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ABSTRACT

The effect of compressibility on two-dimensional barotropic and baroclinic growth rates is examined by means
of a linearized nonhydrostatic compressible model. It is shown that the growth rates are diminished when
compressibility is included because perturbation internal energy resents a sink of basic-state kinetic energy when
work is done to compress the medium. Nonlinear simulations provided by compressible and incompressible
versions of the ZETA model show that the solutions are nearly identical, but the compressible solution develops
more slowly than the incompressible one, consistent with the linear analysis.

1. Introduction

Numerical models of geophysical flows characterized
by large horizontal scales traditionally employ the hy-
drostatic approximation. This approximation removes
vertically propagating acoustic waves, although care
must be taken to properly account for Lamb waves. For
flows of small horizontal scale such as convection, com-
pressible nonhydrostatic models are becoming more
popular (e.g., Chen 1991; Held et al. 1993) because they
can be integrated nearly as efficiently as filtered models
(e.g., using the anelastic system) without any of the
physical assumptions or computational complexity often
associated with them. Further efficiency can be achieved
in these compressible models by explicitly decreasing
the phase speed of the acoustic wave, thereby allowing
a larger time step. This assumes that the acoustic modes
are unimportant in determining the principal flow char-
acteristics.

The purpose of this paper is to examine the effects
of compressibility on flows of intermediate horizontal
scale or flows that possess multiple scales, such as a
developing baroclinic wave with an imbedded front. In
these types of flows it is often desirable to capture non-
hydrostatic effects while retaining the efficiency and
accuracy of a fully compressible model. Here, baro-
tropic and baroclinic instability in a fully compressible
atmosphere will be examined. It will be shown that the
growth rates can be quite sensitive to the degree of
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compressibility, as measured by the ratio of the length
scale to a deformation radius based on the acoustic phase
speed. One consequence of this sensitivity is that the
full value of the sound speed must be used to accurately
simulate these flows.

The nonhydrostatic compressible linear system is de-
veloped and nondimensionalized in section 2. Baro-
tropic and baroclinic linear growth rates are derived in
sections 3 and 4, respectively, and fully nonlinear sim-
ulations of these instabilities with a new nonhydrostatic
compressible version of the ZETA model (Orlanski and
Gross 1994) are presented in section 5. A summary and
conclusions are provided in section 6.

2. Linear growth rates

The compressible nonhydrostatic equations for adi-
abatic inviscid motion on a b plane are

dvH 5 2u=P 2 f k 3 v (2.1)Hdt

dw ]P
5 2 u 2 g (2.2)

dt ]z
2dP cs5 2 = •v (2.3)

dt u

du
5 0, (2.4)

dt

where vH and w are the horizontal and vertical velocities
respectively, u is the potential temperature, the pressure
variable is P [ the Coriolis parameter is fR/cpc (p/p ) ,p 0

5 f0 1 b0y, and 5 (cp /cv)RT 5 (R/cv)uP is the sound2cs

speed squared at temperature T. Gravitational acceler-
ation, the gas constant, and the specific heats are denoted
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by their usual symbols. Linearizing about a zonal flow
ū(y, z) in geostrophic balance, given by

] ¯¯fū 5 2u P, (2.5)
]y

and hydrostatic balance, given by

] g
P̄5 2 , (2.6)¯]z u

results in

]¯Du9 5 2u P9 1 fv9 2 v •=ū (2.7)
]x

] f ū¯Dy9 5 2 u P9 2 fu9 1 b9 (2.8)
]y g

]¯Dw9 5 2u P9 1 b9 (2.9)
]z
2c̄ cs v ¯DP9 5 2 [= •v9 1 v •= ln P] (2.10)

ū R

2N
2Db9 5 2N w9 1 ū 2 ū f y9, (2.11)z1 2g

where b9 5 gu9/ is the bouyancy andū

] ]
D( ) 5 ( ) 1 ū ( ). (2.12)

]t ]x

Overbars denote the basic-state and primes denote de-
viations from this state. Thermal wind balance has been
used in (2.11) to express the basic-state potential tem-
perature gradient in terms of ū(y, z).

