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ABSTRACT

Rotational effects on turbulence structure and mixing are investigated using a second-moment closure model.
Both explicit and implicit Coriolis terms are considered. A general criterion for rotational effects to be small is
established in terms of local turbulent Rossby numbers, Characteristic length scales are determined for rotational
effects and Monin-Obukhov type similarity theory is developed for rotating stratified flows. A one-dimensional
version of the closure model is then applied to simulate oceanic mixed layer evolution. It is shown that the
effects of rotation on mixed layer depth tend to be small because of the influence of stable stratification. These
findings contradict a hypothesis of Garwood et al. that rotational effects on turbulence are responsible for the
disparity in the mixed-layer depths between the eastern and western regions of the equatorial Pacific Ocean.
The model is also applied to neutrally stratified flows to demonstrate that rotation can either stabilize or destabilize

the flow.

1. Introduction

The role of rotational terms in the balance of the
second-order turbulence correlations in geophysical
flows has not been thoroughly investigated to date, al-
though the need for such a study has often been ac-
knowledged (Mellor 1973; Zeman and Tennekes 1975;
Mellor and Yamada 1982). When Coriolis terms are
nonzero, inherent algebraic complexity involved in
obtaining explicit relationships for turbulent exchange
coefficients in the framework of higher-order turbu-
lence closure models has hindered a systematic study
of rotational effects. Generally, Coriolis terms have
been assumed small and neglected in the second mo-
ment equations (Mellor 1973; Mellor and Yamada
1982). However, recent studies by Garwood et al.
(1985a,b) suggest that these terms may not always be
small and may play a significant role. Their analysis is
based on an extension of the vertically integrated, bulk
mixed layer model by Garwood (1977) that includes
Coriolis terms in the equations for turbulence energy
components; the model neglects off-diagonal elements
in the Reynolds stress tensor. Garwood et al. (1985b)
applied their model to the mixed layer in the equatorial
western Pacific Ocean and attributed its unusually large
depth to the redistribution of turbulence energy from
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the horizontal to the vertical component due to the
action of the poleward component of the Coriolis vec-
tor, f,. Their model presumably accounts for the dif-
ference in mixed layer depths in the western and eastern
parts of the equatorial Pacific Ocean on the basis of
differences in the atmospheric forcing and the effect of
the terms proportional to f,. (Curiously, they posit an
equilibrium equatorial mixed layer and neglect con-
sideration of the momentum equation. However, con-
sideration of that equation at 0° latitude and for hor-
izontally homogeneous fields indicates that an equilib-
rium mixed layer is not possible as illustrated by the
experiments of Kato and Phillips 1969 and Kantha et
al. 1977.) This finding is important for equatorial
oceanography and one of the goals of the present study
is to verify whether or not the same conclusion would
be supported by a local, second moment turbulence
closure model rather than a bulk model.

In second-moment models the explicit effect of Co-
riolis terms in the equations for Reynolds stress and
heat flux components need not be modeled; they are
linear functions of the stresses and fluxes themselves.
Therefore, no new modeling assumptions are needed.
We here merely overcome analytical complexity in ex-
tending a second moment model into parameter space
where the Coriolis effect is liable to be important. It is
true that additional, implicit Coriolis terms could be
included in, for example, the Rotta hypothesis for the
pressure, rate of strain covariance terms, but in section
3 we exclude these terms; their inclusion would de-
crease the total Coriolis effect and we wish here to es-
tablish an upper bound to this effect.

In this paper the direct effects of the vertical and
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poleward component of rotation on turbulence struc-
ture is studied using the level 2% closure model by
Mellor and Yamada ( 1982) as operationally modified
by Galperin et al. (1988). However, as already stated,
the same explicit Coriolis terms appear automatically
in all second-moment closure schemes and the relative
effect of the terms should not differ essentially among
this class of models.

The importance of Coriolis terms has been recog-
nized in a variety of other contexts, particularly in ro-
tating turbomachinery, where flows around compressor
or turbine blades are also subject to rotational effects
(an excellent review was given by Bradshaw 1973). A
number of experiments have been designed to study
this kind of flow with engineering applications in mind.
Among them are the experiments by Johnston et al.
(1972) on rotating duct flows (so-called “spanwise”
rotation), and Koyama et al. (1979) and Watmulff et
al. (1985) on spanwise rotating boundary layer flows.
These experiments allow one to compare flows with
and without rotation and extract information unavail-
able in a geophysical context. A recent review of nu-
merical modeling activity in these fields is given by
Lakshminarayana ( 1986 ). In particular, he shows that
local models of the type used in this study provide a
good description of rotating flows. One should note
that flows of engineering importance are generally not
stratified but they are affected by other complicating
factors, such as three-dimensionality, compressibility,
and so on.

In the present work, the problem of algebraic com-
plexity in the framework of a local model has been
addressed both by straightforward calculations and by
the use of a symbolic computer language, REDUCE,
which is capable of performing complicated algebraic
manipulations and producing Fortran instructions for
insertion into numerical code.

In the simpler cases of neutral or weakly stratified
flows, explicit expressions for exchange coefficients are
derived and further analysis is performed using the ap-
proximation of local equilibrium.

The paper is organized as follows: section 2 provides
the mathematical formulation of a turbulence closure
model which is a modification by Galperin et al. (1988)
of the Mellor and Yamada (1982) level 2'2 model, but
now accounting for the effects of rotation on the sec-
ond-order turbulence correlations. A discussion of the
length scale of turbulence, /, is also presented. In section
3, explicit and implicit Coriolis terms are defined and
analyzed. Section 4 describes different approaches to
handle the set of algebraic equations of the problem
and provides a general analysis of these equations. It
is shown that stable stratification strongly suppresses
rotational effects on turbulence. Section 5 introduces
the length scales characterizing rotational effects via
local equilibrium and constant flux layer analyses.
Monin-Obukhov type similarity theory is developed
to study the combined effects of rotation and stratifi-
cation and the limit is considered in which both factors
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are small. Section 6 deals with the application of the
model to oceanic mixed layers, specifically to study the
effects of rotation on a one-dimensional wind driven
oceanic mixed layer developing in a stably stratified
environment. The relevance of these results to the hy-
pothesis of Garwood et al. (1985b) is discussed. Finally,
section 7 presents some concluding remarks. In addi-
tion, appendix A addresses neutral flows where rota-
tional phenomena are investigated analytically. Some
of the effects specific to rotation as well as some geo-
physical aspects of the problem are emphasized.

2. Mathematical formulation of the problem

We shall begin with a set of equations describing
stratified turbulent flows in a rotating coordinate frame
under Boussinesq approximation using a quasi-equi-
librium modification by Galperin et al. (1988) of the
Mellor and Yamada (1982) level 2% model. Those
equations are

the continuity equation:

aU;
— =0, 1
o, (1)
the momentum equation:
DU; 1 1 oP p
—+e U——— —— -,
Di it S Ul ) (—u;up) 20 3%, & "
(2)
and the energy equation:
DO
—— i — 0 . 3
Di ( u,9), (3)

where U; and u; are mean and fluctuating velocities, O
and # are mean and fluctuating potential temperature,
po is reference density, P is mean pressure, fi = 2Q is
the Coriolis vector, where Q is the angular velocity
vector of the Earth, and f; = (0, f,, ); & = (0,0, —g)
is the acceleration due to gravity. The model equations
for turbulence quantities are

the Reynolds stress equation:

—_ % , 3L oU; 3,
withj = 3 S L
aU; = aU;
_ C'qz(Ej ax,) + B0 + gud)
2q3
+ filewuuj + egauiqi;) + —— 34, oil, (4)

the heat flux equation:
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the turbulence energy equation:

Dg* 9 dq°®
Dg’_ 9 (s, L
Dt an axk
I aUk —_ q3
=-2 — =2 - 2=
it o £ = 26ga0 ~ 2, (6)
and the temperature variance equation:
— A, — 80
02 =20 —. (7)
q Ix;.

