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ABSTRACT

This paper addresses the question of where we now stand with respect to detection and attribution of an anthropo-
genic climate signal. Our ability to estimate natural climate variability, against which claims of anthropogenic signal
detection must be made, isreviewed. The current situation suggests control runs of global climate models may give the
best estimates of natural variability on aglobal basis, estimates that appear to be accurate to within afactor of 2 or 3 at
multidecadal timescales used in detection work.

Present uncertainties in both observations and model-simulated anthropogenic signals in near-surface air tem-
perature are estimated. The uncertainty in model simulated signalsis, in places, as large as the signal to be detected.
Two different, but complementary, approaches to detection and attribution are discussed in the context of these
uncertainties.

Applying one of the detection strategies, it isfound that the change in near-surface, June through August air tem-
peraturefield over thelast 50 yearsis generally different at asignificancelevel of 5% from that expected from model -
based estimates of natural variability. Greenhouse gases al one cannot explain the observed change. Two of four climate
modelsforced by greenhouse gases and direct sulfate aerosols produce results consistent with the current climate change
observations, while the consistency of the other two depends on which model’ s anthropogenic fingerprints are used.
A recent integration with additional anthropogenic forcings (the indirect effects of sulfate aerosols and tropospheric
ozone) and more compl ete tropospheric chemistry produced results whose signal amplitude and pattern were consis-
tent with current observations, provided the model’ s fingerprint is used and detection carried out over only thelast 30
years of annually averaged data. This single integration currently cannot be corroborated and provides no opportunity
to estimate the uncertainties inherent in the results, uncertainties that are thought to be large and poorly known. These
results illustrate the current large uncertainty in the magnitude and spatial pattern of the direct and indirect sulfate
forcing and climate response. They also show detection statements depend on model-specific fingerprints, time pe-
riod, and seasonal character of the signal, dependencies that have not been well explored.

Most, but not all, results suggest that recent changesin global climateinferred from surface air temperature arelikely
not due solely to natural causes. At present it is not possible to make a very confident statement about the relative con-
tributions of specific natural and anthropogenic forcings to observed climate change. One of the main reasons is that
fully realistic simulations of climate change due to the combined effects of all anthropogenic and natural forcings mecha-
nisms have yet to be computed. A list of recommendations for reducing some of the uncertainties that currently hamper
detection and attribution studiesis presented.
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1. Introduction

a. Background

The recent meetingsin Kyoto, Japan, and Buenos
Aires, Argentina, gave aclear signal that many of the
world’s governments are taking seriously the possi-
bility of substantial changesin planetary climate due
to human activities. Y et there has been to date no com-
pletely convincing demonstration that the anthropo-
genic effects predicted by advanced climate models
have been unambiguously detected in observations.
Thereareanumber of credible studies suggesting such
asignal has been detected. But al such satementshave
been accompanied by major assumptions and substan-
tial caveats. And only recently are detection studies
beginning to take account of the inherent model/data
uncertainties. The cautious statement by the Intergov-
ernmental Panel on Climate Change (IPCC-95;
Houghton et al. 1996) that “the balance of evidence
suggests a discernible human influence on climate”
admirably summarizes the present ambivalent scien-
tific consensus.

Theburden isclearly on the scientific community
to demonstrate that their computer scenariosfor future
climate are redlistic. A convincing way to do thisis
through early detection in the observations of an an-
thropogenic climate change signal predicted by these
state-of-the-art climate models. Until such detection
has been convincingly accomplished and the source
of some part of the climate change signal clearly at-
tributed to anthropogenic sources, there will be some
who simply either do not take the possibility of
anthropogenically induced climate changes seriously
or who will useit as an excuse for considering reme-
dial action. Further, the detection and attribution state-
ments need to be supported by the mgjority of the
scientific community. Itistoward thetwin goals of de-
tection and attribution that the current report is
directed.

b. Overview of detection and attribution methods
Detecting climate change and then attributing it to
specific physical mechanismsisbasically astatistical
problem, onethat can be thought of interms of famil-
iar regression analysis. Climate models are forced by
“scenarios’ of how anthropogenic gases have changed
in the past and are projected to change in the future.
In conventional detection schemes, onetakesthetime-
dependent patterns of spatial change in, say, near-
surface air temperature (SAT) from these model runs
as the “anthropogenic signal.” The observations of
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SAT are searched for the model-predicted spatial pat-
tern of change. The current detection methods, both
conventional and Bayesian (section 4), requirethat the
model-predicted signal, in spatial pattern and ampli-
tude, and its change with time have acceptable coun-
terparts in the observations before detection and
attribution (DA) can be claimed. Inthiscase, “ accept-
able” meansthat predicted and observed changes are
“consistent” to within their (separately) estimated or
assumed uncertainties. Most detection methodsin use
today are “optimal” in the sense that they define, via
arotational transform, the searched-for signal patterns
to be as distinguishabl e as possible from the patterns
of natural climate variability. This can simply be
thought of as a prefiltering operation of the data prior
to application of what are essentially regression tech-
niques (conventional approach) or a set of subjective
prior/posterior assumptions viaaBayesian approach.
The contrast between these two approachesto DA is
elucidated in section 4a.

c. IPCC 1995 report

A recent summary of work aimed at detecting an
anthropogenic signal appeared in chapter 8 of the 1995
IPCC report (Santer et al. 1996a). We will not repeat
the full discussion but note only the key results and
some of theissues that were raised.

The report stated that many previous analyses of
global-mean near-surface temperature had concluded
that the changes observed over the last century were
unlikely to be due to natural variability alone. It was
pointed out, however, that it isvery difficult to unravel
cause—effect relationships in studies of global-mean
changes. Thisis due to uncertaintiesin our estimates
of internally generated and externally forced natural
variability (discussed in section 2) and in our estimates
of the forcing and response to anthropogenic factors.
Given these uncertainties, many combinations of natu-
ral and/or anthropogenic effects could yield similar
global-mean changes.