Introducing the scales L and H for the horizontal and
vertical independent variables and (ū, , w9, P9, b9) ;ū, v9H
O(U, Q, V, VH/L, f0VL/Q, f0VL/H) for the dependent
variables allows the nondimensional equations to be
written as

]¯RoDu9 5 2u P9 1 fy9 2 Rov9 •=ū (2.13)
]x

]
2¯RoDy9 5 2u P9 2 fu9 1 F Ro f ūb9 (2.14)E]y

2H ]¯RoDw9 5 2u P9 1 b9 (2.15)1 2L ]z
2c̄s2 2 ¯¯ ¯F RoD(uP9) 5 2 = •v9 2 F Rov9 • u=P (2.16)c c2c0

2N
2 2 2F RoDb9 5 2 w9 1 Ro(F ū 2 F ū) fy9, (2.17)I I z E2N 0

where c0 is a characteristic sound speed, f 5 1 1 Roby,
b 5 b0L2/U, the Rossby number is Ro 5 U/( f0L), and

f L f L f L0 0 0(F , F , F ) 5 , , (2.18)c I E 1 2c N H ÏgH0 0

represent ratios of the length scale to different defor-
mation radii. The first of these, Fc 5 f0L/c0, is zero in
incompressible, Boussinesq, or anelastic flow. Although
the ratios defined in (2.18) appear only in combination
with Ro in (2.13)–(2.17), the discussion of the results
presented in the following section is clearer when these
ratios remain distinct.

The last terms on the right-hand sides of (2.14) and
(2.17) represent buoyancy oscillations in the meridional
direction due to sloping basic-state isentropes. The re-
storing force is associated with the meridional pressure
gradient. These terms are neglected in the Boussinesq
and anelastic approximations and can be neglected with
the present scaling if Ro K 1, which will be assumed2FE

here. With this assumption, the set of nondimensional
equations to be considered is

]¯RoDu9 5 2u P9 1 fy9 2 Rov •=ū (2.19)
]x

]¯RoDy9 5 2u P9 2 fu9 (2.20)
]y

2H ]¯RoDw9 5 2u P9 1 b9 (2.21)1 2L ]z
2c̄s2 2 ¯¯ ¯F RoD(uP9) 5 2 = •v9 2 F Rov9 •u=P (2.22)c c2c0

2N
2 2F RoDb9 5 2 w9 1 F Roū fy9. (2.23)I I 22N 0

These equations will be used to examine the growth
rates of barotropic and baroclinic instability, with a fo-
cus on how the growth rates depend on the parameter
Fc.

3. Barotropic modes

Consider an isentropic barotropic current ū(y) at po-
tential temperature u0 bounded by rigid walls and a rigid
lid. Adiabatic barotropic perturbations to this current
are governed by

]
RoDu9 5 2 w9 1 ( f 2 Roū )y9 (3.1)y]x

]
RoDy9 5 2 w9 2 fu9 (3.2)

]y
2 2 2F RoDw9 5 2c̃ (y)¹ •v9 1 F Ro fūy9 (3.3)c s H c

with w9 and u9 identically zero. The vertically averaged
nondimensional sound speed is c̃s, and the pressure vari-
able is w9 5 u0P9. The equation set (3.1)–(3.3) is iso-
morphic to the linearized shallow water equations in a
rotating reference frame, with FE replaced by Fc and the
surface wave phase speed replaced by the speed of
sound. Assuming solutions of the form

[u9, y9, w9] 5 [U, V, F](y)eia(x2ct) (3.4)
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allows the derivation of a single equation for V:

dV
2 2c̃ (ū 2 c) 2 ū V 2 RoF fū(ū 2 c)Vs y c5 6d dyF Gdy 2 2c̃ 2 [M(ū 2 c)]s

2d c̃s21 RoF fc 2 2[ [ ]dy c̃ 2 [M(ū 2 c)]s

2 2bc̃ 1 F [ū 2 (1 2 Roū )(ū 2 c)]s c y1
2 2c̃ 2 [M(ū 2 c)]s

22 a (ū 2 c) V 5 0, (3.5)]
where the Mach number M [ U/c̄0 5 RoFc has been
introduced and the Rossby number is based on the char-
acteristic shear in the basic flow.

