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Abstract

This paper examines the accuracy of surface elevations in a forward global numerical model of 10 tidal constituents.
Both one-layer and two-layer simulations are performed. As far as the authors are aware, the two-layer simulations and
the simulations in a companion paper (Deep-Sea Research II, 51 (2004) 3043) represent the first published global
numerical solutions for baroclinic tides. Self-consistent forward solutions for the global tide are achieved with a
convergent iteration procedure for the self-attraction and loading term. Energies are too large, and elevation accuracies
are poor, unless substantial abyssal drag is present. Reasonably accurate tidal elevations can be obtained with a
spatially uniform bulk drag c; or horizontal viscosity Ky, but only if these are inordinately large. More plausible
schemes concentrate drag over rough topography. The topographic drag scheme used here is based on an exact
analytical solution for arbitrary small-amplitude terrain, and supplemented by dimensional analysis to account for drag
due to flow-splitting and low-level turbulence as well as that due to breaking of radiating waves. The scheme is
augmented by a multiplicative factor tuned to minimize elevation discrepancies with respect to the TOPEX/
POSEIDON (T/P)-constrained GOT99.2 model. The multiplicative factor may account for undersampled small spatial
scales in bathymetric datasets. An optimally tuned multi-constituent one-layer simulation has an RMS elevation
discrepancy of 9.54 cm with respect to GOT99.2, in waters deeper than 1000 m and over latitudes covered by T/P (66°N
to 66°S). The surface elevation discrepancy decreases to 8.90cm (92 percent of the height variance captured) in the
optimally tuned two-layer solution. The improvement in accuracy is not due to the direct surface elevation signature of
internal tides, which is of small amplitude, but to a shift in the barotropic tide induced by baroclinicity. Elevations are
also more accurate in the two-layer model when pelagic tide gauges are used as the benchmark, and when the T/P-
constrained TPX06.2 model is used as a benchmark in deep waters south of 66°S. For Antarctic diurnal tides, the
improvement in forward model elevation accuracy with baroclinicity is substantial. The optimal multiplicative factor in
the two-layer case is nearly the same as in the one-layer case, against initial expectations that the explicit resolution of
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low-mode conversion would allow less parameterized drag. In the optimally tuned two-layer M, solution, local values
of the ratio of temporally averaged squared upper layer speed to squared lower layer speed often exceed 10.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Tides are the simplest large-scale motions in the
open ocean. The barotropic tidal response in the
mid-ocean is linear. Compared to the oceanic
general circulation, tides are controlled by rela-
tively few physical processes. In contrast to the
wind- and buoyancy-forcing fields, tidal forcing
has a spatial and temporal structure that is known
very accurately. Yet it is only in the last few
decades that open ocean tidal elevations have been
mapped to high accuracy. Accurate charts have
been constructed with models that are constrained
by either tide-gauge or satellite altimetry data. The
relative simplicity of tides makes the challenge of
mapping them globally in forward models, that is,
models that are unconstrained by data, an
appealing one. Forward global tide models are
an ideal testing ground for the hydrodynamical
cores of numerical ocean general -circulation
models, and for ideas about drag and dissipation.
In contrast to data-constrained models, forward
models cannot achieve accurate tidal evelations
unless substantial parameterized drag is included
in the abyss. Forward models thus point clearly to
drag in the open ocean as a central control on tidal
flow. In agreement with other recent studies of
global forward tide models (Jayne and St. Laurent,
2001—hereafter JS; Carrere and Lyard, 2003—
hereafter CL; Egbert et al., 2004—hereafter ERB),
we argue that topographic drag is a plausible
mechanism for mid-ocean tidal dissipation. (Note
that CL focused mostly on wind-driven motions
and discussed tides only briefly.) Topographic
drag probably affects all large-scale oceanic
motions, and the understanding gained through
use of forward tide models should be helpful in
planning numerical simulations that simulta-
neously contain tides and the general circulation.
This paper focuses on three factors—self-attrac-
tion and loading, topographic drag, and barocli-
nicity—that affect the accuracy of global forward

modeled tidal elevations. To the best of our
knowledge, the two-layer simulations presented
in the current paper and the simulations of
Simmons, Hallberg, and Arbic (this issue; here-
after SHA) are the first published global simula-
tions of baroclinic tides. There are several
differences between SHA and the present study.
In place of the full spherical harmonic computa-
tion of the self-attraction and loading term, SHA
used the scalar approximation, which facilitated
the performance of higher resolution simulations.
SHA focused on the rate of energy conversion
from barotropic to resolved low-mode baroclinic
motions, rather than the accuracy of surface
elevations, and SHA did not utilize a parameter-
ization of topographic drag.