It was noted that detection and attribution studies
had made major advances since those discussed inthe
first IPCC report in 1990 (Wigley and Barnett 1990).
The advances were judged to be in three main areas:
improvementsin model -based estimates of an anthro-
pogenic signal, better understanding of the size and
characteristics of natural climate variability, and in-
creasing application of “fingerprint” methodsthat fa-
cilitated attribution. Whileinitial detection studieshad
focused almost exclusively on global-mean changes,
or had searched for “greenhouse gas only” signals,
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some of the work reported on in chapter 8 utilized
pattern-based information from more realistic sce-
narios of anthropogenic climate change. These in-
volved simultaneous changesin both greenhouse gases
(GHGSs) and the direct scattering effects of sulfate aero-
sol particles (SUL). Some of these studies claimed to
have detected the model -predi cted patterns of response
to GHGs and sulfate aerosol direct effectsin observed
records of near-surface temperature change (e.g.,
Santer et al. 1995; Hasselmann et al. 1995; Mitchell
et al. 1995; Cubasch et al. 1996; Hegerl et al. 1996,
1997). But each of these studies also noted very large
uncertai nties associated with their conclusions. A sum-
mary list of these uncertaintiesin the IPCC report sug-
gested that the situation was one where an expected
signal appeared to be just starting to emerge from
(natural) noise, yet was not sufficiently largeto be seen
clearly given the uncertaintiesinvolved. This conclu-
sion was neverthel ess somewhat more positive than the
1990 IPCC’s detection chapter (Wigley and Barnett
1990), whereit was concluded that no definitive state-
ment could be made regarding identification of a hu-
man-induced signal in the observed climate records.

d. Outstanding problems and outline

The unresolved problems that faced the detection
community after the IPCC report are briefly summa-
rized below. It is this group of problems that the
present authors have set about to address and that con-
stitute the outline for the remainder of the paper.

1) ESTIMATING NATURAL VARIABILITY

Any attempt at detection requires that the ampli-
tude, aswell asthe temporal and geographic patterns
of naturally occurring climate variability, be known
or estimated. Without such information, how can one
say that recent, observed changes are caused by hu-
man activities? They might well have occurred at an
earlier timein the historic record for reasons that had
nothing to do with human pollution. So in order to
claim detection of an anthropogenic climate impact,
the change must be significantly different than any
likely to befound in, say, the last 1000 years.

2) ACCOUNTING FOR UNCERTAINTIES

It is obvious that any observations used to detect
an anthropogenic signal will be attended by errors, or
uncertainties, as we shall refer to them. It is equally
clear that the models used to predict anthropogenic
impactswill also contain uncertaintiesdueto flawsin
their formulation and uncertaintiesin theway they are
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forced. Thesewill affect their predicted signals, whose
signature we wish to find in the observations. Both
classes of uncertainty have only begun to be consid-
ered in the most current detection work. Basically, we
need to know if we can detect a change in climate,
given all the model/data uncertainties. If we can say
climate has changed, can we then attribute the change
to specific forcing mechanisms, given the level of
model/data uncertainty?

3) METHODOLOGY

The detection methods reported in IPCC-95, chap-
ter 8, essentially sought to find in the observations
some type of model signal that represented a spatial
pattern of change in, say, near-surface temperature.
Thetemporal characteristics of this spatial pattern, for
example, averaging interval, seasonal dependence,
etc., were not fully considered. Perhaps more funda-
mental, the detection issue was couched in arigid
framework that allowed no room for a priori assign-
ment of uncertainties on the signal and/or the dataused
to detect it. This excluded the use of potentially valu-
able qualitative climate change indices or events such
as glacier melting, seaice changes, etc.

We have investigated all three of the areas de-
scribed above. The remainder of the report describes
our current findingsin these areas. Thesefindings have
been incorporated into our detection strategy. This
improved strategy has been used to provide an assess-
ment, in the final sections, about our current confi-
dencein statementsthat an anthropogenic signal has,
or has not, been detected. Thisislargely based onin-
cluding the quantified uncertaintiesasfully aspossible
into one particular detection approach (Hegerl et al.
1997). Our results emphasize that future detection
approaches must focus more strongly on and include
the uncertainty estimatesif they are to be useful.

Asan aidtoreaders, each of thefollowing sections
(2-5) containsa“purpose” statement at its beginning
and “summary” statement(s) at its end. A superficia
overview of the paper can be obtained by reading these
parts alone. Sections 6 and 7 summarize the main re-
sults and suggested future research, respectively.

2. Estimating natural variability
To attribute an observed climate change to human
influence, it isfirst necessary to show that such acli-

mate changeisunlikely to have occurred naturally, for
example, has not occurred in the past. For purposes of
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this paper, we will confine our attention to climate
changesas manifest inthe SAT field, sinceit haslong,
near-global coverage. There are at least two sources
of natural variability in SAT: Internal interactions
within the climate system, such as ENSO, and exter-
nal forcing, for example, through changesin solar lu-
minosity or volcanic activity. Inthefollowing we shall
refer to both externally forced and internally induced
fluctuations as natural climate variability.

So how does one know what has happened before
industrialization? There are three general approaches
to answering this question. The most obvious ap-
proach isto look at the instrumental record of SAT,
the climate variabl e that has been best observed. One
can also look at paleoclimate proxiesor, dternatively,
use climate modelstoinfer “normal” climatic behav-
ior of SAT. Each of these approaches is discussed
below.

a. Instrumental records

Direct estimation of the natural variability of SAT
from actual observations has a number of problems.
With afew notable exceptions, local records are gen-
erally less than 100 yearsin length. As we shall see,
detection requires analysis over periods of the order
of several decades or more, so theinstrumental record
has only afew realizations of climate change on these
timescales. Thisis not adequate. Further, the instru-
mental record must be contaminated by an anthropo-
genicsignal if oneispresent. Attemptsto remove such
asignal have been made by Jones and Hegerl (1998),
among others (see also Wigley et al. 1998b). Such an-
thropogenic signal removal or “correction” leaves a
residual that can be attributed to natural variability.
Theresults show that the correctionsare asizablefrac-
tion of the signal itself, a highly unsatisfactory situa-
tion, especially when the correction depends on an
assumed model that itself may be uncertain (Fig. 1).

Theinstrumenta datamay also have biasesdueto
changing measurement methods/instruments. These
biases are often poorly documented. Althoughthey can
be as large locally as the currently expected anthro-
pogenic signal, it is believed that they have been ad-
equately corrected for inthe SAT dataset (Joneset a.
1999). Findlly, there are large expanses of the planet
where the observations are either scant or missing
altogether, especidly during the early part of this cen-
tury. Many of these areas are just where an anthro-
pogenic signal is expected to be most prominent. The
impact these data-void regions have on detection was
discussed by Wigley et al. (1998a). Detection and at-
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tribution studies remove these data-poor regionsfrom
the ssimulated signals so that only information from
data-adequate areasis used.