The incompressible equation is recovered in the limit
Fc → 0 (and Ro finite):

d dV
2(ū 2 c) 2 ū V 1 [b 2 a (ū 2 c)]V 5 0.y[ ]dy dy

(3.6)

This equation also describes quasigeostrophic barotrop-
ic instability on a b plane (see, e.g., Gill 1982, section
13.6). The nonrotating compressible equation (Blumen
1970) is recovered in the limit (Fc, b) → 0 (but with
M finite):

dV
2c̃ (ū 2 c) 2 ū Vs y5 6d dy 22 a (ū 2 c)V 5 0. (3.7)F Gdy 2 2c̃ 2 [M(ū 2 c)]s

The compressible quasigeostrophic equation is recov-
ered in the limit Ro → 0:

d dV
(ū 2 c) 2 ū Vy[ ]dy dy

2 2F Fc c21 b 2 a 1 (ū 2 c) 1 ū V 5 0. (3.8)
2 21 2[ ]c̃ c̃s s

The last equation is similar to that of the quasigeo-
strophic shallow water system investigated by Stern
(1961) and Lipps (1963) with FE replaced by Fc, and
can be reduced to that in the divergent barotropic model
examined by Wiin-Nielsen (1961) with FI replaced by
Fc. The y variation of included here is analogous to2c̃s

the y variation of the basic-state depth in the shallow
water system.

Lipps’s analysis of the shallow water equations
showed that growth rates of unstable barotropic modes
decrease as FE increased from 0, that is, as the length

scale of the motion approaches the external deformation
radius gH/f0. In this regime, surface displacementsÏ
and the contribution of vortex tube stretching (associ-
ated with horizontal convergence) to the shallow water
potential vorticity dynamics are important (Pedlosky
1987). Work is done against gravity to raise the free
surface, thereby increasing perturbation potential energy
and diminishing the growth rate of barotropic instability
(Stern 1961). Conversely, as FE becomes small, the con-
tribution of surface displacements to the potential vor-
ticity diminishes. When FE 5 0, a rigid lid is effectively
in place, there is no perturbation potential energy or
horizontal divergence, and the flow behaves as if it were
incompressible.

Compressibility introduces a finite external defor-
mation radius c0/f0, which is the distance an acoustic
signal travels in one inertial period. In direct analogy
to shallow water flow, barotropic growth rates will di-
minish as Fc increases with compressibility. In this case,
the work done against the elastic force during com-
pression is given by 2w9=•( v9) and represents the soler̄
source of perturbation internal energy and a sink of
perturbation kinetic energy when convergence and pres-
sure perturbations are positively correlated. Clearly, this
correlation must hold in an unstable normal mode since
the internal energy will grow exponentially. Because it
is the perturbation momentum flux that drives the con-
version from basic state to perturbation kinetic energy,
the growth will be slower with this kinetic energy sink.
Both compressibility in the present case and free-surface
displacements in the shallow water case represent in-
creases of total perturbation available potential energy
produced by conversion of basic-state kinetic energy in
the barotropic flow (Blumen 1970), and in both cases
the ratio of the perturbation available potential energy
to the perturbation kinetic energy is provided by the
corresponding value of F2.

Growth rates of the most unstable subsonic barotropic
modes in a bounded linear shear layer are shown as a
function of Ro and Fc in Fig. 1. The basic flow is shown
in Fig. 4.4c of Drazin and Reid (1981), and the shear
layer used here is 1/6 as wide as the channel. All growth
rates correspond to a wavelength of 7680 km, the most
unstable mode in the incompressible problem. The in-
compressible growth rates (Fc 5 0) are calculated an-
alytically with Eq. (23.8) in Drazin and Reid. The com-
pressible growth rates (Fc . 0) are derived from the
eigenvalues of the linear operator formed by the dis-
cretization in space and time of (3.1)–(3.4). The dis-
cretization is identical to that used in the full nonlinear
model described in the appendix.

For small values of Fc, the growth rates increase ap-
proximately linearly with Ro, reflecting the linear de-
pendence of the incompressible growth rates on the
magnitude of the basic state shear [Gill 1982, Eq.
(13.6.11)]. Growth rates decrease as Fc increases, ac-
cording to the above discussion. For example, at Ro 5
0.1, the growth rate decreases by about 60% as Fc in-
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FIG. 1. Growth rates (contoured every 0.1 day21) for the most
unstable barotropic mode corresponding to a bounded shear flow, as
a function of (Ro, Fc).

FIG. 2. Growth rates (per day, contoured every 0.05 day21) for the
most unstable baroclinic Eady mode, as a function of (Ro, Fc).

creases from 0 to 1. This decrease is more rapid when
the Rossby number is large, and Blumen (1970) has
calculated zero growth rates at M 5 1 for the hyperbolic
tangent velocity profile in nonrotating compressible
flow.