Here 8 = ~(8p/9T),/ po, the thermal expansion coef-
ficient, S, is the nondimensional vertical exchange
coefficient for turbulence kinetic energy, g2 = u;*, and
various length scales of turbulence are related to the
master length scale, /, following Mellor and Yamada
(1982):

(llv I2a AI)A2) = (Al, A25 B13BZ)19 (8)
where
(4,, 4>, By, B,) = (0.92, 0.74, 16.6, 10.1). (9)

It can be shown (Mellor 1975) that the remaining con-
stant, Ci, is related to the others according to

C, = % (1 —6A4;,B,™" — 4,7'B,"1/3) = 0.08. (10)

The master length scale, /, is given by the ¢°/ equa-
tion (Mellor and Yamada 1982):

Dq?l 9 K

Di o [q’sq o

(421)]

ox;

q3 / 2

B, {1 + E2<KL) ], (11)
where E, = 1.8, E; = 1.33, L is a measure of the dis-
tance away from a nondeforming surface, and « is the
von Karman constant («x = 0.4). The oceanic free sur-
face is considered to be—perhaps simplistically—a
nondeforming surface.

Equation (11) is an empirical equation which is re-
lated to the integral of the two-point correlation func-
tions. It behaves correctly in the case of grid-generated,
decaying turbulence and seems to provide a reasonable
length scale in the case of neutral or stratified boundary
layers. However, if Egs. (4) and (5) are written non-
dimensionally, one encounters the Coriolis terms ap-
pearing in the form, fil/q = (0, f,l/q, fl/q), and it
becomes a matter of importance as to how //g behaves
at the edge of a stratified boundary layer. The present
model invariably produces ¢ = 0 while / = constant
as one proceeds from the shear driven, active turbu-
lence region to the stratification dominated region and
therefore fi//q — oo at the edge of the turbulent

14/ —
= [E, (—uku: =k ﬁgkuxﬂ)
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boundary layer. However, there is evidence, cited be-
low, that when high Reynolds number turbulence de-
cays spatially or temporally to internal waves due to a
stable stratification the cascade process ceases and tur-
bulent fluxes and dissipation become negligible. Then
the turbulence length scale is bounded according to

IN/g<c, (12)
where

N =[—g(3p/92)/pol'*

is the Brunt-Viisila frequency, and c¢ is an empirical
constant. Experimental and observational studies of
shear, shear-free and grid-generated turbulent flows
developing in a stably stratified environment generally
support the constraint (12) (for a review, see Hopfinger
1987). However, there is an ambiguity as to the value
of the numerical constant, ¢. Various length scales have
been introduced to characterize the limiting influence
of stable stratification on turbulent eddies but it is not
clear a priori how these scales are related to the model
macroscale, /. Two relevant scales are the Ozmidov
(1965) or Dougherty (1961) length scale,

L = (¢/N*)'72, (13a)

where ¢ is the dissipation rate given in the model by

€e=¢q’/Bil, (14)
and the Ellison (1957) length scale,
L,=p'/(dp/0z2), (13b)

where p’ is the rms of the density fluctuations. The
inverse of Ly is related to the buoyancy wavenumber
separating turbulence (k~*/*) and buoyancy (k%) parts
of the energy spectrum (Phillips 1977). On the other
hand, L, characterizes a vertical distance traveled by a
fluid particle before either overturning or returning to
the equilibrium position. Itsweire et al. (1986) point
out that length scales of the largest overturns might be
two to three times larger than L,. Experiments by Stil-
linger et al. (1983) on grid turbulence in a water tunnel,
measurements by Dillon (1982) in seasonal lake and
ocean thermocline and estimations by Crawford (1986)
using the data from the thermocline in the tropical
Pacific Ocean suggest that

L,=(0.7+0.2)Lg. (15)

Starting with the square root of Eq. (19), presented
below, in place of the right-hand side of (13b), one
finds with the help of several model equations that ¢
= (0.28 = 0.11. On the other hand, Dickey and Mellor
(1980) in their experiments on decaying turbulence in
stably stratified fluids found /N/g =~ 0.6 at the late
stages of the decay. Andre et al. (1978), Hassid and
Galperin (1983) and Galperin et al. (1988) used ¢
= 0.53 in their simulations of turbulence entrainment
into a stably stratified environment. Therefore, it is
reasonable to assume that the numerical value of the
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coefficient, ¢, in the constraint (12) should be some-
where between 0.3 and 0.6, which agrees with the value,
0.53, used in the above mentioned numerical simu-
lations. The inequality (12) with ¢ = 0.53 was used in
the present model as an overriding constraint on Eq.
(11) although that equation could have been altered
to incorporate (12) directly. Note that this constraint
also implies € oc N in stably stratified flows, in agree-
ment with recent estimations of ¢ from direct mea-
surements of small-scale shear in the upper ocean
(Gargett and Osborn 1981; Leuck et al. 1983). We
shall see in section 4 that this limitation also plays a
crucial role in damping rotational effects by stable
stratification.

When the boundary layer approximation is invoked,
Egs. (4)-(7) may be written

aw — + ow —
a9z ! a9z

— oU —_
(w? = Cig?) <, ~ Peud

(W2 — Cig?) ‘;—V — Bgvl

L z - .
3y, [ HOW + (P = v7)_

== —fw + f (w2 —u?) |, (16)

9| —fuww + fuw

oY  a.p2
L.w a9z beb J

L0 — f70
—3—’2[ ” fw], (17)
q —ﬂﬂé

q2 64, !
=—({1l—-—]]1
3 B, 1

[ — [ )
3| v 6ll[y f_],(lg)

- uv
— fyuw

| — |
LR

q 0z q
| —26gwd |

02 = _.fﬁf;;gfﬁé

p Py (19)

3. Explicit and implicit Coriolis terms

The Reynolds stress and heat flux equations (4) and
(5) developed in the previous section include the ex-
plicit Coriolis terms,
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HFf = fik/ﬁcm- (21a)

The process of derivation of Egs. (4) and (5) was
based on the Rotta hypothesis for pressure, rate of strain
covariance terms which could be extended to include.
additional implicit Coriolis terms. A generalization of
the Rotta hypothesis (Zeman and Tennekes 1975)
yields implicit Coriolis terms as follows:

(20b)
(21b)

where «; and «, are numerical constants. Therefore,
the total contribution of Coriolis terms will be

Ry = R+ R} = (1 — o) fil exwaitiitt; + et ),
(20c)

H;= H" + H' = (1 — ap)egaff.  (21c)
Zeman and Tennekes (1975) have found the coeffi-

R{j = —a fi( ettt + €atiil;),

L L
H/ = —ozep i,

. cients, a; and a, to be positive, but they also men-

tioned that Lumley has found «, to be a small negative
number, —0.06. Thus, the implicit terms are likely to
be unimportant or to reduce the total effect of the Co-
riolis terms. In this study, however, we shall assume
that a; = a; = 0 thus neglecting the implicit Coriolis
terms and, possibly, overestimating the effect of rota-
tion on turbulence. -

It is useful to notice that both explicit and implicit
Coriolis terms have zero trace and, therefore, they do
not alter the turbulence energy.

4. Method of solution

When rotational effects are not considered, the set
of algebraic equations ( 16)—(19) of the level 22 model
admits eddy viscosity-eddy diffusivity formulation:

uw alU
‘[w]“f’SMa—z[V]

— 90
—wl = qlSH -,
dz

(22)

(23)

‘where the nondimensional vertical exchange coefhi-

cients, Sy and Sy, are given by Galperin et al. (1988).
The presence of the Coriolis terms, however, substan-
tially complicates these equations. In addition, rotation
introduces asymmetry in Egs. (16)-(19), thus im-
parting vertical exchange coeflicients with tensorial
properties.