In summary, while instrumental data are margin-
aly adequate for validating climate models and first
detection efforts, they cannot be used for estimating
multidecadal or secular natural variability of SAT over
the last few centuries or more.

b. Paleoclimate proxies

Treerings, coral records, and ice cores, among oth-
ers, have been suggested as proxies of past climates.
They certainly havethelonger records, extending back
in many cases 500-1000 years, required to estimate
natural climate variability on multidecadal scales. And
amost al of thisrecord is before there was any pos-
sible contamination from anthropogenic sources.
Indeed, the proxies appear to offer the only means of
directly ng natural variability prior to instru-
mental records.

Unfortunately, there are numerous problems with
using paleodatato estimate past climate changesin the
SAT. The proxies are largely indicators of local cli-
mate change and are sparsaly scattered over the globe.
Perhaps more importantly, they are generally not per-
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Fic. 1. Annual-mean observed global temperatures (expressed
asanomaliesfrom 1861 to 1890) for 1856—1995 (gray histogram
and 10-yr Gaussian filter). The thick and thin smooth lines, re-
spectively, are the anthropogenic and greenhouse-gas-only fitted
responses (from Jones and Hegerl 1998). The model responses
come from Hegerl et al. 1997. The dotted and dashed lines, re-
spectively, arethe “residuals’ after extracting the anthropogenic
and greenhouse-gas-only signals from the 10-yr Gaussian
smoothed data.
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fect temperature indicators, but rather reflect a blend
of different climatic effects. For example, coral records
might demonstrate the combined effects of changesin
ocean temperature, precipitation and its runoff, sea
level changes, and turbidity of thewatersin whichthe
corals live. Dating uncertainties and low-frequency
distortion introduced in climate reconstructions for
trees, corals, and ice cores are also present in
pal eorecords (Jones et al. 1998).

Recent compilations of paleoclimatic data have
offered thefirst opportunity to analyzethistype of data
on a global scale. Straightforward comparisons via
cross-spectral analysis of the recent paleodatawith the
instrumental record show that most of the paleodata
are not simple proxies of temperature (Barnett et al.
1996; Jones 1998; Jones et al. 1998; see Table 1).
Indeed, only afew of the tree-ring records from mid-
to high-latitude sites can beinterpreted directly astem-
perature changes. Attempts by Jones et al. (1998) to
use these “good” records to construct a record of
Northern Hemisphere (NH) temperature over the last
five centuriesareshowninFig. 2. Also shownisadif-
ferent reconstruction created using afull compilation
of proxy data (Mann et al. 1998). The disparity be-
tween these reconstructions at some times over the
last 400 yearsis as large as the observed changesin
global temperature over the last 100 years. Some of
the differences are due to different compilations of
proxy data and also differencesin the seasons recon-
structed, but most of the disparity ssimply represents
uncertaintiesin our knowledge of past changesin NH
averagetemperature.

The general conclusion from the above, and other
studies, isthat for afew regions and some proxies, re-
liable reconstructions of temperature change on the
required decadal timescales can be produced. The
number, however, is quite limited in relation to the
volume of paleodataavailable. At present, it is debat-
able whether there is enough temperature proxy data
to be representative of hemispheric, let alone global,
climate changes given the lack of large spatial scale
coherence in the data. Y et the few good records that
areavailable serve as strong checks on effortsto model
natural climate variability (Jones et al. 1998).

c. Climate models

Global climate models, operated in a control-run
mode, may offer the best chanceto estimate natura vari-
ability. Model smulations can belong and provide uni-
form global coverage of many different variables, just
what is needed to estimate internal climate variability.
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NORTHERN HEMISPHERE
PROXY TEMPERATURE RECONSTRUCTIONS
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Fic. 2. Comparison of three Northern Hemisphere proxy tem-
perature reconstructions with instrumental data on the same space
scale. Thethinnest lineisfrom Joneset a. (1998) and isbased on
asimple average of 10 NH proxy reconstructions. The next thin-
nest line (generally the highest) comes from a tree-ring density
reconstruction in Briffa(1998) using up to 400 seriesfrom the high
|atitudes and high elevations of the NH. The thicker lineisfrom
Mann et a.’s (1998) multiproxy assemblage. The thickest of all
linesisthe annual temperature average for the NH (based on both
the land and the marine components) for the period 1856—1998.
All lines have been smoothed with a 30-yr Gaussian filter and all
are expressed as anomalies from 1961 through 1990.

The major question here is, Can coupled global
climate models (CGCMs) accurately reproduce natu-
ral low-frequency variability in SAT (or any other
variable)? New studies, based on the recent observa-
tional record, suggest the answer to this question for
SAT isaqualified yes. For instance, power spectraof
global mean temperature from four different CGCMs!
agree moderately well with that of the observationsin
the frequency range corresponding to the averaging
times, 20-50 yr, used in detection studies (Fig. 3, and
Stouffer et al. 1999). However, the differencesin en-
ergy inthiskey frequency band still variesby afactor
of 2-3 to between models. The low number of degrees
of freedom and large error bandsin the spectral analy-
sis make more exact estimates impossible. Joint
eigenanalysis of multiple, long CGCM control simu-
lations, paleoproxies, and observations by Stouffer
et a. (1999), Barnett et a. (1996), and Jones et al.
(1998) suggest that the model s reproduce the observed
spatialtemporal structure of near-surface temperature

1 The GFDL model used here had R15 resolution. The new GFDL
model used later in the paper has R30 resolution.
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TaBLE 1. Cross-spectral analysis of paleoproxies and collocated observed near-surface temperatures.

