 02 02 02 06 00 -01 -02 13 06 00 —05 —03 —04 —01 08 03 0.8 03 3.5
Apr 02 02 01 04 -01 -03 —04 06 03 01 —19 -25 —-21 —11 04 02 03 01 58
May 02 01 00 02 —07 —08 —0.7 08 08 —-03 —18 —22 —-21 —13 —01 04 06 04 —6.3
Jun 01 00 —02 —-02 —14 —13 —13 —02 12 —05 —14 —-21 —20 —1.5 —03 0.0 02 03 —10.5
Jul 01 01 —03 —-03 —18 —15 —15 —-03 26 02 —-08 —16 —1.5 —15 —0.7 —0.1 0.1 02 . 85
Aywg 01 01 —03 -05 —18. —-15 —18 —-15 30 14 —01 —-11 —12 —11 —03 02 03 03 53
Sep 02 02 —-01 -02 —12 —11 —10 02 38 24 04 —07 —12 —11 —01 00 0.7 04 1.4
Oct 03 03 0.2 04 —00 —03 —0.6 06 3.0 1.6 0.1 —0.5 —0.5 —0.1 0.5 0.1 0.5 04 5.5
Nov 03 03 0.3 0.5 0.4 0.1 0.1 19 16 05 —1.0 —20 —1.5 —1.0 0.2 0.1 0.3 0.3 0.9
Dec 02 02 0.3 0.7 0.6 0.2 0.1 1.7 1.6 02 —1.1 —25 —1.8 —04 0.8 04 0.6 04 2.2
Year 0.2 0.2 0.1 02 —-0.5 —0.5 —0.6 0.7 1.8 0.5 —08 —1.7 —1.5 —0.9 0.2 02 0.5 04 ~1.5
F** 138 14.1 142 141 138 133 12.5 11.7 107 9.5 8.3 7.1 5.9 4.7 3.6 25 1.7 1.0 63.8

* 1 Hadley=10% gm cm? sec 2.

** To obtain the average stress due to mountains in units of dyn cm™2, divide values by conversion factor F at appropriate latitude:

2.5
F= 2w @® cos? ¢ do.

$~-2.6
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TaBLE 2. Vertically integrated mountain torque (Hadleys) for 5° latitude-wide belts and for the
Northern Hemisphere for the 60 months from May 1958 through April 1963.
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Fia. 5. Year-to-year variations (Hadleys) in the mountain torque.

However, this is not always the case. Apparently, the
results are rather sensitive to both the data and the
particular topography and method of calculation used.
One may perhaps conclude that at any latitude the
uncertainty in the evaluation of the mountain torque,
because of all these effects, is of the order of 0.5 to 1
Hadley. The largest differences are found in the winter
half-year. On the other hand, there is fair agreement
in the larger-scale features, such as the annual-mean
eastward torque around 30N, the westward torque
between 40 and 60N, and the marked seasonal varia-
tions south of about 40N.

The vertical buildup given in Figs. 3 and 4 shows
that the lowest three levels practically determine the
value of the vertical integral, and that the latitude
belt with the highest mountains, such as the one at
about 35N, does not necessarily lead to the strongest
mountain torque. .

To supplement the midseason values discussed
above, climatological mean values of the mountain
torque are presented for each month of the year in
Table 1. These values are based on data from the
period May 1958 through April 1963. It is of interest
to note the strong annual cycle south of 30N and the
equally strong semiannual cycle in middle Jatitudes.

The hemispheric integrals in the last column of
Table 1 show that on a hemispheric basis, the moun-
tains tend to slow down the westerly circulation in
summer and to somewhat strengthen it in winter.
Although the quantitative differences are appreciable,
Newton (1971a) obtained qualitatively the same pic-
ture with hemispheric values of +8, —5, —4 and +14
Hadleys for the months of January, April, July and
October, respectively. In this connection, it may be
relevant to mention the magnitude of the standard
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deviation in the mountain torque as computed for
each calendar month from the torque values of the
five individual years (see Table 2). On the average
throughout the year, this standard deviation is about
4 Hadleys.

4, Year-to-year variations

In the previous section, several ways to evaluate
the mountain torque were discussed and intercom-
parisons were made. Each method and each data set
appear to have their own merits, and it is not clear
that one procedure is superior to the other. Therefore,
in evaluating the present year-to-year variations, the
earlier results may serve as a guide to measure the
uncertainty associated with the particular procedure
used.

The computed values of the mountain torque for
each month of the five-year period and for the five
individual years are tabulated in Table 2. These values
represent integrals over 5° latitude-wide belts, except
in the last column where hemispheric integrals are
given. The main features of the distributions are seen
more readily in Figs. 5 and 6.

Fig. 5 shows, for example, that the annual-mean
values of the torque do not vary much from year
to year. Actually comparing Figs. 3 and 5, the inter-
annual variations appear to be somewhat smaller than
the variations due to different methods of computa-
tion. On the other hand, the curves for the same
calendar month of different years in Fig. 6 show a
much larger spread. With the possible exception of
the winter season, the interannual differences in Fig. 6
seem to be above the level of uncertainty as sug-
gested by Fig. 4.

During some of the months, for example March,
the year-to-year differences are so large compared to
the mean value that the climatological mean value
for the mountain torque is not significantly different
from zero. The values for August and October 1962
between 15 and 40N are questionable. However,
no obvious reason could be found for the discrepancy
with the results for other years.

5. Some further comments

For the general circulation of the atmosphere, the
sum of the mountain and frictional torques is of most
interest because it forms the net source or sink of atmo-
spheric angular momentum. This sum averaged along a
latitude circle can be computed probably most reliably
in an indirect way; that is, from the atmospheric
statistics themselves by integrating the horizontal
convergence of angular momentum throughout the
vertical extent of the atmosphere [see Eq. (1)].
However, locally the surface stress is commonly
estimated from an empirical formula containing a drag
coefficient and a certain power of the surface wind
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F16. 6. Interannual variations (Hadleys) in the mountain
torque for the 12 calendar months,

speed. From a summary of such earlier work by cussed in this paper accounts generally for only a
Newton (1971b), it is clear that for a particular small fraction of the net surface torque.
latitude belt the large-scale mountain torque as dis- The contribution by mountains to the kemispheric
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F16. 7. Annual cycle of the different components (Hadleys) of
the atmospheric angular momentum balance for the entire
Northern Hemispheric mass between the surface and 75 mb.

torque is perhaps much greater. For instance, using
Oort and Rasmusson’s (1971) data in (1), the present
authors were able to compute the rate of change of
total angular momentum with time (Mwn/0f) and
the influx of angular momentum across the equatorial
boundary (Fgq). The surface torque (T's+7Tr)nn can
be then derived as a residual. Finally, by subtracting
the present estimates of the large-scale mountain
torque (Ta)wm from the total surface torque, a crude
estimate of the hemispheric frictional torque (Tr)wu
was obtained. This last term includes the torque due
to the unresolved mountains. The computed values
are shown in Fig. 7. The first curve indicating the
rate of change of hemispheric angular momentum
shows, as expected, a maximum in the Northern
Hemisphere fall and a minimum in the spring. The
influx of angular momentum (Fgq) from the Southern
Hemisphere seems to be 90° out of phase with the
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first curve showing a maximum of inflow in July and
a maximum of outflow in February as was found
before by Kidson et al. (1969). The mountain and the
residual frictional torques turn out to be of the same
sign and same magnitude throughout the year. Thus,
both torques appear to act on a hemispheric scale as
an important sink for atmospheric angular momentum
in the summer and a source in winter.
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