For further analysis let us define the following di-
mensionless variables:

V
Ruslgg, Rvslg—q (24a,b)
q 0z q oz
o1 o1
Ro, E(-Ify, Ro, Esz’ (25a,b)
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G — (l)ﬁ ai (26)
~ U — [ ui0
u,~u,-=q—2’, u,-0=ﬁ‘}L3. (27a,b)
1 34,Rv 34,Ru 0 0
0 1 0 -34, 0
0 0 1 0 -34
0 —34,Gy 0 1 0
A, 0 0 —34,G4 O 1
0 0 0 0 0
0 6A4,Ru 0 0 0
0 0 64,Rv 0 0
L 0 0 0 0 0
) 0 34 0 0 0
0 0 0 0 0 0
-34, 0 0 0 0 O
0 0 0 0 0 34,
A, 0 0 0 0 0 0
0 0 0 —34, 0 0
0 64, O 0 0 0
0 0 0 0 0 0
0 —64, O 0 0 0
0 0 0 0 0 0
0 0 -34, O© 0 0
0 34, 0 0 0 0
0 0 0 0 -34, 0
A, 0 0 0 34, 0 0
0 0 0 0 0 0
—64, 0 0 0 0 0
64, 0 0 0 0 0
| 0 0 0 0 0 0
_ 0 -
3A4,C;Ru
[ | 34,C, Rv
uw 0
W 0
b 0
21—2 3 B,
v L(, _64
LWZ_ 3( Bl)
L(, _ 64
Han)
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Substituting Egs. (24)-(27) in (16)- (19), one obtains
the following matrix equation:

A=A+ Ro,'A, + Ro,'A

where
and
0
0
0
3A2Ru
3A2RU
(1 — 342B,Gy)
0
0
—64,
0 0 O
—34, 0 34,
0 0 0
0 0 0
0 0O O
0 0 0
0 0 0
0 0 0
0 0 0 |
34, —34, 0]
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

SO~ OO0 OO0

O~ OO0 OOCO0O

AX = B,

(28)

(29)

(30)

(31)

(32)

(33),(34)
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Tilde overbars over %u; and ;0 are omitted in Eq.
(33). The formal solution to Eq. (28) is given by

X = A°'B. (35)

When Ro, ' and Ro, ™" are set to zero in Eq. (28)

—W{l +364,>Ro, '(Ru+ Ro,™") — 94,4,Gy +
X [Rv — 64, Ro,'(Ru + Roy__‘)]} - W[—3A, Ro,™!

X (Ru+ Ro, "' + 64, Ro,"'Rv)] — W{ 184,>Ru + 94, 4,(Ru + Ro, ") +
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the level 2'2 model version of Galperin et al. (1988) is
recovered. Manipulation of the set of Egs. (16)-(19)
reduces it to the system of three, rather complex, cou-
pled equations for —uw, —vw and —w#@ which may
then be solved numerically, using Kramer’s rule, to
relate them to the mean field gradients:

544,% Ro, ! Ro,™

1 + 94,2 Ro,™2 1 + 364, Ro,™>

_ 27A1A22 ROZ_[GH 54A13 Roy_l I{Oz—l
1+94,2Ro.™2 1+ 364,>Ro, 2

274,4,%> Ro,™!

1+ 9A22 1102_2

“"‘u—W{ 18A|2 ROy—lRU + 3A1 1{()2_l +

X [Rv — 64, Ro,”"(Ru + Roy"')]] - W[l -

X [Ru+ Ro, " + 64, Roz"Rv)] - W[ 184,2Rv +

64
X [Rv — 34, Ro,"!(Ru + Ro,™")] + 184, Roy_l] = A.(l - ?‘ - 3C.)Ru = B,"Y3Ru, (36)
1
274,4,°Ro, ' Gy 94,2 Ro,™!
1+94,°Ro,”> 1+ 364,2Ro,”?
94,4,Gy 94,2 Ro, ™!
1+94,2Ro,72 ' 1 + 364,2Ro,™>
94,4,
1 +94,2Ro,2
-1 -1 _ 6Al . — -1/3
X [Rv — 34; Ro,'(Ru + Ro, )]} = 4, 1 -5 - 3Cy)Rv = B,"'*Rv, (37)
1

_W[ 18A1A2 l{Oy-_l +. 9A22 ROy_l

H

274,° Ro, ' Ro,™
1 + 94,2 Ro, >

An alternative approach is to use the symbolic com-
puter language, REDUCE, to solve the set of equations
(16)-(19) symbolically. We have used both methods
to deal with the above set of equations. This approach
allowed us to double check the algebra and to reveal
some interesting details that might otherwise have been
overlooked.

We wish now to analyze Eq. (35) and obtain some
preliminary estimates of the impact of rotation on the
Reynolds stresses and heat fluxes. Thus, we write

X = A™'B = (A + Ro,"'A, + Ro,”'A,)"'B
= [Ao(1+ Ro, 'VA, + Ro,"'VA,)]'B
= (1+ Ro, 'VA, + Ro,"'VA,)"'VB,

where

(39)

V=~A,"", (40)

[Rv

_ 814,*Roy,"'Ro.?]  __[274,°Ro, ' Ro,™!
1+94,°Ro,™

1 + 94,2 Ro,™?

+ l‘ég‘ [1 - 18A1A2GH - 3A232GH + 9A22 Roy_'(Ru + ROy—l)

64,

— 34, Ro,”"(Ru + Roy")]} = A2(1 - —) . (38)

B,

and | is the unit matrix. The effect of rotation on the
turbulence correlations, Eq. (33), is measured, there-
fore, by the relativé importance of the matrices,
Ro, 'VA,andRo, 'VA,, compared to . A convenient
way to compare matrices is to think of them as of linear
operators and to compare their norms. In appendix B
an appropriate analysis is given showing that in the
likely range of variation of G, the norm, ||VA, ||, varies
between 10 and 100 and the norm, ||VA,|, varies be-
tween 10 and 30. Both norms are closer to their lower
bounds for stable stratification indicating that stable
stratification tends to reduce the effects of rotation.
Appendix B also provides an approximation to Eq.
(39) valid for small rotational effects.

In the case of stable stratification the constraint (12)
yields the following estimations of the inverse Rossby
numbers:
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R E‘_\O. Ty e
|Ro,™!| p 53 N
Taking f;, | f| = 107 s, and N ~ 10725, which

is typical for the thermocline, one finds
7!, |Ro,™!| <0.005.

As was shown in appendix B, both [|VA, || and [|[VA,|
do not exceed 20 for strong stable stratification; there-
fore, the total contribution of the rotational terms is
limited according to

[Ro, ' [{IVA,ll, |Ro,'[IVA.l <0.1. (41)

Since the norms analysis provides an upper bound of
the effects of rotation, their actual influence on the
vertical fluxes might be smaller. Therefore, rotational
effects on turbulence appear to be not overly important
near the thermocline. On the other hand, there might
be a stronger impact of rotation on neutral and unstable
flows where matrix norms are bigger and also inverse
Rossby numbers are unbounded; indeed, the effect of
rotation is thought to be important in turbomachinery
(Lakshminarayana 1986). Appendix A describes pos-
sibly significant modifications of the mean and tur-

bulence structures caused by the Coriolis terms in neu-
tral flows.

S. Effects of rotation in the constant flux layer

The dynamics of turbulence in geophysical boundary
layers are usually controlled by the momentum and
heat fluxes at the surface. It is useful therefore to analyze
the general set of equations obtained in the previous
section applied to the surface layer where these fluxes
are approximately constant with height, i.e., in the
constant flux layer. After some exploratory analysis, it
turns out that we can form generalized Monin-Obu-
khov variables:

U
ZZ 5, = (cosaduuy + sinayuy),  (42)
kz OV !

u— "(‘9; = (COS(X@MVU + SIH(I@MVV), (43)

kzu, 90

H oz 0 (44)

where ®ruu, Py, Barvy, Bavr and &y are stability
functions of {, {, and {, defined according to

(45a,b,c)

where

(46a,b,c)

L. H. KANTHA AND G. L. MELLOR

907

are Monin-Obukhov length scale and rotational length
scales respectlvely, u, is the friction velocity defined
by u.?=1/po; 7 is the surface shear stress; r = 7(cosa,
sina); H = (—w#)y is the kinematic surface heat flux,
and the assumption / = xz has been made. Equations
(42) to (45) can be related to Eqs. (36), (37) and (38)
according to

kzoU g kzdV q

— — i — N ————:—R 5

u, 0z u, u, 9z u,
xzu, 90 _ _(q\ Gu
H 4z u,] ¢

Generally, constant flux layers are in local equilib-
rium so that tendency and diffusion terms can be
dropped in the energy equation thus making it algebraic
and reducing the turbulence closure scheme to the level
2 model (Mellor and Yamada 1982). The nondimen-
sionalized Eq. (6) will read in this case:

—uwRu —~ DWwRv + w = B, "', 47!