Both observational and theoretical work on
tides have a long history (Cartwright, 1999). Much
of the theoretical work has been done in idealized
geometries. The development of modern compu-
ters led to numerical tidal models with realistic
geometry and bathymetry. Hendershott (1977,
1981) and Schwiderski (1980) review the pioneer-
ing work. Early successes at constraining hydro-
dynamical tide models by tide-gauge data were
achieved by Parke and Hendershott (1980) and
Schwiderski (1980). A tide model was derived
solely from Geosat altimetric data by Cartwright
and Ray (1990). Both the Schwiderski and Cart-
wright and Ray models have a combined elevation
accuracy over the eight largest tidal constituents of
about 4.5cm, relative to deep-ocean tide gauges
(Shum et al., 1997). With the launch of the
TOPEX/POSEIDON (T/P) altimeter in 1992, the
need to subtract out tidal elevations, so that other
oceanic motions could be studied, stimulated the
development of over 20 data-constrained models.
All agreed with deep-ocean tide gauges to order
2.5-3cm (Andersen et al., 1995; Le Provost et al.,
1995; Shum et al., 1997). Le Provost et al. (1994)
ran a hydrodynamical model which utilized tide-
gauge data, albeit in a somewhat subtle manner—
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see ERB for a discussion. Since the Le Provost et
al. model was independent of altimetric data, it
served as an important check on other data-
constrained models, which were either entirely
derived from T/P data (e.g. Desai and Wahr, 1995)
or assimilated T/P data into hydrodynamical cores
(e.g. Egbert et al., 1994).

The total dissipation of tidal energy can be
inferred accurately from various astronomical
methods (e.g., Munk, 1997 and references therein;
Cartwright, 1993; Ray, 1994; Kagan and Sunder-
mann, 1996; Munk and Wunsch, 1998). In the last
10 years or so, these methods have converged on
3.7 TW for the total tidal dissipation in the
Earth-Moon—Sun system. An estimated 0.2 TW
of dissipation occurs in the solid-earth tides,
leaving 3.5 TW to be dissipated in the oceans,
with M, accounting for 2.4 TW. The geographical
distribution of tidal dissipation has been a matter
of longstanding interest. Taylor (1919) estimated
0.04 TW of dissipation in the Irish Sea from an
area integral of cdp0(|ﬁ|3 ), where brackets denote
time-averaging, the bulk drag coefficient ¢; =
0.0025, p, = 1035kgm~" is the average density
of seawater, and i is the horizontal velocity vector.
Jeffreys (1920) applied the method globally and
estimated 2 TW of dissipation in all of the world’s
shallow seas. Miller (1966) arrived at a similar
total dissipation but a rather different partition
amongst the various shallow seas. Shallow seas
cover a more limited area than the deep ocean but
have much larger tidal velocities. Abyssal dissipa-
tions based on the nominal ¢; value of 0.0025
would be two orders of magnitude too small to
have a significant impact on the global dissipation
budget (Munk, 1997).

The tidal power input P;, can be shown to equal
the global integral

P = s [ [ (e (n

(e.g., Egbert and Ray, 2001 and references there-
in), where ¢ is time, the gravitational acceleration
g=9.80ms2, NEq 1s the equilibrium tide, to be
discussed later, # is the surface tidal elevation with
respect to mean resting water depths, and d4 is an
element of area. Since ngg is known to high
accuracy and since data-constrained models have