Coherence squared: paleo vs. instrumental*

Period band (yr)

Data sour ce/
location Type 40 20 10 5 4 3 Correlation

Svalbard Ice 0.19 0.13 0.14 0.9 0.25 0.05 0.22
S. Greenland Ice 0.16 0.09 0.10 0.26 0.17 0.24 0.07
Crete Ice 0.26 0.48 0.50 0.24 0.54 0.43 0.50
Law Dome Ice 0.19 0.12 0.00 0.25 0.16 0.01 0.13
GB Reef 5 corals 0.46 0.19 0.31 0.26 0.09 0.33 0.18
GB Reef 10 corals 0.46 0.26 0.10 0.07 0.26 0.38 0.27
Galp. Island Cord 0.05 0.20 0.22 0.32 0.64 0.16 0.32
Kapoposa Coral 0.52 0.25 0.23 0.22 0.09 0.05 0.38
New Cal. Coral 0.40 0.40 0.47 0.36 0.31 0.08 -0.20
N. Treeline Tree 0.24 0.13 0.07 0.05 0.16 0.04 0.15
W.U.S. Tree/width 074 0.66 0.52 0.59 0.14 0.15 0.43
W.U.S. Tree/den 0.51 0.41 0.77 0.55 0.60 0.66 0.69
New Zealand Tree 0.17 0.12 0.39 0.27 0.23 0.90 -0.15
N. Fenno. Tree 0.63 0.45 0.43 0.36 0.56 0.73 0.72
N. Urals Tree 0.93 0.65 0.67 054 0.65 0.43 0.79
Jasper Tree 0.20 0.12 0.53 0.31 0.04 0.08 0.49
Tasmania Tree 0.66 0.50 0.13 0.05 0.54 0.20 0.55
Chile Tree 0.07 0.16 0.03 0.20 0.07 0.50 0.29
Argentina Tree 0.05 0.26 0.21 0.31 0.52 0.12 0.40
C. England Instru. 0.73 0.56 0.83 0.86 0.56 0.86 0.88
C. Europe Doc. 0.83 0.77 0.70 0.54 0.59 0.94 0.89

*Data from Jones et a. (1998), which also contains reference to paleo data sources. Underlined coherence squared values are

significant at the 95% level.

changes surprisingly well, although the pattern load-
ings between modelsand observationsal so varied here
by about afactor of 2—-3.

The major shortcomings found in these studiesis
atendency for the models to underestimate the mag-
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nitude of the largest spatial scalesof variability. This
isshownin Fig. 4 wherethe model data projected onto
itscommon EOF elgenstructuretypically havelessen-
ergetic eigenvalues than those obtained from the ob-
servations projected onto the same basis set. This
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could be due mainly to the fact
that the runs studied had no forc-
ing from either anthropogenic or
natural sources. When estimates
of solar and volcanic forcing are
added into the CGCM control
simulations, the underestimation
problemisreduced (e.g., Cubasch
etal. 1997). We shall seein sec-
tion 5 that smulations with these
CGCMs reproduce the near-
surface air temperature changes
of thelast 100 yearsrather well.

d. Summary

Claimsof detection of an an-
thropogenic climate change sig-
nal, for example, in the SAT
field, must compete against the
likelihood that the observed
changeis dueto natural causes.
It appearsthat our best estimates
of natural variability will come
from CGCMs, even if the vari-
ance levels can be determined

Power Spectrum Density

of Global Mean Annual Mean 2m Temperature

g
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Fic. 3. Power spectra of global-mean, annual temperatures from a number of coupled
model control integrations compared with that derived from observations. The model des-
ignators are explained in Table 3. The record lengths vary and so do the confidence limits.
In most cases, the confidence limits are large compared to differences between spectra. Note
the differencein energy in the 30-50-yr band, where most detection work is done, is of or-
der 2—4. See Stouffer et al. 1999 for additional details.

only to within a factor of 2-3.

Instrumental and pal eoproxy data

have serious shortcomings that preclude their use for
this purpose. However, thesel atter datatypes can pro-
vide valuablevalidation checks on the CGCMs, build-
ing up enough confidence in the modelsto use them for
estimates of natural variability in detection studies.

3. Uncertainties

Only recently has detection work paid serious at-
tention to the variety of uncertainties that attend the
observations and model projections of an anthropo-
genic signal. This section briefly discusses and illus-
trates several of the more significant uncertainties;
space limitations preclude amore detailed discussion
of thisimportant issue here. The impact of uncertain-
ties on detection statements will beillustrated in sec-
tion 5 by sensitivity testswith one particular detection
and attribution method.

a. Observational uncertainties

1) NEAR-SURFACE TEMPERATURE

Near-surface air temperature has been the major
variable used in prior detection studies becauseitisa
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fairly easy measurement that hasalong historical record
(e.g., Barnett et d. 1991; Santer et a. 1995; Hegerl et d.
1996). These data have been used to producetime se-
ries of changesin global and hemispheric mean tem-
peratures over the last 100 or so years. It is only
recently that the magnitude of the sampling errors as-
sociated with these cal cul ations have been included on
thetime series (Fig. 5, after Joneset al. 1997; seealso
Karl et a. 1994). Typica 95% confidence limits for
estimates of the global means on interannual time-
scalesare 0.11°C since 1951 and 0.17°C prior to that
date. The uncertainty values are significantly higher
for regionsand higher till for individual 5° grid boxes.

It is often stated that the global temperature has
been increasing steadily sincethe turn of the century.
Figure 5, with the confidence limits included, shows
thisisnot an accurate statement. Rather, the tempera-
tureincreased abruptly between about 1920 and 1945
and again from 1975 to the present (e.g., Jones et al.
1999). The confidence limits are large enough so that
no changein temperature can be claimed outside these
periods, for example, between about 1860 and 1920
and about 1940 and 1975. Nevertheless, the observa-
tiona uncertainties are considerably smaller than the
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Fic. 4. Partial eigenvalue spectrum. The letter codes refer to
various coupled global climate models. The heavy solid linerep-
resentsthe partial eigenvalue spectrum obtained by projecting the
observed, detrended air temperature onto the CGCM common
EOF basis set. The vertica bars show the approximate 95% con-
fidence limits on the observed partial eigenvalues (after Barnett
1998).

total change since 1900, so theincreasein global-mean
temperatureishighly statistically significant. Although,
as pointed out, these data could potentially contain
contamination due to urban heat island effects and
biases (especially in ocean temperatures) dueto chang-
ing instrumentation (e.g., Barnett 1984), recent stud-
iessuggest these errors have probably been adequately
allowed for (Jones et al. 1990; Parker et al. 1995).