The stability functions defined by Egs. (42)-(44)
should satisfy Eq. (47) as well.

In the general case of arbitrary rotation and strati-
fication, the expressions for @y, ®arvv, Parvu, Pasvy
and ®y are complicated and are studied separately
(Kantha et al. 1989). Here, we shall simply evaluate
the combined effects of rotation and stratification on
the constant flux layer presenting the result of a first-
order expansion in ¢, {, and {;. Thus,

Prvv = Pavv = 1+ Buy$y + Buan,  (48)

Crov = =Py = Buvz s (49)

®n = Pr, + By ) + Bas, (50)

which recognizes that B,.; = By = Buwn = Br- = 0.
Furthermore, we find that

cosa = 3.51 cosar, (51)

/Suuy = 274, 2Bl -3

! Taken in the matrix form, Eq. (47) adds a row to the matrix A,,
Eq. (30):

(0 —Ru —Rv 0 0 1 0 0 0).

Corresponding zero rows should also be added to the matrices A,
and A, Egs. (31) and (32). The column, B, Eq. (34), should be
supplemented by a term, B,~'. As a result, a system of 10 linear
algebraic equations with 9 unknown variables is obtained. It can be
shown, using a linear algebra theorem (sometimes referred to as the
Kronecker~Capelli theorem ), that the latter system of equations has
a nontrivial solution if and only if the augmented matrix of this
system has a zero determinant. (The augmented matrix is obtained
by adding the column, B, to the original 10 X 9 matrix). This re-
quirement merely guarantees that not all of the 10 equations are
linearly independent, and therefore the system is not overdetermined.
The resulting equation defines a surface on which all possible values
of the independent variables can lie. For neutral nonrotating flows,
this requirement provides Ru? + Rv? = B,~%/3, which means that
all possible values of Ru and Rv belong on the circle with the radius
B, '3, In a general case of rotating stratified flow, this surface may
have quite a complicated structure.



908

Buun _
= i {% +94,B,723[24, + (1 + Pr,)Az]] =327,
(52)
Buz = —3A4,B,7'/3 = —1.08, (53)
By = 9B, 2 Pr, cosa[4,(24, Pr, — A;)
+ A,%(1 + Pr,)] = 1.34 cosa, (54)

B = Pr,[3B, -2/3[/12 Pr,(64, + B;)

- %A,[zAl + A (1 + Prt)]] + i] =276, (55)

and where the turbulent Prandtl number, Pr,, is given
by

= B,V3/[Ay(1 — 64,/By)] = 0.79

{(Mellor and Yamada 1982).
Several interesting conclusions can be drawn from
Egs. (48)-(56):

1) The functions, ®,,y and ®,py, describing the
intercomponent momentum exchange due to f, are
excluded in those closure models that neglect Coriolis
terms in the turbulence equations.

2) The effects of the poleward component of the
Coriolis parameter, f,, depend on the direction of the
surface stress since f3,,,, and By, include the factor, cosa.
In the coordinate system generally used in oceanic
models, with axis x directed eastward, axis y—poleward
and axis z upward, f,,, and 8, are positive and max-
imal for westerly winds, negative and minimal for east-
erlies and zero for meridional winds. Therefore, f, acts
to stabilize mean flows driven by westerlies and to de-
stabilize flows caused by easterlies. This conclusion
agrees with that by Garwood et al. (1985b). However,
the extended analysis performed in appendix A for
neutral flows demonstrates that increasing destabili-
zation gives way to restabilization and total suppression
of turbulence.

(56)

To evaluate profiles of mean velocity and temper-
ature, Egs. (42)-(44) can be integrated, using Egs.
(48)-(56), resulting in log-linear profiles:

U(z)

o)
——=—(cosaln|—
u, K 29

+ [(vy Buay + Buun) cosa + vz B, sina]s“} » (57)
V(z) -—1 sina In{ — Z
U, K Zp
+ 1 v:B0u; cOsSax + ('Yyﬂuvy + Boun) sina]f} , (58)

0-6, 1

H/IT‘;[P 1“( )+(7yﬁhy+ﬁh)§] (59)
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where z; and zy are momentum and temperature
roughness parameters, and

_&_L_u’f
Yy ¢ L, BeH (60a)

_&_L_u’S
=T TL BeH (612)

are constants defined for a given flow by external pa-
rameters only. Obviously, rotation can enhance or relax
the effects of stratification. Furthermore, for any given
a, f, and f, values of v, and +, exist such that the
effects of rotation and stratification cancel each other
in one of the mean profiles.

To appreciate the effects of rotation on atmospheric
and oceanic mixed layers, it will be convenient to ex-
press v, and v, in terms of surface stress and heat flux
which are continuous at the interface:

efyT
= 60b
ST ¢
2= , 61b
Y= %00 (61b)

where Q = ¢,poH is a heat flux. Taking f,, f ~ 107
lLg~10ms2 7~ 005Nm2 and |Q| ~ 50

W m™2, one finds for the atmosphere (c,, 10°Tkg™!
K—l,6~35>< 103K
vy, 1v2] =~ 0.003 (62)

and for the ocean (¢, ~ 4.2 X 103J kg7 ' K™, B =~ 2
X 107™* K™

lvyl, 1vz] =~ 0.21. (63)

One can see that the effect of rotation on oceanic mixed
layers is relatively weak and two orders of magnitude
weaker on the atmospheric mixed layers. Analysis pro-
vided in appendix A suggests that the effect of rotation
on the constant flux sublayer of neutral boundary layers
is also small.

In the special case of neutral flow where /' = 0 and
a = 0, but where f, # 0 (known in engineering appli-
cations as spanwise rotation), Eq. (57) provides

U(z) - l [ln(i) + ﬁuuyg-y:l .
20

u, K

(64)

The value of 8,,, = 3.51, given by Eq. (51), compares
well with estimates by Watmuff et al. (1985) of B,
= 3 to 5 for destabilizing rotation and 8,,, = 2 to 4
for stabilizing rotation and by Koyama et al. (1979)
where .., = 1 to 4. By fitting Halleen and Johnston’s
(1967) experimental results, Bradshaw (1969) has
found that 8,,, is about 4 for stabilizing and 2 for de-
stabilizing rotation.

A more thorough study of the rotational effects on
neutral flows is given by Galperin and Kantha (1989).
That work also includes comparisons with other closure
models in use in engineering applications. Some results
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of this study are summarized in appendix A, in which
geophysical aspects of the problem are particularly
emphasized.

Summarizing, the results of this section provide an
extension of similar analyses by Monin and Yagiom
(1971, Chapt. 4) and by Mellor (1973) which were
restricted to the case of density stratification.