accurate elevations, at least in the open ocean,
several recent data-constrained models (Le Pro-
vost and Lyard, 1997; Kantha, 1998; Tierney et al.,
2000) have globally integrated power inputs (and,
therefore, dissipation rates, since there must be a
balance in the time-average) that are in good
agreement with the astronomical constraints. The
spatial distribution of the dissipation, however, is
not constrained by the global integral. Bulk-drag
friction in the models cited above puts virtually all
of the modeled dissipation into shallow seas. On
the other hand, in-situ observations at specific
locations (e.g. Armi, 1978; Polzin et al., 1997,
Lueck and Mudge, 1997; Kunze and Toole, 1997;
Ledwell et al., 2000) suggest that substantial
energy dissipation occurs over mid-ocean rough
topography. Ledwell et al. (2000) showed that the
magnitude of column-integrated energy dissipa-
tion in Brazil Basin microstructure measurements
modulates with the spring-neap cycle, suggesting
that much of the dissipation is driven specifically
by tides. Egbert and Ray (2000, 2001, 2003a) infer
from T/P-constrained models that about 0.8 TW
of M, dissipation, and 1 TW of dissipation across
all constituents, occurs in the deep oceans,
primarily over regions of rough topography.
Tidal flow over rough topography generates
high-mode internal waves which break and dis-
sipate, and low-mode internal tides (Wunsch,
1975; Hendry, 1977; Hendershott, 1981) which
radiate. Relevant numerical and theoretical studies
of internal wave and internal tide generation over
rough topography include Cox and Sandstrom
(1962), Baines (1973), Bell (1975a), Bell (1975b),
Baines (1982), Hibiya (1986), Sjoberg and Stige-
brandt (1992), Morozof (1995), Holloway (1996),
Cummins and Oey (1997), Kantha and Tierney
(1997), Holloway and Merrifield (1999), Kang et
al. (2000), Merrifield et al. (2001), Niwa and
Hibiya (2001), Balmforth et al. (2002), St. Laurent
and Garrett (2002), Llewellyn Smith and Young
(2002, 2003), Khatiwala (2003), St. Laurent et al.
(2003), Legg (2004), and Polzin (2004). Some of
the above studies are done in idealized conditions
(e.g., Khatiwala, 2003). Some combine theories with
velocity outputs from one-layer data-constrained
models to estimate global barotropic to baroclinic
conversion rates (e.g., Nycander, submitted 2004).
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Some are realistic regional simulations (e.g., Hollo-
way, 1996; Cummins and Oey, 1997; Kang et al.,
2000; Merrifield et al., 2001). Niwa and Hibiya
(2001) modeled the internal tides of the entire North
Pacific. Coherent radiating low-mode internal tides
have been found in acoustic tomography data
(Dushaw et al., 1995) and in T/P data (Ray and
Mitchum, 1996, 1997, Cummins et al., 2001), and a
comprehensive observational and modeling study of
the internal tides at Hawaii is described in Rudnick
et al. (2003).

Consistent with JS, CL, and ERB, we show that
the accuracy of forward-modeled tidal elevations
depends to first order on the amount of para-
meterized abyssal dissipation. We show that even
physically implausible drag schemes, such as the
introduction of inordinately large bulk quadratic
drag or horizontal viscosity coefficients, can
produce reasonably accurate tides. However,
following JS, CL, and ERB, we argue that
topographic drag schemes are more physically
plausible. Our topographic drag scheme is based
on an exact linear solution for arbitrary terrain,
augmented by a dimensional analysis to account
for nonlinear drag due to bottom turbulence as
well as linear drag due to radiating waves. In
contrast to those in JS, but similar to those in
ERB, our solutions are convergent with respect to
iterations of the self-attraction and loading (SAL)
term, and therefore represent self-consistent for-
ward solutions for the global tide. As in JS, we
perform multi-constituent forward model runs,
whereas ERB focused on M;-only simulations.
The regional and basin-wide studies of baroclinic
tides previously noted have been done at high
horizontal resolution (for instance, 1/10° in Kang
et al., 2000; 4km in Merrifield et al., 2001, and
1/16° in Niwa and Hibiya, 2001), and often include
many vertical layers. We show here that even 1/2°
horizontal resolution and two layers in the vertical
are enough to provide a useful result—namely, an
improvement in the accuracy of surface tidal
elevations over those in our one-layer model. In
agreement with Ray and Mitchum (1996, 1997),
we find that the direct signature of baroclinic tides
on the surface elevation is small. The improvement
in surface elevation accuracy in the two-layer
model is due to a shift in the barotropic solution.

Our main focus is on tides in the open ocean.
Coastal tides have smaller spatial scales than open-
ocean tides, are more nonlinear, and exhibit
aperiodic behaviors (Maas and Doelman, 2002).
Obtaining accurate coastal tides in a global model
is a formidable challenge which even data-con-
strained models are only beginning to meet (Ray,
1999; Tierney et al.,, 2000). We follow JS in
referring to regions having resting water column
depths less than 1000 m as “‘shallow’ and regions
having depths greater than 1000m as “‘deep”,
“abyssal”, “open-ocean”, or “‘mid-ocean”. The T/
P-constrained model output we compare our
forward model to was provided courtesy of R.D.
Ray. We draw the four largest semidiurnal
constituents (N,, M», S,, and K,) and four largest
diurnal constituents (Q;, O4, Py, and K;) from the
GOT99.2 model (Ray, 1999), which is an empirical
mapping guided by the Le Provost et al. (1994)
results. Purely empirical derivations from T/P,
documented in Egbert and Ray (2003b, see their
Fig. 1a,b) provide us with the two largest long-
period constituents (M,, and M,). As with other
recent forward tide models, our forward model
contains one free parameter, associated with the
topographic drag scheme. We tune this parameter
to minimize the surface elevation discrepancy in
M,-only runs with respect to GOT99.2, in deep
waters over the latitudes covered by the T/P
altimeter (66°S to 66°N). The optimal value of
the free parameter so chosen is then used in multi-
constituent runs. We compare the multi-constitu-
ent forward model clevations to those in the Ray
results and to those in the set of 102 pelagic tide
gauges used in Shum et al. (1997). Another test of
our forward model can be made in latitudes
poleward of 66°. Padman et al. (2002, 2003) and
references therein present Antarctic tide models
constrained by tide-gauge data, and Padman and
Erofeeva (2004) and references therein present
tide-gauge constrained Arctic tide models. Eleva-
tions in the global TPX06.2 solution (Egbert and
Erofeeva, 2002) compare well with Antarctic tide-
gauge data (Laurie Padman, Gary Egbert, and
Lana Erofeeva, personal communication 2004).
We will therefore use TPX06.2 as a benchmark in
latitudes south of 66°S. The comparisons to
pelagic tide gauges and to TPX06.2 do not include
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M; and M,. Against all three benchmarks,
elevations in our forward two-layer model are
more accurate than those in our one-layer model.
Parameterized drag is needed to obtain accurate
tides in both one- and two-layer simulations, and
we provide a simple explanation for the sensitivity
of elevation accuracy to drag. Although the main
focus of this paper is on surface elevations, we also
devote a brief section to the impact of baroclinicity
on tidal velocities.