2) UPPER-AIR TEMPERATURES

Some of thefirst studiesto claim qualified detec-
tion of a model-predicted anthropogenic signal were
based on thefree air temperatures (Santer et al. 1996b;
Tett et a. 1996). These data came from radiosondes
and did not really have reasonable spatial coverage
until the late 1950s, and even then were highly irregu-
lar intime (Gaffen et al. 1999), providing arelatively
short record, at best about 40 years, for detection
analysis. Changes in instrumentation are known to
haveintroduced very large discontinuitiesto thisdata-
set (e.g., Parker et a. 1997). However, comparison of
lower-tropospheric temperature trends from radio-
sondes and the satellite-derived Microwave Sounding
Unit (MSU) 2R over the period 1979-96 is claimed
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to be good (e.g., Christy et al. 1998). Unfortunately,
the satellite dataset is only 20 years long and there-
fore too short for practical detection work. In any
event, such comparisons typically have neglected
large uncertainties in the radiosonde datasets, particu-
larly during the 1958-78 period, and have not ac-
counted for data coverage differences. A more
definitive discussion of the upper-air dataand its prob-
lems can be found in Parker et al. (1997) and Santer
et al. (1999). For present purposes, it appearsthat ra-
diosonde data, despite their deficiencies, have reason-
able horizontal and vertical resolution, which
eventually may be of considerable help in constrain-
ing present uncertaintiesin anthropogenic forcing and
in model-based signal estimates.

DECADAL SCALE TEMPERATURE
CHANGE WITH CONFIDENCE LIMITS

(a) Global mean decadal p e y

s L L
1920 1960 1980
Year

(b) Northern hemisphere decadal temperature anomaly

L L L
1860 1880 1900

s L L L L L .
1860 1880 1900 1920 1940 1960 1980
Year

Fic. 5. Decadal timescale surface temperature record for (a)
global, (b) Northern Hemisphere, and (c) Southern Hemisphere
means, with +1 standard error (shaded) and +2 standard error (thin
lines). Temperatures expressed as anomalies from the 1961-90
mean. After Jones et al. (1997).
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3) REANALYSIS PRODUCTS

Extensive efforts have re-
cently been made in the area of
reanalysis. Dynamical atmo-
spheric generd circulation mod-
elshavebeen gppliedto assmilae
available observationsin an at-
tempt to produce a temporally
homogeneous, regularly gridded,
dynamically consistent recon-
struction of the 3D atmospheric
structure over the last 2040
years [Kalnay et al. (1996) for
the National Centers for Envi-
ronmenta Prediction (NCEP) and
Gibson et a. (1997) for the Eu-
ropean Centrefor Medium-Range
Weather Forecasts (ECMWF)].
Itisnatural to inquireif thesere-
analysesdatacan beused for DA.

Unfortunately, our studies
indicate that the current genera-
tion of reanalyseshavevery lim-
ited usefulness for detection
and attribution studies. For ex-
ample, the NCEP and ECMWF
reanalyses show inhomogene-
tiesand very different tempera-
ture behavior in the lower and
midtroposphere (Santer et al.
1999; Chelliah and Ropel ewski
1999, manuscript submitted to

DIFFERENCES BETWEEN REANALYSES OF
TROPOSPHERIC TEMPERATURES
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Fic. 6. Time series of the tropospheric temperature anomaly differences between
NCEP reanalysisand MSU2 (solid) and ECMWF reanalysis and M SU2 (dotted). (top) The
globe equatorward of 80° latitude. (bottom) The Tropics equatorward of 20° latitude. After
CR.

J. Climate, hereafter CR). Inthe

former region, the temperature

trends in the two reanalyses differ by up to 0.11°C/de-
cade over 1979-93—a value within the estimated
range of an expected anthropogenic signal (Santer
et al. 1996a). NCEP and ECMWF adso havelarge sys-
tematic differencesin the midtroposphere, particularly
inthe Tropics (Fig. 6; CR). Also, Santer et al. (1999)
have compared layer-average temperaturesin NCEP
and ECMWF with those in MSU (versions b, ¢, and
d) and various radiosonde datasets and al so find seri-
ous problems with both sets of reanalysis. In sum-
mary, use of reanalysis datain DA studies will have
to await afuture generation of reanalysis products.

b. Model uncertainties

The model-predicted anthropogenic signal isasso-
ciated with a number of uncertainties. Some are due
to fundamental errors in the models themselves, for
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example, an inability to produce a credible ENSO
cycle, parameterizing ocean mixing, clouds, etc.
Others arise from errors in the forcings that are in-
cluded (such assulfate aerosol direct effects), and from
errors due to neglect or inadequate specification of
poorly known anthropogenic or natural forcings, such
as indirect sulfate aerosol effects and volcanic dust
loadings. Another major source of uncertainty arises
from the expected internal model variability, for ex-
ample, nonlinear interactions within the models that
produce large variability even when run in control
mode (no external forcing of any kind). In the brief
spacewe have here, itisonly possibleto give examples
of severa of these uncertainties as they relate to de-
tection of alarge-scale anthropogenic signal. In sec-
tion 5, we will see what impact they have on
detection statements.
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1) ANTHROPOGENIC SIGNAL DIFFERENCES

How much uncertainty is introduced into the de-
tection problem by different representations of the
same anthropogenic forcing in different computer
models? An idea of the difference was obtained by
analyzing the ensemble of scenario runs produced by
the Hadley Centre (HC), the Geophysical Fluid Dy-
namics Laboratory (GFDL), and the Max Planck In-
dtitute of Meteorology (MPI). These runssimulated the
time-dependent effects of increasing “total equivalent”
CO, (denoted GHG) and the direct effect of sulfate
aerosols (denoted SUL), the latter represented in the
models by achangein surface albedo. So all the mod-
elswereforced with conceptually the same anthropo-
genic pollutants. Just how the forcing from these
pollutants was specified varied from model to model.
The details of the models, ensembles and appropriate
referencesare givenin Table 2.