6. Modeling oceanic mixed layers

From appendix A it is clear that the effects of rotation
on turbulence are important in many cases, especially
in flows in turbomachinery, which are characterized
by high rotation rates and the absence of stratification
effects due to gravity. However, it is not clear a priori
whether the rotational effects are important or not, in
oceanic flows. It had generally been assumed, with little
justification, that rotational terms can be ignored in
oceanic turbulence. Recently Garwood et al. (1985a)
have raised doubts about this assumption. These au-
thors suggest that turbulence terms proportional to f,,
the rotational terms, could account for the difference
in the depths of the mixed layers in the eastern and
western parts of the equatorial Pacific Ocean. This hy-
pothesis is appealing and Price et al. (1987 ) characterize
it as ““the most provocative new theory for mixed layer
models.” Among the deficiencies of this approach are
the exclusive use of turbulence energetic considerations
without reference to the mean momentum balance,
and the introduction of their assumptions with regard
to the relevant length scale. Still it is a plausible hy-
pothesis, a hypothesis, however, that can be readily
tested by the turbulence model developed in the earlier
sections. In this section, we shall detail the experiments
that were undertaken to do so. For this purpose, a one-
dimensional version of the closure model was used to
simulate the dynamics and thermodynamics of the up-
per ocean as an initial value problem; all properties
are stipulated to be horizontally homogeneous. Gen-
erally, mixed layer models of this kind are thought to
perform reasonably well at midlatitudes (Martin
19852); they have been routinely incorporated in var-
ious atmospheric and oceanic circulation models (Ro-
sati and Miyakoda 1988; Miyakoda and Sirutis 1977)

2 Martin (1985) performed calculations using the Mellor-Yamada
(M-Y) models and using the bulk models of Garwood (1977) and
Niiler (1975); all were compared to observations at stations Papa
and November. A succinct summary is his Table 4 which tabulates
the monthly average errors in surface temperatures. The maximum
errors occurred in the late summer and fall. Thus, at station November
the M-Y models results were too warm by 1.5°C and the Niiler and
Garwood models were too cold by 0.7°; at station Papa the M-Y
models were too warm by 2.2° and the Niiler and Garwood models
were too cold by 3.0° and 1.8° respectively. It is important to state
that, for Garwood’s model, Martin chose model constants to best fit
the data; furthermore, both bulk models assume the existence of a
surface mixed layer a priori and the models and their constants are
specific to that application. The M-Y models had fixed constants
determined from laboratory turbulence data and can cope with a
fairly broad range of turbulence problems.
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and used in operational models (Clancy et al. 1988).
Specifically, various versions of the present model have
been shown to account for the effects of stratification
and other extra strains and to produce realistic values
of critical Richardson numbers at which turbulence
ceases (Mellor 1973, 1975; Galperin and Kantha
1989). These results were obtained using the same set
of empirical constants initially found from simulations
of simple well documented flows, and therefore the
level of empirism is minimized. For the present pur-
pose, it is important to note that the rotational terms
do not require any additional modeling. In a one-
dimensional formulation rotational effects are not
masked by other complicating factors.

To analyze the effect of rotation on the oceanic
mixed layer, two series of numerical simulations were
carried out. In the first series, a general appreciation
of the rotational effects on stably stratified mixed layers
at different latitudes and different initial and boundary
conditions was sought. For this purpose, various ex-
periments were conducted with a prescribed zonal wind
stress (+0.1 N m~2) and zero meridional stress at the
surface of an initially linearly stratified ocean. The
stratifications used were: 0.01, 0.025, 0.05 and 0.075°C
m ™!, which are values typical for the upper ocean. Two
simulations were performed for each case, one in which
the rotational terms were set to zero in the turbulence
equations and the other in which they were retained.
In almost all of these experiments, the mixed layer
depth for zero and nonzero rotational cases differed by
no more than ¥5% at a given instant of time. Only
under conditions of neutral or near neutral stratifica-
tion did the experiments indicate substantial differences
in the mixed layer depth (50% or so for the neutral
case with rotation when compared to that without).
This behavior can be traced directly to the behavior of
the turbulence length scale which is inhibited by stable
stratification, particularly at the base of the mixed layer
where the stable density gradient is strong. Conse-
quently, the effect of rotation on turbulence and in-
directly on the mixed layer evolution tends to be small
in the presence of ambient stable stratification. Since
oceanic mixed layers are invariably capped by a stably
stratified interface, these experiments indicate that ro-
tational effects are small in the oceanic context.

In the second series of numerical experiments, par-
ticular attention was concentrated on the evaluation
of the Garwood et al. hypothesis. Mixed layer devel-
opment was modeled with surface wind stress and heat
flux applied impulsively to a quiescent body of water.
Three different latitudes (0°, 2° and 4°N) and four
longitudes (which identify wind stress values) chosen
by Garwood et al. (1985b) were selected as locations
for conducting numerical simulations. The initial am-
bient temperature profiles, surface buoyancy fluxes and
wind stresses for these simulations were adopted from
the study by Garwood et al. (1985b) as given in their
Figs. 1, 3 and 4, respectively. Thirty day simulations
were performed with and without rotation. This period
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FIG. 1. Mixed layer depths with and without rotational effects on turbulence at 0°, 2° and 4°N
latitudes. Longitude 160°W, heat flux 23.1 W m™2, 7,/p = 0.49 X 10* m?s72, 7,/p = 0.05

X 10" m?2s2,

encompasses at least two full cycles of inertial oscil-
lations during which the mixed layer depth (MLD)
attained a quasi-steady value (inertial period at 2°N is
about 14 days). As has been emphasized in the Intro-
duction, a simulation of the equatorial mixed layer
yields a continuously deepening mixed layer; one needs
advection and/or pressure gradient terms to obtain a
steady state.

In all the simulations performed in the second series,
only a mild effect of rotation on MLD was found,
within 10%. As expected from the theory, the mixed
layer was deeper for easterly winds and shallower for
westerlies (since the results for westerlies are quanti-
tatively similar to easterlies, they are not shown here).
These tendencies are similar to those of Garwood et
al. (1985b) but the influence of rotation is substantially
less. Figure 1 compares an evolution of MLD with and
without the effect of rotation for three latitudes, 0°, 2°
and 4°N, and for the longitude 160°W (only the results
for these particular locations are shown here. Other
runs provided similar results.). One can see that in
both cases the MLD oscillates with inertial frequency
and with decreasing amplitude and tends to reach a
steady state. Figure 2 compares vertical profiles of zonal
and meridional velocities, U and V, at 2°N (the results
for 4°N are qualitatively similar and, therefore, not
shown ). Notice a small difference between the profiles
in the bulk of the mixed layer which disappears towards
_ the bottom of the layer, where effects of rotation are
limited by ambient stratification. Vertical profiles in
the case with rotation are slightly flatter but the differ-
ences between the two cases are, again, well below 10%.
The flattening of the velocity profiles and consequent
decrease in the production of turbulence energy are

probably behind the decrease in turbulence energy in
rotational case as shown in Fig. 3. Nevertheless, in this
case, too, the differences between rotational and non-
rotational cases barely reach 10%. Recall again that
limited effect of rotation on oceanic mixed layers is
related to the influence of stable stratification in lim-
iting the turbulence macroscale, /, as dictated by the
constraint (12). Thus, for stably stratified flows, the
effect of rotation, at least in the geophysical context,
appears to be rather small, a conclusion that differs
from that of Garwood et al.

The Garwood et al. (1985b) analysis of the equa-
torial mixed layer is based on a vertically integrated
one-dimensional model of the turbulence energetics in

U (em/s)

5 10

=z
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/2
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&

FUVEED SN U RN YN AN TR SN S T AN SN SRS S WY N0V Y S SO R N S

10 5 5 10
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FIG. 2. As in Fig. 1 but mean velocity profiles with and without
rotational effects on turbulence.
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FIG. 3. As Fig. 1 but turbulence kinetic energy profiles with
and without rotational effects on turbulence.

the presence of rotational terms, a direct extension of
carlier Garwood mixed layer model for higher latitudes
(Garwood 1977, 1979). Thus the resulting expression
for MLD is similar to that for higher latitudes except
that the Ekman length scale, Lg = u,/ f, is replaced by
L, in the expression, leading to

MLD o 1/(L7" + L,™")

for equatorial regions. At the equator this yields a finite
MLD; however the mean momentum equation does
not possess a steady state if Ly = oo (see Fig. 1) and
the flow is horizontally homogeneous.