2. The model
2.1. Governing equations

We have adapted the Hallberg Isopycnal Model
(HIM; Hallberg and Rhines, 1996) to be a forward
model of tides. Our simulations are performed on
a latitude-longitude grid running from 86°S to
82°N, which allows the possibility of accurate tidal
modeling in the Antarctic, but not in the high
Arctic. (Note that SHA utilizes a tripolar grid to
perform truly global simulations.) Except where
noted, the runs discussed in this paper are at 1/2°
resolution. A few runs are at 1/4°. The one-layer
mass conservation equation is

0

SH+V - [(H A+ il =0, @
where H is the resting layer thickness (spatially
varying, according to the topography). The one-
layer momentum equation is

ou ~
a—‘t‘+(f+g)k x @
= —gV(n — Npq — NsaL — MEM) — V(Eﬁ : ﬁ)
V - [Ku(H +n)Vid]  cqluli Tii
H+n H+n  py(H+n)’
3)

where f'is the Coriolis parameter, k is a unit vector
in the vertical direction, { =k - (V x i) is the
vorticity, 17gq is the equilibrium tidal forcing, ngap
is the self-attraction and loading term, nygp 1S @
“memory” term we have inserted which we discuss
later, ¢, is set to the canonical value of 0.0025

unless otherwise noted, Ky 1is a horizontal
viscosity set to 10°m?s~! unless otherwise noted,
and T is our topographic drag tensor, to be
discussed later. The horizontal viscosity prevents
sub-grid scale noise brought about by the non-
linear advection terms in the governing equations
(Egbert and Ray, 2003b), and prevents slow drifts
in model energy. The chosen value of horizontal
viscosity affects modeled energy dissipations at the
level of a few percent or less.

The two-layer mass conservation equations are

ijv-[(Hﬁrm—nz)ﬁl]:O’ 4
We 4V - [(Hs + i) =0, 3)

and the momentum equations are

ou A
(kX iy

ot
= =gV — Ngq — NsaL — MmEem)
1 V- — Vi
—V(—ﬁl ' ﬁl) i [Ku(Hi +ny — 1) Ul]’
2 Hy+mn —n
(6)
ou A,
o Uk <
= =gV — Ngq — NsaL — Mmem)
— g’V — Ngq — NsaL — IMEM)
1 V - [Ku(H Vi
—V(ﬂz . L_fz) + [Kn 2+ 1) Vo]
Hy +n,
_ cdlibid T )
Hy+ny,  po(Ha+1,)°

where subscripts 1 and 2 denote upper and lower
layers, respectively, H, and H, are the resting
layer depths, 1, and #, are the surface and
interfacial height perturbations, and the reduced
gravity ¢’ = (p, — p,)/po, Where p; and p, are the
layer densities. Note that we have chosen to have
the drag tensor operating on the lower-layer flow.

Many references exist on the equilibrium tide
Neq (e.g., Cartwright, 1977; Hendershott, 1981;
Marchuk and Kagan, 1984; Pugh, 1987), which is
astronomically forced but modified by a factor of
1 + k> — hp, where the Love numbers 4, and k»
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Table 1