The (smoothed) temperature changes between
1945 and 1995 predicted by the ensemble averagefor
each model simulation areshowninFig. 7. All of the
model s suggest warming over most of the oceans and
continents of order 0.5°C or less. The main difference
between models (Fig. 8) isover the midlatitude oceans
of the Northern Hemisphere and over or just east of
the main industrial sectors of European and North

American landmasses. The main differences, which
can easily exceed 0.5°C locally in the models' pre-
dicted anthropogenic signal, could be due to the way
in which models represent sulfate aerosols and other
physical differencessuch asclouds (e.g., Hegerl et al.
1999). Fortunately, most of the disparity between the
ensembl e average of the modelsis high wavenumber
in character, while current detection schemesuse only
the very low wavenumber information, for example,
Stott and Tett (1998). In this case, the dissimilarities
between models will appear as noise and might not
greatly affect standard detection methods. On the other
hand, Fig. 8 does have some large-scale features and
these could impact DA studies (e.g., lower panel).

2) INTERNAL MODEL VARIABILITY

Each CGCM demonstrates relatively large vari-
ability generated by internal nonlinear interactions.
Thisisdemonstrated in Table 3 where the pattern cor-
relations between various of therealizationslisted in
Table 2 show large intramodel variability between
predicted June-July—August (JJA) trend patterns over
the period 1945-95. Estimates of thisvariability sug-
gest it iscomparable with the observed natural climate
variability (Barnett 1999; Manabe and Stouffer 1997,
Barnett 1995; Stouffer et al. 1999; among others).

TaBLE 2. Model descriptions.

Scenario runs

CTL run (number and
ID Model name M odeling center Grid size (°) (yr) type)
HadCM2 HadCM2 Hadley Centre, A:3.75%x25 ~1610 Four G, four GS,
Bracknell, UK 0:375x25 four Sal, four Vol
HAM3L ECHAMB3/LSG MPI, Hamburg, A: 5.625 x 5.625 ~1518 G, two GS,
Germany 0:35x35 two Sol
HAMA4P ECHAMA4/OPYC MPI A:28x%x28 ~300 G, GS, GSI
O: variable
GFDL GFDL R30 GFDL, Princeton, NJ A:3.75%2.25 ~675 Five GS
0:19x225

G = greenhouse gas only.
GS = G + direct sulfate aerosol forcing.
GSI = GS + indirect aerosol and troposhere ozone forcing.

Sol = time-dependent solar insolation forcing after Hoyt and Schatten (1993).

Vol = time-dependent volanic forcing after Sato et al. (1993).

The grids of the ocean (O) and atmospheric (A) models are given. Details of the HadCM2 model are given in Johns et al. (1997),
the MPI model in Vosset a. (1997), and the GFDL model in KDDS.
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Earlier work by Cubasch et al.
(1994) demonstrated this prob-
lem could beimportant particu-

larly for early detection of an Ave.

SURFACE AIR TEMPERATURE

CHANGE PREDICTED BETWEEN
1945 AND 1995

HADLEY CENTRE (Degrees C

anthropogenic signal. In their
simulations, the early evolution
of the anthropogenically in-
duced signalsdiffered markedly
for integrations starting from
different initial states.

Weillustrated this using the
four HC (model HadCM 2) simu-
lationsdescribedin Table 2. Each
used the same model and the
same representation of anthro-

pogenic forcing, the only differ-
ence between the runs being
perturbations in the initial con-
ditions. Hence, the differences
between therunsweredue solely
to internal model variability.

Thematter of concernisthesize
of the model’s anthropogenic
signal compared to the differ-
ences between individual signa
estimates. To determinethisra-
tio, theindividual runswerefirst

smoothed in time to eliminate
“end point” effectsand thetem-
perature change between 1995
and 1945 was computed. The
mean signal was determined by
averaging together the four

realizations of smoothed tem-
perature change (Fig. 9, lower
panel). At each grid point, we
then computed the ratio of the
mean signal to the standard
deviation between the four runs
(Fig. 9, upper panel). The re-
gionsinFig. 9 (upper panel) wheretheratio isgreater
than one are colored. In these areasthe signal exceeds
the “noise” associated with internal model variabil-
ity, whileintheremaining gray regionstheratioisone
or less. Inthese areas, the mean model GHG+SUL sig-
nal based on only four realizationsis uncertain.
Theresults show that, for the 1945-95 period, per-
haps half the Northern Hemisphere above 30° latitude
has amean anthropogenic signal that isequal to or less
than theintramodel noise. Thisappliesparticularly to
the aerosol fallout regions noted above. Detection of
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Fic. 7. Changesin smoothed near-surface temperature (°C) between 1945 and 1995 pro-
duced by ensemble averages from coupled global climate models of the HadCM2, MPI,
and GFDL. All modelswereforced by their own independent estimates of an anthropogenic
signal composed of greenhouse gases and direct sulfate aerosol effects.

120°W60\N 0°

the signal in these regions at this time will be diffi-
cult. In contrast, strong, clear anthropogenic signals
are observed over the continents, especially thosein
the Southern Hemisphere, and all of the Tropics.
The results discussed above, plus those given by
Knutson et al. (1999, manuscript submitted to J.
Geophys. Res., hereafter KDDS) and Barnett et al.
(1999, manuscript submitted to J. Geophys. Res., here-
after BHKT) illustrate the dangers of using only a
single CGCM anthropogenic run in early detection
studies. Inits early stages of growth, the space-time
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structure of the signal can be distorted by theinternal
model variability? thereby most likely depressing or
elevating the detection significance levels. It is cur-
rent practice to use ensembles of scenario runsin DA
studies to minimize this possibility. Unfortunately,
this cannot be done with the (noisy) observations of
which we have only one realization.

2The most recent studies explicitly include estimates of these un-
certainties as will be demonstrated in section 5.

DIFFERENCE BETWEEN VARIOUS

MODEL PREDICTIONS OF SURFACE
AIR TEMPERATURE CHANGE 1995-1945

Ave. ECHAM — Ave. HADLEY ( C)

e e = £ aa

c. Summary

Uncertaintiesthat arelargerelativeto the currently
expected anthropogenic signal exist in the observa-
tions. In most cases, these uncertainties cannot easily
be eliminated since they are associated with instru-
mental changes over the century. The sampling uncer-
tainties, however, can be estimated and are relatively
small for the SAT observations currently used in most
detection studies. Similar uncertainties arise through
the models used to estimate the anthropogenic signal.
These uncertainties are also poorly known, sincethey
have beeninvestigatedinonly a
few models, and even then not
completely.