4. Baroclinic modes

Two-dimensional perturbations to an isothermal geo-
strophic flow ū(z) 5 Lz on an f plane bounded by a
rigid lid at height H satisfy

]
RoDu9 5 2 w9 1 y9 2 Row9 (4.1)

]x

RoDv9 5 2u9 (4.2)

2H ]
RoDw9 5 2 w9 1 b9 (4.3)1 2L ]z

] ]
2F RoDw9 5 2 u9 2 w9c ]x ]z

2F c21 F Roy9 1 w9 (4.4)c 2F E

RoDb9 5 2w9 1 Roy9, (4.5)

where w9 5 P9. The scaling of Nakamura (1988) hasū
been adopted so that FI 5 1 and the Rossby number is
now Ro 5 Ri2½ [ L/N, where Ri is the Richardson
number. The term proportional to w9 in (4.3) has been2FE

neglected consistent with the assumption that Ro K2FE

1. Assuming solutions of the form

[u9, y9, w9, w9, b9] 5 [U, V, W, F, B](z)eia(x2ct)(4.6)

results in a single equation for W:

d L{W} L{W}
2 2 2(ū 2 c) 2 Ro a (z 2 c) 2 W1 2[ ]dz G G

2L{W} H
2 2 22 1 1 2 Ro a (z 2 c) W 5 0, (4.7)1 2[ ]G L

where

dW 1
2 2L{W} 5 2 F 1 Ro (z 2 c) W (4.8)c 2[ ]dz F E

and

G 5 2(z 2 c)a2 2 [1 2 z 2 Ro2a2(z 2 c)2].2Fc (4.9)

In the hydrostatic, Boussinesq limit (H2/L2, ) → 0,2Fc

(4.7) reduces to Eq. (19) of Nakamura (1988).
Growth rates for a range of Ro and Fc are shown in

Fig. 2. The values for Fc 5 0 in the range 0 # Ro #
0.26 correspond to those shown in Fig. 1a of Nakamura
(1988). The values for Fc . 0 are derived from the
eigenvalues of the linear operator formed by the dis-
cretization of (4.1)–(4.6). For the range of Ro shown in
Fig. 2, growth rates of baroclinic modes decrease as a
consequence of compressibility for the reasons dis-
cussed in the previous section on barotropic modes.
However, baroclinic instability in the earth’s atmosphere
is relatively insensitive to compressibility; typical at-
mospheric values of the sound speed and deformation
radius for baroclinic modes yield Fc 5 0.32 and the
growth rate for Ro 5 0.1 decreases only by about 5%
from its incompressible value.
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FIG. 3. Vorticity (top, contoured every 1 3 1025 s21) and perturbation pressure P9 (bottom, contoured every 0.5 J kg21-K21) for the
compressible barotropic solution after five days of integration (left) and incompressible solution after four days of integration (right). Dashed
contours indicate negative values and the bold contour corresponds to zero. The channel has a zonal length of 7680 km wide and is 6000
km wide. The horizontal resolution is 60 km, and the temporal resolution is 60 s in the compressible solution and 180 s in the incompressible
one. The zonal average of P9 has been subtracted from the bottom panels.

5. Nonlinear simulations

The effects of compressibility on the growth rates of
unstable barotropic and baroclinic modes are evident in
fully nonlinear simulations of these instabilities when
compared to their incompressible counterparts. Such
simulations were performed with a new nonhydrostatic
compressible version of the ZETA model (Orlanski and
Gross 1994) and compared with the solutions provided
by the original Boussinesq version of the ZETA model.
Unique features of the new model include the use of
the terrain-following vertical coordinate Z (Orlanski and
Gross 1994) and the retention of all terms in the con-
tinuity equation. A complete description of the model
is provided in the appendix.

The compressible and incompressible barotropic so-
lutions on an f plane, shown in Fig. 3, are quite similar
in the distribution and amplitude of the perturbation
pressure and vorticity fields. However, the compressible
solution, corresponding to (Ro, Fc) 5 (0.1, 0.4) is shown

after five days of integration, while the incompressible
solution is shown after only four days. This clearly
shows that the effects of the slower growth rate are felt
well into the nonlinear regime. The difference in inte-
gration times is consistent with the difference in growth
rates of about 25%. All other features of the barotropic
roll-up seem well represented in the compressible so-
lution; its development is simply slower than the in-
compressible one.