Constituent-dependent frequencies w, astronomical forcing amplitudes 4, and Love number factors 1+ k; — /1, used to compute

equilibrium tide ngq. The periods 27/ are also given

Constituent o (1074571 A (cm) l+ky—hy Period (solar days)
M,, 0.026392 2.2191 0.693 27.5546
My 0.053234 4.2041 0.693 13.6608
Q 0.6495854 1.9273 0.695 1.1195
O, 0.6759774 10.0661 0.695 1.0758
P, 0.7252295 4.6848 0.706 1.0027
K, 0.7292117 14.1565 0.736 0.9973
N» 1.378797 4.6397 0.693 0.5274
M, 1.405189 24.2334 0.693 0.5175
S, 1.454441 11.2743 0.693 0.5000
K, 1.458423 3.0684 0.693 0.4986

respectively account for the solid-earth body-tide
deformation and the perturbation gravitational
potential resulting from this deformation (Hender-
shott, 1972; Ray, 1998). Table 1, taken from
documentation for the TPX06.2 model (Egbert
and Erofeeva, 2002), lists the frequencies, ampli-
tudes, and Love numbers for the 10 constituents
simulated in this paper. The frequencies and
amplitudes are based on work by Doodson
(1921), Cartwright and Tayler (1971), and Cart-
wright and Edden (1973)—a more recent compu-
tation was done by Roosbeek (1996). The Love
numbers for the diurnal tides differ from those for
the semi-diurnal and long-period tides because of
the free-core nutation resonance (Wahr, 1981;
Wabhr and Sasao, 1981). When all 10 constituents
are present, the equilibrium tide is

nEQ(d)a /17 Z)
= ADI + ka(D) — ha(D)]
/

X (% - %sin2 (;5) cos[w(/){]

+) A@)L + ko(d) — ha(d)]
d

x sin(2¢) cos[w(d)t + 4]
+ ) AW+ ka(s) — ha(s)] cos’p

x cos[w(s)t + 24], (®)

where / is summed over M,, and M/, d is summed
over the four diurnal tides, s is summed over the
four semi-diurnal tides, A is longitude with respect
to the Greenwich meridian, and ¢ is latitude. We
set the time ¢ to zero at the start of each numerical
simulation. We ignore absolute time and slow
modulations of phase or amplitude, all of which
must be considered in more precise tidal analysis
and prediction (e.g. Schwiderski, 1980; Pugh, 1987).

Most of our runs are M»-only or K;-only. In
these cases we run the model for 20 days
(equilibration typically takes about 12 days). All
quantities discussed in this paper are drawn from
the model after equilibration has been reached.
Time averaged quantities are computed over a
period of duration one forcing cycle, sampled
every 12min. Simulations of long-period tides
require longer integrations. Frequencies are sepa-
rated from each other in multi-constituent runs
with the harmonic analysis package of Pawlowicz
et al. (2002), which is based on that of Foreman
(1977). Satisfaction of the Rayleigh criterion for
separation of the K,/S, and K;/P; pairs requires
an analysis period at least 182 days long. We run
our multi-constituent simulations for 240 days,
discard the first 40, and perform the harmonic
analysis on the last 200. Because multi-constituent
runs are time-consuming and computationally
expensive, we perform only a few of them in this
paper, after initial explorations have been done in
single-constituent runs.
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The perturbation potential due to the gravita-
tional self-attraction of the ocean surface is

3
9gpPo My , (9)
n Pearth 2n + 1

where pg,.q, = 5518 kgm™3 is the average density
of the solid earth and the ,’s are order n spherical
harmonics of the tidal elevation  (Hendershott,
1972; Ray, 1998). The solid earth yields to the load
of the water column, and the gravitational
potential is thus altered by the resulting redis-
tribution of mass within the solid earth. The
synthesis of these arguments is

3p0 ’ ’
NsaL ; o2 ¥ 1)(1 +k, — hm, (10)
(Hendershott, 1972; Ray, 1998). The load numbers
i, and k, introduced in Munk and MacDonald
(1960), respectively account for solid-earth yield-
ing and the resulting perturbation potential. We
take the load numbers from Table A2 in Farrell
(1972), who calculated them from a spherically
symmetric solid-earth model. For our 1/2° model,
n goes from 1 to 360. We use a spline fit to fill in
the gaps in Farrell’s table. Usage of load numbers
from more recent, but still spherically symmetric,
solid-earth models (Jerry Mitrovica, 2003, perso-
nal communication) makes little difference to our
tide model results.

Calculation of spherical harmonics as the
numerical tide model is running is computationally
infeasible. The simplest alternative is to use the
““scalar approximation”

nsaL = P, (11)

where f§ is a constant, often taken to be 0.085
(Accad and Pekeris, 1978). We estimate f§ by
computing a least-squares fit in depths greater
than 1000m to n and nga; values in the GOT99
model. A representative value for the semi-diurnal
tides is f = 0.094, and we use that as our nominal
value. In some runs (i.e. those in Section 4.2) we
use the scalar approximation and proceed no
further. In some we begin with the scalar
approximation and then employ the full formula
(10) in an iterative procedure (Francis and
Mazzega, 1990). In Section 4.1 we describe this
procedure and the term #y;gp\;, Which is introduced

into the momentum equation to force convergence
of ngar (we set nyem to zero in all runs which
employ the scalar approximation).