Thus, to avoid overoptimis-
tic (or overpessimigtic) claimsof
detection, especially early detec-
tion, it isessential that a careful
assessment of all potential error
sourcesin both observationsand

models be made and their im-
pact properly included in the
detection methodology. Thein-

herent uncertaintiesinvolved in
making these error estimates
must be emphasized. Thesefac-
torsaretheorigin of many of the
caveats permeating the pub-
lished literature on detection.

4. Theory

We summarize in the fol-

90°
60°N
S0°N

0
30°S
60°S}
90°3 ‘

lowing the basic concepts and
methods of application of the
conventional and Bayesian ap-
proaches to detection and attri-
bution. Both approaches are
based on formal gtatistical theory,
but differ in how they translate
the results of the formal theory
into thereal world. Details of the
general mathematical formalism
of both approachesare givenin
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Fic. 8. Differences in ensemble averaged temperature change (°C) between the three
model scenarios described in Fig. 7. Note the local values of the difference fields are often
aslargeor larger than the mean changein any onemodel (Fig. 7). However, the spatial scale
of the difference is somewhat smaller than those associated with the mean field.

appendixes A and B. Readers
moreinterested in the results of
applying these theories may
wish to skip to section 5 describ-
ing the current status of DA
studies.
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TasLE 3. Pattern correlation of spatially smoothed JJA temperature trends between various realizations of GHG+SUL forcing from
different models. Trend Period: 1945-95. See Table 2 for model references.

HC1 HC2 HC3 HC4 ECA ECB GF1 GF2 GF3 GF4 GF5 Obs
HC1 1.00 0.59 0.28 -0.08 0.42 0.50 0.52 0.38 0.26 0.23 0.36 0.26
HC 2 0. 1.00 0.33 0.21 0.37 0.38 0.59 0.14 0.41 0.46 0.49 0.21
HC3 0. 0 1.00 -0.14 0.67 0.51 0.40 0.50 0.04 0.58 0.14 0.25
HC4 0. 0. 0. 1.00 -0.33 -0.16 -0.08 -0.22 -0.16 0.03 0.07 -0.29
ECA 0. 0. 0. 0. 1.00 0.68 0.48 0.45 0.33 0.55 0.26 0.23
ECB 0. 0. 0. 0. 0. 1.00 0.43 0.54 0.13 0.29 0.08 0.22
GF1 0. 0. 0. 0. 0. 1.00 041 0.32 0.56 0.37 0.04
GF 2 0. 0. 0. 0. 0. 0 1.00 0.14 0.25 0.00 0.17
GF3 0. 0. 0. 0. 0. 0 0 1.00 0.13 0.50 0.07
GF 4 0. 0. 0. 0. 0. 0 0 0. 1.00 0.13 0.02
GF5 0. 0. 0. 0. 0. 0 0 0 0 1.00 0.16
Obs. 0. 0. 0. 0. 0. 0 0 0 0. 0 1.00

HC= Hadley Centre/lHadCM 2.
EC=MPI/HAM3L.

GF= GFDL/R30.

Obs.= observations.

a. Conventional and Bayesian statistics: Overview
Formal statistical theory is concerned with prob-
ability distributions of variables or fields defined with
respect to an infinite ensembl e of realizations. In prac-
tice, we never have such an infinite ensemble of real-
izations, that is, the true frequency distribution of a
variable is not known. This is especially true in de-
tection work wherethistheoretical requirement is sat-
isfied only marginaly for the natural variability of
near-surface temperatures. However, we normally
assume that the observed temperature distributions ap-
proximate the unknown abstract distribution. In this
casg, if the CGCM -predicted near-surface temperature
signal is known, signal-to-noise ratios can be com-
puted using conventional statistics. On the other hand,
the impact of the signal uncertainty associated with
model errors currently lies outside the scope of con-
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ventional statistical theory, as there exists only the
small set of model ensembles described in section 3b
onwhich to basethe model error statistics. Similarly,
conventional statistics cannot be applied to variables
for which there exist no reliable estimates of the natu-
ral variability on the range of timescalesrelevant for
detection, say, thewaxing and waning of glaciersover
the last 500 years. Thisis a severe restriction on the
conventional method, since there exist many indica-
torsof climate changethat suffer from thislimitation,
but that one would neverthelessliketo incorporatein
a comprehensive climate change detection and attri-
bution study.

These shortcomings are overcomein the Bayesian
approach, albeit at the expense of a subjective rather
than an objective definition of probability of detection.
The Bayesian probability concept is based on the ev-
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eryday observation that people speak of probabilities
(and are willing to quantify their probability assess-
ments through investments in the stock market, e.g.)
independent of the existence of frequency distribu-
tions. It is assumed that people have arational basis
to assign to events or hypotheses, such as the exist-
ence of an anthropogenic climate change signal,
subjective probabilitiesbased smply on past experience
and limited availableinformation. New evidence, such
asthe analysis of an observational dataset, resultsin
the conversion of aperson’ s prior probability assess-
ment into aposterior probability. In addition to open-
ing the door to climate change indices that would
otherwise be excluded from a detection study based
on the conventional statistical approach, the Bayesian
approach offersarational framework for the debate on
controversial issues of detection and attribution that
are often strongly colored by individual, subjective
estimates of model errors.

Ratio: Ave. HADLEY CENTRE / Std. Dev. 4
90°N_Ave 1995 minus Ave 1945 (Degrees C)

b. The optimal fingerprint method of conventional

statistics

In the conventional approach, the analysisis car-
ried out in what can be called “attribution space,” a
low-dimensional subspace derived from the model-
predicted signals. Each dimension of this space can
simplistically bethought of as associated with thefin-
gerprint of aparticular type of anthropogenic forcing,
for example, greenhouse gases, sulfate aerosols, etc.
However, the fingerprints are not identical to the sig-
nal patterns, but are obtained from these by arotation
in the climate phase space away from the directions
with the highest natural variability noise. Thisis ac-
complished by asimple inverse weighting of the ob-
servations/signal with the covariance of natural
variability (estimated fromlong CGCM control runs).
The search for the signal isthen carried out in the op-
timal fingerprint direction that maximizes the signal-
to-noise ratio (see appendix A). The rotation can be
viewed as a filtering operation
analogous to the standard prac-
tice of prewhitening time series

data.
Both the model predictions
4 and observations are projected
onto thisattribution subspace, an
3 action that is akin to projecting