Compressible and incompressible simulations of a
three-dimensional baroclinic wave on a cosine jet are
shown in Fig. 4. The wavelength is 4600 km and the
Brunt–Väisälä frequency is N 5 1.15 3 1022 s21, cor-
responding closely to the most unstable two-dimen-
sional baroclinic mode discussed by Nakamura (1988).
The compressible and incompressible solutions possess
quite similar features in the surface vorticity and po-
tential temperature distributions. In particular, frontal
strengths and positions compare well between the two
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FIG. 4. Surface perturbation potential temperature (top, contoured every 2.0 K) and perturbation pressure P9 (bottom, contoured every 1.0
J kg21-K21) for the compressible baroclinic wave after six days of integration (left) and incompressible wave after five days of integration
(right). Dashed contours indicate negative values and the bold contour corresponds to zero. The channel has a zonal length of 9200 km wide
and is 6100 km wide. The horizontal resolution is 48 km, and the temporal resolution is 60 s in the compressible solution and 300 s in the
incompressible one. The zonal average of P9 has been subtracted from the bottom panels.

solutions. Here, the compressible model has been in-
tegrated for six days and corresponds to (Ro, Fc) 5
(0.27, 0.94), and the incompressible solution has been
integrated for five days; two-dimensional growth rates
for these parameter values differ by about 20% accord-
ing to Fig. 2. As in the barotropic integration, the de-
velopment of the compressible baroclinic solution is
simply slower than the incompressible one.

6. Conclusions

Linear growth rates have been calculated for baro-
tropic and two-dimensional baroclinic instability in a
compressible atmosphere. Compressibility introduces a
deformation radius based on the acoustic phase speed,
and the effects of compressibility depend on the ratio
of length scales Fc 5 f0L/c0. Growth rates decrease with
compressibility because the work done by compression
represents a source of perturbation internal energy and
a sink of perturbation kinetic energy, which have a ratio
of in the unstable linear modes. The diminished2Fc

growth rates are also evident in fully nonlinear simu-
lations of these instabilities with a new nonhydrostatic
compressible mesoscale model.

One consequence of this sensitivity to compressibility
is that numerical models that increase efficiency by ex-
plicitly decreasing the sound speed may provide arti-
ficially slow baroclinic and barotropic growth by indi-
rectly increasing the compressibility of the medium. Ac-
cording to the analysis presented above, however, this
detrimental effect will diminish as the scale of the rel-
evant feature decreases relative to the deformation ra-
dius.

Acknowledgments. The author gratefully acknowl-
edges Isidoro Orlanski, who pointed out the similarity
between the linearized barotropic compressible and
shallow water equations and provided the reference to
Lipps’s early work on divergent barotropic flow. Dr.
Orlanski and Dr. Stephen Garner also provided many
useful discussions and comments on this work. The



30 VOLUME 54J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

comments of two anonymous reviewers were very help-
ful in clarifying the original version of this paper.

APPENDIX

The Nonhydrostatic Compressible ZETA Model

The nonhydrostatic compressible primitive equation
model used in the simulations presented in section 5 is
an extension of the hydrostatic ZETA model described
in the appendix of Orlanski and Gross (1994). The ter-
rain-following ZETA coordinate is given by

z 2 h(x, y)
Z 5 exp 2« , (A.1)1 2[ ]H 2 h(x, y)

where z is physical height, h(x, y) represents the height
profile of the topography, and H is the height of the
model rigid lid. Larger values of e place more model
levels and higher resolution near the ground.

a. Governing equations

The governing equations (2.1)–(2.4) expressed in the
ZETA coordinate (A.1) are the momentum equations,

]vH 5 F , (A.2)H]t

]v 1 ]¯5 2u P9 1 F , (A.3)v[ ]]t d ]ZZ

expressed in terms of the horizontal velocity vH and the
vertical velocity

•
v 5 d Z 5 w 2 v •¹z, (A.4)Z H

the continuity equation expressed in terms of the Exner
function R/cpP [ c (p/p ) ,p 0

2] c̄ 1 ]s ¯P9 5 r̄uv 1 F , (A.5)P2¯]t r̄u d ]ZZ

and the thermodynamic equation expressed in terms of
potential temperature u,

]u
5F . (A.6)u]t

The explicit forcing terms are given by

1 ]
F 5 2 u =P9 2 P9 =zH 1 2[ ]d ]ZZ

2 f k 3 v 2 A 1 D , (A.7)H v vH H

gu9 1 ]
F 5 2 u9 P9 2 Av w¯ [ ]u d ]ZZ

]vH2 •=z 1 D , (A.8)w]t

2c̄ 1 R 1s ¯F 5 2 = • (r̄uv d ) 2 P9 = •vdP H Z Z2¯ 1 2r̄u d c dZ v Z

2c̄ R Qs2 A 1 1 P9 , (A.9)P9 1 ¯ 2u c uv

F 5 2A 1 Q. (A.10)u u

An overbar denotes a static hydrostatic state satisfying
]P̄/]Z 5 2gdz/ and a prime denotes deviations fromū
this state. In particular, the static-state pressure has been
removed from the pressure gradient in (A.2) and (A.3)
to minimize cancellation between the two pressure gra-
dient terms in (A.7) and the hydrostatic balance of the
static state in (A.3). The geometric conversion factor is
given by