2.2. Diagnostics

The main diagnostic we use to evaluate model
accuracy is the sea-surface height discrepancy D
against benchmark elevations nggncamark, Where
the latter are drawn variously from GOT99.2,
TPX06.2, and the set of 102 pelagic tide gauges
used in Shum et al. (1997):

D= \/(ff(" - nB]j’lj“CdlﬁdARK)z dA>‘ (12)

Throughout the main body of this paper, brackets
refer to time-averaging. When #n and #gpncuMark
refer to the combined elevations of several
constituents, we refer to D as the RSS (root-sum-
square) discrepancy, as is customary in the
literature. By computing the signal

S = \/(ff(”]BEN;fHZIZRK)Z dA)’ (13)

we can compute relative errors, for instance, the
percentage of sea surface height variance captured,
given by 100 x[1 — (D/S)*]. As with D, S can be
calculated either for individual constituents or for
their (RSS) combination. Our calculations of D
and S which utilize GOT99.2 or TPXO06.2 as
benchmarks are restricted to deep waters (resting
depths exceeding 1000 m). We also restrict most
calculations of D and S to latitudes equatorward
of 66°; exceptions will be noted. In the pelagic tide
gauge comparisons, as is customary, we compute
averages that are not weighted by area or any
other considerations.

The available potential energy (APE) and
kinetic energy (KE) are given by

1
KE=§pO/ (H + n)i - iidA,

APE:%pOg// n>dA, (14)
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in the one-layer case, and by

1 S
KE:z/ o (Hy 4 my = m)iiy - i
+ poy(Hy + mp)idy - 1] dA,
! ,
APE =35, [ [t + g as, (15)

in the two-layer case. The kinetic energy can also
be written as the sum of barotropic (BT) and
baroclinic (BC) components KE = KEgt + KEgc,
where

1 N N
KEgpr = Epo/ (Hy + H» + ny)ipr - gy d4,

1 — —
KEgc = 3P0 (Hy + H> + ny)ic - upc d4,

upt = [(H1 + 1y — )iy
+ (Hay +n)ip] /(Hy + Hay + 1),

iigc = /(H1 + 1y — ny)(Ha +1,)
x(ty — 1) /(Hy + Hy + 1y). (16)

In the latter case the second layer will not exist
in waters shallower than Hiniwpper — 12, Where
Hinitpper 1s the initial value of the upper layer
thickness.

2.3. Input datasets

Our topographic drag scheme requires the
Brunt—Vaisala frequency N at the seafloor, which
we compute from the Levitus et al. (1998)
climatology. Our bathymetry comes from a 2 min
dataset assembled by Andrew Coward. Between
72°S and 72°N, Coward (2004, personal commu-
nication) mapped version 6.2 of the Smith and
Sandwell (1997) dataset from the original Merca-
tor projection onto a latitude—longitude grid by
choosing median values over each model grid cell,
without performing any smoothing. North of
72°N, an early version of the IBCAO (Jakobssen
et al., 2000) dataset was used, without any
smoothing at the joins, while ETOPOS was joined
without smoothing to the dataset south of 72°S. In
waters that are south of 60°S and shallower than
1200m, we alter Coward’s dataset with data

obtained from Laurie Padman (2002, personal
communication). The appendix in Padman et al.
(2002) describes the sources of Antarctic bathy-
metry data. Under the Antarctic ice shelves, water
depths are measured from the seafloor to the
bottom of the ice.

The 1/30° topography Agne(x', ") is filtered onto
the 1/2° and 1/4° grid values H(x,y) via

ffhﬁne(x/a y/)F(X, Vs X/, y/) d4
J[F(x,y,x',y)dA

We use a radial Blackman filter

H(x,y) =

(17)

F(x,y,x,)y) = 0.42 4 0.5 cos(nrficia / filter)
+ 0.08 cos(27rficid /Fritter ) (18)

where rfeq = \/ (x—x) + - y’)2 is the distance
from the coarse grid model gridpoint (x, y) to the
field point (x/,)’), and rgye, 1s the filter radius. For
points lying outside the filter radius, F=0. After
some initial explorations, we chose a filter radius
of 55km (1/2° in latitude) to prepare both the 1/2°
and 1/4° model grids used in this paper. Thus both
grids have the same amount of roughness. The
chosen 55km filter radius does not satisfy the
Nyquist criteria for the 1/2° simulations, which
therefore contain noticeably more gridscale noise
than the 1/4° simulations, in both the surface and
interfacial elevation fields. However, in both the
one- and two-layer runs, elevation accuracy is
nearly equal in 1/2° as 1/4° simulations. The model
elevation accuracy is sensitive to the type (e.g.,
Gaussian versus Blackman) and radius of the filter
used to map the topography onto our model grid.
The sensitivity to the preparation of the topo-
graphic grid, and the related sensitivity to resolu-
tion, will be further explored in a future paper.