different datasets onto a com-
mon basis set such asin standard
L EOF analysis. The uncertainties
in the model and data are repre-
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90°N_Ave 1995 minus Ave 1945 (Degrees C) our |ater examplesin a2D space).
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on o 0.5 ellipse centered on the origin. If
30 themodd! signal fallsoutsidethe
95% confidence ellipse, say, of
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- the natural variability, one states

that aclimate change signal due
to other than natural processes
has been detected at a signifi-
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Fic. 9. (bottom) Ensemble average temperature change 1945-95 from a four-member
ensemble of GHG+SUL forced runs from the HadCM2 model, but with slight change in

color bar from that used in Fig. 7. (top) Ratio of ensemble average 1945-95 temperature

change to the standard deviation between the four independent members of the HadCM2

ensemble. Thisratio is referred to as the SN ratio. The gray area shows where the S/N is

less than or equal to 1.
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cance level of 5%, that is, the
probability that asignal aslarge
as the observed climate change
occurs due to natural climate
variability islessthan 5%. This
does not necessarily imply that
the observed climate change can
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be attributed to an assumed forcing mechanism.
However, if the climate change signal fallswithin the
overlap region of the confidence regions of the model-
predicted signal and the data errors, one can state fur-
ther that the climate change signal is consistent with
the modéel’ s forcing mechanism(s). But this still does
not imply that the signal can be uniquely attributed to
the hypothesized mechanism, since it is conceivable
(and in fact often the case) that other forcing mecha
nisms could also satisfy the consistency criterion.
Unique attribution can be claimed only if it can be
demonstrated that there exist no forcing mechanisms,
other than the assumed mechanism, that are consistent
with the data. Sincethisisclearly impossibleinarig-
orous sense (there can always exist mechanisms one
has overlooked), detection and attribution claims nec-
essarily have the nature of statistical consistency
statements.

c. Bayesian approach to detection

The Bayesian approach (Hasselmann 1998; Leroy
1998) startsfrom an assumed subjective apriori prob-
ability (the “prior”) for the existence of an anthropo-
genic climate change signal. The analysis of the data
then provides new information that modifiesthe prior,
yielding an a posteriori probability (the “posterior”).
The relation between the prior and the posterior
depends on therelative likelihoods of the outcome of
the data analysis, given that the hypothesis of an an-
thropogenic climate change is either true or false.
The relation (“Bayes’ theorem”) follows from
straightforward application of the rules of condi-
tional probabilities (see appendix B). Conceptually,
the advantage of the Bayes approach isthat it consid-
ers not only the probability of the validity of the null
hypothesis (e.g., climate change due to natural vari-
ability), asin conventional theory, but also the prob-
ability of the validity of the complementary climate
change hypothesis, for the rgjection of one hypothesis
in favor of the other must clearly depend on the pri-
ors of both hypotheses.

In practice, the main advantages of the Bayesian
formalism over the conventiona approach is that it
enables anumber of different climate changeindices,
whose noise level estimates may be associated with
very different levelsof uncertainty, to beincorporated
into asingle comprehensivetest that exploitsall avail-
ableinformation. Thisgeneraly yields, if theindices
are statistically independent, much enhanced signifi-
cance levels compared with a conventional detection
and attribution test based on only afew variables, such
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as near-surface temperatures, for which adegquate sta-
tistics exist. Another, more formal, advantage is that
thereisno longer any need to distinguish between de-
tection and attribution, as in the conventional ap-
proach; both issues can be combined into a single
hypothesis test.

In summary, the Bayesian approach alowsawide
variety of information to be used in the detection
analysis. The analysis, being subjective, also allows
an equally wide set of beliefsto be incorporated into
the detection formalism. Asthe example of appendix
B shows, very different sets of initial beliefs might
neverthel ess be modified by cumulative observed cli-
mate change information to converge on a closer
agreement asto the causes of observed climate change
than might have been anticipated.

5. Detection results

This section combines the results of the previous
sectionsto derive some general conclusions on detec-
tion and attribution of model-generated anthropogenic
signalsin observations of SAT, specifically the tem-
perature trends over approximately the last 50 years
for June—August. Before applying the various meth-
odologies, it isinformative to first visually compare
the model-predicted and observed temperature
changes. We then explore theimplications for detec-
tion and attribution using the optimal fingerprint
method with anumber of different models, taking into
account the various forms of uncertainty discussed
above. Subsequently we consider theimpact of remov-
ing the global mean from the analysis. The list of
models used in this section, with their resolution and
type of forcing, is shown in Table 2. The analysisis
restricted to the data-adequate regions of the earth, but
one could also work with selected stations or grid
boxes as have Barnett (1986), North and Stevens
(1998), and others; the choice is a matter of taste.

a. Visual comparison

Spatial patterns of summertime temperaturetrend
over the period 1946-95° predicted by 11 different
realizations from three different models forced by
GHG+SUL were averaged together and compared in

3 The end year 1995 was chosen to avoid impacts of the recent
large ENSO activity on trend estimation. Results including data
through 1998 are similar.
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Fig. 10 with the corresponding trend estimates from
observations (Jones et al. 1999). The observations
show warming over much of the Southern Hemisphere
oceans (asfar as data exist), and much of the Northern
Hemispherelandmass (except eastern Asia), whilecool-
ing trends occur over most of the Northern Hemisphere
oceans. In contrast, most models smulate rather weaker
warming over the Northern Hemisphere landmasses
than observed and miss the cooling of the Northern
Hemisphere oceans. Also, whilethe observations show
strong hemispheric asymmetry in the warming, it is
less apparent in the average modd signa. The average

@  TEMPERATURE TREND 1945 Thru 1995

ALL MODELS (Degrees C/10 Years)

of the model s appears visually to underestimate the ob-
served land—sea temperature contrast, akey factor in
detection (North and Stevens 1998). However, thein-
dividual model ensembles do differ on some of these
features, for example, the MPI runs where the stronger
Southern Hemispheric warming may be partly dueto
model drift. Note also that the average of al the model
runs shows less influence of internal variability (less
noise) and hence smaller contrasts than theindividual
model responses or the single observed trend pattern.

In summary, visual inspection shows many simi-
larities between model simulations and observation
but also some substantial differ-
ences. In short, simplevisual in-
spection does not allow