7. Concluding remarks

This study demonstrates that rotational effects are
sensitive to local flow characteristics including the local
turbulence structure. It is for this reason that stable
stratification tends to suppress rotational effects,
through its influence on the local turbulence macro-
scale. Other generalizations can also be made. For ex-
ample, rotation imparts the eddy viscosity with ten-
sorial properties. Nonzero f, makes diagonal terms of
this tensor unequal, whereas f causes off-diagonal
terms to be nonzero. The general tendency is for non-
zero f to reduce the turbulence intensity. The effect
of £, can however be both stabilizing or destabilizing,
leading to a decrease or increase of mixing, respectively.
However, sufficiently strong “destabilizing” f, can de-

crease and eventually suppress turbulent mixing in

neutral flows (see appendix A). Also, momentum con-
siderations play an important role in mixed layer evo-
lution, and, therefore, we believe that models that ig-
nore this do not adequately represent the mixed layer
physics. Energy considerations are but only a part of
the story. )

In the presence of significant stratification as in
oceanic boundary layers, rotational effects are inhibited
by stable stratification. Since geophysical mixed layers
are invariably capped by stably stratified regions, ro-
tational effects tend to be small overall. However, there
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can be non-negligible changes in the internal structure
of these layers.

It is possible to establish Monin-Obukhov type sim-
ilarity laws for rotational effects, with the rotational
length scales, L, and L,, taking the place of the Monin-
Obukhov scale for stratification.

The model presented here offers a self-consistent
framework for studying complex turbulent flows that
result when both rotational and stratification effects
are included. It should therefore be of potential use in
both geophysical and engineering applications.

Finally, one of the main emphases of this paper has
been oceanic mixed layer evolution under zero or a
stable buoyancy flux. The numerical simulations re-
ported in the section 6 do not support the conclusions
reached by Garwood et al. (1985b), as they do not
reveal a dramatic effect of rotation on the depth of the
mixed layer, due to stable stratification typical of the
equatorial Pacific. Fernando (1987) commenting on
Garwood et al. hypothesis has also questioned the im-
portance of the rotational effects for the mixed layer
turbulence. However, under a destabilizing buoyancy
flux, such as that which occurs during winter cooling
and diurnal cycle, the effects could be larger, although
stable stratification capping the mixed layer would still
tend to suppress these effects locally. Quantification of
these effects is however beyond the scope of this paper.
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APPENDIX A
Effects of Rotation on Neutral Flows

In several simple cases pertaining to neutral flows,
Egs. (16)-(19) can be solved analytically to reveal
modification of the relations between Reynolds stress
and mean shear in the presence of rotation. This type
of flow is important in engineering applications, par-
ticularly in rotating turbomachinery, and aerodynamics
(Lakshminarayana 1986). Here we shall present only
a brief analysis of the effects of rotation on neutral
flows; more exhaustive study is the subject of a com-
panion paper (Galperin and Kantha 1989). Two
classes of neutral flows (Gy = 0) will be considered
when either Ro, ™' = 0 or Ro, ™' = 0.
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a. The case when Ro,™" = 0

Equations (36), (37) reduce to

—Uuw = SMUURu + SMUVR’D, (Al)
—w = SMVURU + SMVVRU, (A2)

where
Syuvv = B17'3/(1 +94,> Ro, %), (A3a)

Sy = 34,B; 73 Ro,”' /(1 + 94,2 Ro,72), (A3b)
(A3c)
(A3d)

the matrix S, is antisymmetric and its denominator
is insensitive to the sign of Ro,. Also, it does not ex-
plicitly depend on the mean shear. The presence of
nonzero Sy describes intercomponent momentum
exchange in the mean flow due to rotation. Increasing
rotation will decrease vertical transport until turbulence
is completely suppressed. Local equilibrium analysis
reveals that turbulence can exist for

Suvu = —Suuv,

Suvv = Syuu;

IRr,| <(94,2B,72%)712=0.923, (A4)
where s
erE_——s A5
U av\?
2 ———
G (az) +(az). (A6)

The parameter, Rr,, can be interpreted as a rotational
Richardson number, since it plays a role similar to that
of the Richardson number in stratified flows.

The horizontal momentum equations for this class
of flows admit a complex form with a complex eddy

viscosity:
v ] v
— 4+ ———(ISM ) (A7)
at
where
Sy = Smuv — iSuuvs (A8)
V=UH+iV. (A9)
L;. The case when Roz‘7 =0
Equations (36), (37) reduce to
—uw = SyyRu, (A10)
—ow = SyvRv, (All)
where ‘
SMU = 81—1/3/[1 + 36A12 Roy"l(Ru + ROy"l)],
(Al2a)
B;7'3[1 +94,>Ro, "(Ru + 4 Roy")]
Suy =

1+ 45A12Roy“(Ru +Ro, ™)
+ 3244,* Ro, "2 (Ru + Ro, ™!)?
(A12b)
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As Eqgs. (A12a,b) indicate, the vertical exchange coef-
ficients, Sy and Sy, depend explicitly on the mean
zonal shear, Ru. Let us consider the cases of a purely
zonal flow, in which Rv = 0. It will be useful for the
following discussion to re-write equations for u?, w?
and uw obtained using Egs. (16), (18), (24), (25) and
(27):

— 1 64,
u?=-(1—-—=|— 64,uwRu — 64, Ro, 'uw,
3 B,
(A13)
— 1 64, —
w? = 3- (l - }T) + 64, ROy uw, (A14)
—-uw = 3A,[ w2(1 + Rr,) — u? Rr, — Ci]Ru,
(Al5)
where
Ro, ™! £ .
= = — 1
Ry = e “avez  (A1®)

is another rotational Richardson number. Equations
(A10) and (A15) suggest a different form for the eddy
viscosity, Syu:

Smv = 34,[W (1 + Rr)) — u? Rr, — Ci].  (A17)

Equations (A13)-(A15) show that uw not only redis-
tributes energy between u? and w?, as was noted by
Garwood et al. (1985a), but, in turn, u” and w? feed
back on uw, the effect missing in Garwood et al.
(1985a) since they retained Coriolis terms in the equa-
tions for the components of turbulence energy only.
This feed-back is an important component of the effect
of rotation but has not been given enough attention (a
brief discussion of the issue can be found in Hunt and
Joubert 1979). To make the analysis simpler, we shall
invoke the approximation of local equilibrium:

—uwRu = 1/B,. (A18)

This approach is similar to the one used by Mellor
(1975) who studied the effect of streamline curvature
on turbulence and So (1975) who also included the
effect of spanwise rotation.

It can be shown that S, takes the form

Syu = B, 7'3[1 — 364,2B,7* Rr, (1 + Rr})].
(A19)

This expression is similar to that derived by So (1975).
Swyu is non-negative if

~1.18 <Ry, < 0.18, (A20)

which establishes the criterion of existence of turbu-
lence for the case under consideration. Equations (A13)
and (A14) can be rewritten as

— 1 124,\ , 64

2= + +24 A21
u 3(1 B ) 5 R (A2D)
— 1 64,\ 64

7 _ 1 _ 1y 1
w 3( B ) 5, R (A22)
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One can see that as Rr, varles in tl the range given by
inequalities (A20), both u? and w? vary in the range
[0.163, 0.615], with u? increasing and w? decreas-
ing with increasing Rr, . For positive Rr,, the eddy vis-
cosity, Syu, given by Eq. (A17), decreases until it be-
comes zero at approximately Rr, = 0.18. On the other
hand, when Rr, decreases below zero, Sy will increase
until Rr, reaches the value of — O Sat wh1ch the energy
is dlstrlbuted equally between 12 and w?; at this point
u?=w?=0.3 389 As Rry decreases further the contri-
butions of #? and w? to Sy switch causing Sy to
decrease again until it becomes zero at approximately
Rr, = ~1.18. This behav1our of Sy is the direct result
of the feed back of u? and w? on uw, Eq. (A15). In
Fig. Al, Syu, u? and w?, given by Egs. (A19), (A21)
and (A22) are presented as functions of Rr,. One can
see that Syy is symmetrical about the axis Rr, = —0.5,
and u2%, w? are mirror images of each other. Positive
Rr, reduces Sy and is therefore stabilizing. However,
negative Rr, can be both destabilizing and stabilizing.
Figure A1 shows both the stabilization and destabili-
zation regions.