3. Summary of topographic drag scheme

The classic topographic drag problem has a
steady flow # over small-amplitude topography
h sin(kx), where & and k are constants, the fluid
has constant Brunt—Vaisala frequency N, and the
internal wave drag is pONkhzﬁ. Actual ocean
topography contains a spectrum of heights and
wavenumbers. For their forward tidal model, JS



B.K. Arbic et al. | Deep-Sea Research IT 51 (2004) 3069-3101 3077

first calculated the water depths H at every
gridpoint in their 1/2° domain by fitting a
polynomial through all the 1/30° Smith and
Sandwell (1997) data contained by the coarse
model gridpoint. The rms of the residuals of the
nearby 1/30° heights with respect to the local H is
taken to be the roughness /4. JS added a factor of%
to the formula above, and then tuned k to
minimize the misfit between their forward modeled
elevations and those of data-constrained models.

In this section we summarize our topographic
drag scheme (Garner, 2003; also, submitted 2004),
which was originally developed for quasi-steady
background flows in the atmosphere, and then
extended to the oscillatory case relevant for tides.
Details of the scheme are provided in the
Appendix. Instead of using statistical measures
of the various vertical and horizontal scales in the
topography, the scheme is based on an exact
analytical solution for drag in the hydrostatic limit
over arbitrary small-amplitude terrain A(X). The
drag in the oscillatory case depends on tidal
frequency. Since M, is the dominant tidal con-
stituent, we tune our drag scheme in M»-only runs
and use the resulting optimal drag parameter in
the drag formula for our multi-constituent runs.
Our application of the drag scheme is therefore not
strictly correct for the diurnal and long-period
tides in such runs. However, the accuracy of
diurnal tidal elevations is not as sensitive to drag
as is the accuracy of semi-diurnal elevations, and
the accuracy of long-period elevations exhibits
very little sensitivity.

Inspired by the meteorological literature on
topographic drag and drag parameterizations
(e.g., Pierrehumbert, 1987; Miranda and James,
1992; Lott and Miller, 1997), we employ dimen-
sional reasoning in our scheme to accommodate
the possibility of drag due to low-level wave
breaking and turbulence as well as that due to
linear radiating waves. Waves radiating away from
small mountains or the tips of tall mountains cause
drag proportional to |ii|, while low-level breaking
in flow deflected around tall mountains causes
drag proportional to |i|*>. Flow splitting occurs
when a nondimensional parameter exceeds an
order one critical value. The measure of non-
linearity depends on whether or not the topo-

graphic length scales considered are small enough
that oscillatory flows appear to be “‘steady”. The
nonlinearity measure for large scales is small,
indicating that flow splitting and nonlinear drag
probably occur mostly at small scales. The
nonlinearity parameter for small scales is the
Froude number N//|i|. Thurnherr and Richards
(2001), Thurnherr et al. (2002), and Thurnherr and
Speer (2003) argue from observational data that
turbulence associated with hydraulic jumps occurs
in areas of rough topography when the Froude
number exceeds an order one threshold. The end
products of our dimensional reasoning are a
“propagating” drag D, due to radiating waves
(which presumably break above the topography)
and a ‘“‘non-propagating” drag Dp, due to low-
level turbulence. Our scheme takes the drag
direction from the linear analysis, and matches
the small amplitude limit of D, to the linear
analytical result. The final result for our drag is
given in the Appendix.

In all of the runs presented in this paper, our
drag scheme operates in waters 1000 m and deeper.
JS used their scheme in waters 100m and deeper.
Preliminary investigations indicate that the accu-
racy of our forward-modeled tidal elevations
improves slightly if we use our drag scheme in
waters 100 m and deeper, and our future work may
implement this. The horizontal length scale over
which to compute the quantity y defined in the
Appendix (Eq. (31)) is another ambiguous para-
meter. Larger integration scales lead to larger
values of y and thus drag. We choose to integrate
(31) over 40 km, which is an order-one fraction of
the order 100km topographic length scales in-
volved in generating the first-mode baroclinic tide
(see Fig. 11 in SHA). Topographic scales much
larger than this do not generate internal waves and
should not be included.