]z (H 2 h(x, y))
[ d 5 2 , (A.11)Z]Z eZ

and A indicates advection in the Z coordinate system:

1 ] f ] f•
A 5 v •= f 1 v 5 v •= f 1 Z . (A.12)f H Hd ]Z ]ZZ

In the dry model used here, momentum dissipation D
and heating Q are parameterized by fourth-order hori-
zontal diffusion and a vertical mixing scheme based on
the local Richardson number (Ross and Orlanski 1982).
For efficiency, the advection and dissipation terms in
(A.8) operate on w rather than v. The boundary con-
ditions are similar to those imposed in the hydrostatic
model: vertical walls at the north and south boundaries,
a flat rigid lid, and periodicity in the zonal direction.

b. Discrete equations

The nonhydrostatic compressible model uses the same
Arakawa C-grid and leapfrog time-differencing schemes
as the hydrostatic model; however, the explicit repre-
sentation of sound waves practically requires the use of
an implicit scheme for integrating vertically propagating
acoustic waves. The discrete equations are given by
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n11 n21 nu 5 u 1 2DtF , (A.13)H H u

n11 n21 nv 5 v 1 2DtF , (A.14)H H v

n21 n^v & 5 v 1 DtFk11/2 k11/2 v

Z

ū
2 Dt D ^P9 &, (A.15)Z k111 2dZ

n21 n^P9& 5 P9 1 DtFk k P

Dt
1 22 [g ^v & 2 g ^v &], (A.16)k k11/2 k k21/2DZ

n11 n21 nu 5 u 1 2DtF , (A.17)H H u

where the discretized forcing terms are
xz

nD P9x xyZn n n nF 5 2u D P9 2 D z 2 fyZu x x1 2[ ]dZ

x y zx x xn n n n n n2 u D u 1 y D u 1 v D u1 2x y Z

n211 D , (A.18)u

yz

nD P9y xyZn n n nF 5 2u D P9 2 D z 2 fuv y Z y1 2[ ]dZ

x y zy y yn n n n n n2 u D y 1 y D y 1 v D y1 2x y Z

n211 D , (A.19)y

Z
n ngu9 DZP9Z

n n n nF 5 2 u9 2 F D z 2 F D zv z u x y yū sZ

x y z
Z Z zn n n n n n2 u D w 1 y D w 1 v D w1 2x y Z

n211 D , (A.20)w

2 x yc̄ 1s n n¯ ¯F 5 2 D r̄ud u 1 D r̄ud y1 2P x Z y Z2¯r̄u dZ

nR P9 x y
n n n2 D d u 1 D d y 1 D v1 2x Z y Z Zc dv Z

x y z
n n n n n n2 u D P 1 y D P 1 v D P9 9 91 2x y Z

2c̄ R Qs n1 1 P9 , (A.21)
n1 ¯ 2u c uv

x y z
n n n n n n nF 5 2 u D u 1 y D u 1 v D u 1 Q, (A.22)1 2u x y Z

the coefficient in (A.16) is

2 Z Zc̄ 1s1 2 ¯ ¯(g , g ) 5 [r̄u] , [r̄u] , (A.23)1 2k k k k2121 ¯ 2r̄u dZ k

and the finite-difference operators

1
n11 n21^q& 5 (q 1 q ), (A.24)

2
1

xq̄ 5 (q 1 q ), (A.25)i11jk ijk2
1

D q 5 (q 2 q ). (A.26)x ijk i21jkDx

may be applied to any variable q. Similar averaging and
differencing operators may be derived for the other in-
dependent variables. Since the boundary conditions for
v are so well posed [v 5 0 at Z 5 (1, e2e)], the pressure
is eliminated from (A.15) to (A.16), resulting in a single
tridiagonal equation for ^v&. The remaining variables
may be found by means of (A.13–A.14) and (A.16–
A.17).
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