The effect of spanwise rotation has been analyzed
by earlier authors in terms of a rotation Richardson
number defined as Ri = Rr,(1 + Rr,). This definition,
however, provides the same value of Ri in the two dif-
ferent flow situations described above, characterized
by two different Rr,, one of which is positive and the
other is negative, and therefore masks the effect of re-
stabilization. On the other hand, Rr, is a monotonic
function of the flow, and it does reveal the effect of re-
stabilization. Besides it has a more direct analogy with
the stability parameter in Monin—Obukhov similarity
theory, as will be shown shortly.

Consider now the case of the constant flux wall re-
gion characterized by local equilibrium. In this region,
the Reynolds stress can be expressed as follows:

—uw = u,?cosa = qlSMUT,’-; , (A23)
T T T ' T 1] T
Smu
8r l E
w/q? é/ ‘ \c Viq?
6%\\\ S l Q};\ /_
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FIG. Al. Variation of nondimensional eddy viscosity and com-
ponents of turbulence kinetic energy in a spanwise rotating flow.
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FIG. A2. Stability function, ®,u(Rry),
in a spanwise rotating flow.

where uw is now a dimensional variable. The local
equilibrium assumption for this case is

—uwg-q Uu, COS —"—"gi
oz “%z B’

where we assume / = xz near the wall. Equation (42)
provides for this case

U u,

3z = :; ®ruu($y) cosa,

(A24)

(A25)

where a = 0 for westerlies and o« = 7 for easterlies.
Substitution of Egs. (A19), (A24)and (A25)in (A23)
yields:

B, V382, — 36;112 $ ®auu
- morai - S g0, (a2
where
&= ZZ; ’
L,= x—fy cosa.

The rotational length scale, L,, is positive for westerlies
which leads to a stabilization of the mixed layer while
negative, destabilizing values of L, are associated with
easterlies. Rotational Richardson number, defined by
(A16), can be written as

5,
Brou($y)’

and ®,uu( ;) as a function of Rr, becomes
®rpu(Rr,) = [1 — 364,°B,723 Rr, (1 + Rr, )] %4,
(A28)

Figure A2 shows ®,yu(Rry) in the range allowed by
inequalities (A20). ®ppu(Rry) is symmetric with re-

Rr, = (A27)
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F1G. A3. Stability function, ®,,(¢), in a spanwise rotating flow.

spect to the axis Rr, = —0.5. Figure A3 compares sta-
bility functions, ®,,p0( {,) and (), the former being
calculated for a neutral rotating zonal flow and the
latter-—for a stratified nonrotating flow, where both
stability parameters are denoted as { for convenience.
One can see that both curves are similar for { = 0,
where flows are stabilized, and for —0.28 < ¢ < 0, where
flows are destabilized. Under stronger destabilizing
conditions, when { < —0.28, there is a large difference
between the curves, due to the effect of rotational re-
stabilization. If large negative values of {, comparable
with the ones typical for stratified flows, were easily
attainable in geophysical situations, the effect of rota-
tion on such flows would indeed be dramatic. The ev-
idence of such an effect may yet be found in rapidly
rotating systems with a relatively small rotational length
scale, L,.

An estimation of the thickness of geophysical con-
stant flux layers with arbitrary stratification, z,, was
given by Monin and Yaglom (1971, p. 406) as z,
=~ 0.01u,/f, as was also obtained by Galperin and
Hassid (1984); one stipulates that, in the constant flux
layer, the momentum flux can change by no more than
20% of its value at the surface. Using this and the def-
inition of L,, Eq. (45), an estimate of { can be made:

Zp fy
~— =001«

$y I, I;

¢ being the latitude. For different latitudes one will
find {, = 0.004, 0.023, 0.046 and 0.076 for ¢ = 45°,
10°, 5° and 3°, respectively, which indicates that the
effect of rotation on constant flux layers is fairly small
except in the close vicinity of the equator, ¢ =~ 3°. At
smaller latitudes, for the atmospheric boundary layer,
assuming u#, ~ 0.4ms™', f, ~ 10™*s™!, one finds L,
~ 10 km whereas the constant flux layer is well below
1 km. This estimate is based on the data of Klebanoff
(1954) for a nonrotating boundary layer over a flat

= (.01« cote,
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plate, which roughly corresponds to the situation near
the equator where f — 0. According to these data, if
the same criterion as before, i.e., 20% change in the
surface momentum flux, is used for identification of
the constant flux layer, then its thickness will reach
about 30% of the boundary layer depth. Although this
estimate is obtained for neutral flows, we shall assume
that it can be used as an approximation for the stratified
flows as well.

For the equatorial ocean, with #, ~ 0.03 m s~ and
S, = 107*s7!, we find L, ~ 750 m whereas the con-
stant flux layer barely reaches 50 m. All these estimates
show that the constant flux sublayer of planetary
boundary layers is only weakly affected by rotation and
the absolute value of ¢, is usually well below 0.1.

APPENDIX B
Analysis of the Matrix Equation (39)
Given an Eq. (39)

X = (1 + Ro,"'VA, + Ro, 'VA,)"'VB, (B1)

we look for conditions when this equation can be ap-
proximated as

X ~ (I — Ro,”'VA, — Ro,"'VA,)VB. (B2)

Thinking of matrices as of linear operators in vector
space, one may recall that the first order expansion
(B2) is valid if the norms of Ro, "'VA,, Ro,"'VA, are
much smaller than the norm of | (=1), or

IRo, "' IIVA,ll, |Ro."'|[IVA,|l < 1. (B3)

Equation (B2) is substantially simpler than (B1) since
it requires inversion of only one matrix, Ay.

All the operators, Ao, A,, A, are continuous and,
therefore, they are bounded (Kolmogorov and Fomin
1968). Also, for each of the operators a constant C;
does exist, such that

Al < CIIfIl i=1,2,3 or i=0,yz

(B4)

where f is an arbitrary vector and || - || denotes a norm.
The minimum number C; satisfying the inequality (B4)
is defined as the norm of the operator A; and is denoted
as |A|]. For such a definition of |A| it may be proved
that

LYA| I
wiro 171
(Kolmogorov and Fomin 1968).

If we choose to use the Hermitian norm for vectors
defined as :

Al = (B5)

1Al = A2 DY, (B6)

then it can be shown that the norm of any matrix A
consistent with the definition (BS) will be given by

Al = (lAA*])!'2 = |\ (B7)
(Varga 1962).
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FIG. B1. Matrix norms as given by Eq. (B7)
for weak (a) and strong (b) shear.

In this equation, |A|na.x is the maximum absolute
value of the eigenvalues of the Hermitian matrix, AA*,
where * means Hermitian conjugation. Equation (B7)
relates a matrix norm with fundamental characteristics
of the matrix such as eigenvalues and makes it advan-
tageous over other definitions. Besides, it gives the
minimum value of the constants C; in inequality (B4)
which is essential in infinitesimal expansion of Eq.
(B1). Therefore, Eq. (B7) was used in the present work
as a definition of a matrix norm.

The matrices, VA, and VA,, were calculated sym-
‘bolically, via REDUCE, using Egs. (31)-(33). Their
norms are functions of Gy, Ru and Rv. The range of
change of Gy can be estimated from inequality (12)
for stable case and from Galperin et al. (1988) for un-
stable case without rotation:

—(0.53)* = —0.28 < Gy < 0.0233.  (B8)

A series of numerical evaluations of the norms, [VA, ||
and |VA,|, has been performed with Gy varying in
the range (B8) and for different Ru and Rv. Some of
the results are shown in Fig. Bl for weak (Ru = Rv
= 0.05) and strong (Ru = Rv = 0.5) shear. One can
see that under strong stable stratification both [[VA, |
and [|VA,| vary around 10. Both norms increase while
approaching the range of the neutral stratification and
keep growing rapidly with unstable density stratifica-
tion. Under strong unstable conditions, | VA, || reaches
values about 100 and ||VA,|| does not exceed 30.

REFERENCES

Andre, J. C.,, G. De Moor, P. Lacarrere, G. Therry and R. du Vachat,
1978: Modeling the 24 hour evolution of the mean and turbulent
structures of the planetary boundary layer. J. Atmos. Sci., 35,
1861-1883.

Bradshaw, P., 1969: The analogy between streamline curvature and
buoyancy in turbulent shear flow. J. Fluid Mech., 36, 177-191.

——, 1973: Effects of streamline curvature on turbulent flow.
AGARDograph, 169.

Clancy, R. M, K. D. Pollak and J. A. Cummings, 1988: Technical
description of the optimum thermal interpolation system (OTIS)
Version 1: A model for oceanographic data assimilation. FNOC
Techn. Note 422-86-02, Fleet Numerical Oceanography Center,
Monterey, CA.

Crawford, W. T., 1986: A comparison of length scales and decay

B. GALPERIN, A. ROSATI, L. H. KANTHA AND G. L. MELLOR

915

times of turbulence in stably stratified flows. J. Phys. Oceanogr.,
16, 1847-1854.

Dickey, T. D., and G. L. Mellor, 1980: Decaying turbulence in neutral
and stratified fluids. J. Fluid Mech., 99, 13-31.

Dillon, T. M., 1982: Vertical overturns: a comparison of Thorpe and
Ozmidov length scales. J. Geophys. Res., 87, 9601-9613.
Dougherty, J. P., 1961: The anisotropy of turbulence of the meteor

level. J. Atmos. Terr. Phys., 21, 210-213.

Ellison, T. H., 1957: Turbulent transport of heat and momentum
from an infinite rough plane. J. Fluid Mech., 2, 456-466.
Fernando, H., 1987: Comments on “Wind Direction and Equilibrium
Mixed-Layer Depth: General Theory.” J. Phys. Oceanogr., 17,

169-170.

Galperin, B, and S. Hassid, 1984: A two-layer model for the baro-
tropic stationary turbulent planetary boundary layer. Israel J.
Technol., 22, 233-242.

——, and L. H. Kantha, 1988: A turbulence model for rotating flows.
AlIAA T, 27, 750-757.

——, L. H. Kantha, S. Hassid and A. Rosati, 1988: A quasi-equilib-
rium turbulent energy model for geophysical flows. J. Atmos.
Sci., 45, 55-62.

Gargett, A. E., and T. R. Osborn, 1981: Small-scale shear measure-
ments during the Fine and Microstructure Experiment (FAME).
J. Geophys. Res., 86, 1929-1944.

Garwood, R. W., 1977: An oceanic mixed-layer model capable of
simulating cyclic states. J. Phys. Oceanogr., 7, 455-471.

——, 1979: Air-sea interaction and dynamics of the surface mixed
layer. Rev.-Geophys. Space Phys., 17, 1507-1524.

——, P. C. Gallacher and P. Muller 1985a: Wind direction and equi-
librium mixed layer depth: General theory. J. Phys. Oceanogr.,
15, 1325-1331.

——, P. Muller and P. C. Gallacher 1985b: Wind direction and equi-
librium mixed layer depth in the tropical Pacific Ocean. J. Phys.
Oceanogr., 15, 1332-1338.

Halleen, R. M., and J. P. Johnston, 1967: The influence of rotation
on flow in a long rectangular channel—an experimental study.
Mech. Eng. Dept., Rep. MD-18, Stanford University, Stanford,
CA.

Hassid, S., and B. Galperin, 1983: A turbulent energy model for
geophysical flows. Bound.-Layer Meteor., 26, 397-412.

Hopfinger, E. J., 1987: Turbulence in stratified fluids: a review. J.
Geophys. Res., 92, 5287-5303.

Hunt, I. A., and P. N. Joubert, 1979: Effects of small streamline
curvature on turbulent duct flow. J. Fluid Mech., 91, 633-659.

Itsweire, E. C., K. N. Helland and C. W. Van Atta, 1986: The evo-
lution of grid-generated turbulence in a stably stratified fluid.
J. Fluid Mech., 162, 299-338.

Johnston, J. P., R. M. Halleen and D. K. Lezius, 1972: Effects of
spanwise rotation on the structure of two-dimensional fully de-
veloped turbulent channel flow. J. Fluid Mech., 56, 533-557.

Kantha, L. H., O. M. Phillips and R. D. Azad, 1977: On turbulent
entrainment at a stable density interface. J. Fluid Mech., 79,
753-768.

——, A. Rosati and B. Galperin, 1989: Effect of rotation on vertical
mixing and associated turbulence in stratified fluids. J. Geophys.
Res., 94, 4843-4854. .

Kato, H., and O. M. Phillips, 1969: On the penetration of a turbulent
layer into a stratified fluid. J. Fluid Mech., 60, 467-480.

Klebanoff, P. S., 1954: Natl. Advisory Comm. Aeronaut. Tech. Notes
No. 3178.

Kolmogorov, A. N., and S. V. Fomin, 1968: Elementy teorii funktsii
i funktsionalnogo’ analiza. Izdatelstvo “Nauka” (in Russian)

Koyama, H., S. Masuda, 1. Abriga and I. Watanabe, 1979: Stabilizing
and destabilizing effects of Coriolis force on two-dimensional
laminar and turbulent boundary layers. J. Eng. Power, 101,
23-31.

Lakshminarayana, B., 1986: Turbulence modeling for complex shear
flows. AIAA J., 24, 1900-1917. . )

Leuck, R., W. R. Crawford and T. R. Osborn, 1983: Turbulent dis-
sipation over the continental slope off Vancouver Island. J. Phys.
Oceanogr., 13, 1809-1818.

Martin, P. J., 1985: Simulation of the mixed layer at OWS November
and Papa with several models. J. Geophys. Res., 90, 903-916.



916

Mellor, G. L., 1973: Analytic prediction of the properties of stratified
planetary surface layers. J. Atmos. Sci., 30, 1061-1069.

——, 1975: A comparative study of curved flow and density-stratified
flow. J. Atmos. Sci., 32, 1278-1282.

——, and T. Yamada, 1982: Development of a turbulence closure
model for geophysical fluid problems. Rev. Geophys. Space Phys.,
20, 851-875.

Miyakoda, K., and J. Sirutis, 1977: Comparative integrations of global
models with various parameterized processes of subgrid-scale
vertical transports. Beitr. Z. Phys. Atmos., 50, 445-487.

Monin, A. S., and A. M. Yaglom, 1971: Statistical Fluid Mechanics:
Mechanics of Turbulence. The MIT Press, 769 pp.

Niller, P. P., 1975: Deepening of the wind mixed layer. J. Mar. Res.,
33, 405-422.

Ozmidov, R. V., 1965: On the turbulent exchange in a stably stratified
ocean. Atmos. Ocean Phys., 8, 853-860.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 19

Phillips, O. M., 1977: The Dynamics of the Upper Ocean, second ed.
Cambridge University Press, 336 pp.

Price, J. F,, E. A. Terray and R. A. Weller, 1987: Upper ocean dy-
namics. Rev. Geophys., 25, 193-203.

Rosati, A., and K. Miyakoda, 1988: A GCM for upper ocean sim-
ulatmn J. Phys. Oceanogr., 18, 1601-1626.

So, R. M. C,, 1975: A turbulence velocity scale for curved shear
flows. J. Fluid Mech., 70, 37-57.

Stillinger, D. C., K. N. Helland and C. W. Van Atta, 1983: Experi-
ments on the transition of homogeneous turbulence to internal
waves in a stratified fluid. J. Fluid Mech., 131, 91-122.

Varga, R. S., 1962: Matrix iterative analysis. Prentice-Hall, 322 pp.

Watmuff, J. H., H. T. Witt and P. N. Joubert, 1985: Developing
turbulent boundary layers with system rotation. J. Fluid Mech.,
157, 405-448.

Zeman, O., and H. Tennekes, 1975: A self-contained model for the
pressure terms in the turbulent stress equations of the neutral
atmospheric boundary layer. J. Atmos. Sci., 32, 1808-1813.