Much of the turbulent kinetic energy dissipation
seen in microstructure data (Lou St. Laurent,
2003, personal communication) occurs within
500 m of the bottom. Internal waves with vertical
scales much smaller than this are generated by
horizontal topographic scales of order hundreds of
meters to a few kilometers. Although the Smith
and Sandwell (1997) topographic dataset is
mapped onto a 1/30° grid, its true horizontal
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resolution is of order n times the ocean depth, i.e.
about 12 km. Thus the Smith and Sandwell dataset
is missing the horizontal scales that generate
breaking high-mode internal waves (and low-level
turbulence). We have found that our estimated
topographic drag must be augmented by a multi-
plicative factor to obtain accurate tidal elevations.
We tune the multiplicative factor to minimize D.
Our present interpretation is that the multiplica-
tive factor makes up for the missing scales in the
topographic dataset, but we will examine this
assumption more closely in future work. We stress
again that JS also had a tunable parameter (k). We
show that both schemes, when optimally tuned,
produce nearly identical overall levels of drag, as
measured by the spatially-averaged decay rate. In
our one-layer runs, the spatially averaged decay
rate is

J(

Po(zz"i) /Wl) d4
[/ d4

For the JS scheme the spatially averaged decay
rate is

(19)

Faverage =

[[(h*NJ2H)dA
[[ d4 ’

(20)

Faverage =

4. Surface elevation accuracy of M;-only
simulations

This section explores the surface elevation
accuracy in M,-only simulations. We examine
the effects of self-attraction and loading in one-
layer runs, and the effects of parameterized drag in
both one- and two-layer runs. The results of the
exploration are utilized in the multi-constituent
runs of the next section.

4.1. Effects of self-attraction and loading

Although the amplitude of ng,; is only about
one-tenth that of n, Vygur 1S an order-one
perturbation in the momentum equation because
NsaL contains much smaller scales than does ngq
(Hendershott, 1972; Gordeev et al., 1977). To

confirm the critical importance of this term, we
performed 1/2° M»-only simulations which comple-
tely omit ngs; . Our topographic drag scheme was
used, augmented by a multiplicative factor tuned as
described in the next subsection. The minimum D
value was 19.32 cm, much larger than that obtained
when the scalar approximation (11) or the full
expression (10) is used for ngap. In K;-only
simulations which omit the #g,; term, the elevation
errors against GOT99.2 were also substantially
larger than in simulations which employ the scalar
approximation, although the difference between the
two cases is not as dramatic as it is with M.

We now describe our procedure for iterating
Nsar Dast the scalar approximation, in 1/2° runs
which employ an optimally tuned topographic
drag scheme. Once the first iteration, employing
the scalar approximation, is completed, nga; 1S
calculated offline from the model output via (10).
Amplitude and phase maps Asap(¢p,4) and
PsaL(@, 4) are created which satisfy

nSAL((/)s }“s Z‘) = ASAL((bs /1) COS[(DZ - pSAL(¢9 j*)]
(21

As is standard, the phase is referenced to the
Greenwich meridian. The next iteration of the
model computes #ngy; from the amplitude and
phase maps made from the first iteration. When the
new iteration is complete, new maps (21) are again
created offline for use in the following iteration.
Convergence can be obtained with this straightfor-
ward iteration technique in K;-only simulations,
but in M»-only runs the value of D oscillates (solid
curve in Fig. 1). Similar oscillations were seen by JS,
who consequently averaged their model results over
the iterations (Steve Jayne, 2003, personal commu-
nication). We have been able to suppress the
oscillations by employing “memory” of the tidal
elevations in previous iterations. Let us denote the
tidal elevations of the iteration just before the
current iteration by #prgyvious. W€ construct
amplitude maps Aprevious(¢,2) and phase maps
Prrevious(®, 4) for this quantity and store them for
use in the current iteration:

nprevious(®, 4, 1) = Aprevious(¢, 4)
x cos[wt — pprevious(@> V)] (22)
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Fig. 1. Time- and area-averaged sea-level discrepancy D
against GOT99.2 in iterations of 1/2° one-layer M,-only runs,
done with and without nygy. Discrepancies are calculated in
waters deeper than 1000 m and equatorward of 66°. Iterations
are with respect to ngu; ., the self-attraction and loading term.

For each iteration, we set #nypy to be 0.094 (the
same constant used in the scalar approximation)
times the departure of the tide # in the current
iteration from the elevation #prgyious 10 the
previous iteration:

nmem = 0.094(7 — nprevious)- (23)

With this technique, the sea-surface height dis-
crepancy converges quickly (dashed curve in Fig.
1). Once the solution has converged, nypym 1S by
definition a small term. Indeed, we found that
when we continued the converged series plotted in
Fig. 1, but with the nygy term removed, the
discrepancies remain at the same level. Therefore it
is not necessary to retain #ygy past the first few
iterations. ERB (sece also references therein) also
found that their iterations of #5g,; did not
converge, unless an equivalent modified iteration
procedure was employed.

The elevation error in the third iteration of our
nvem = O set is substantially lower than that in the
other iterations including all iterations in the
convergent set. However, since the error does not
remain at this low level, the third iteration in the
nmem = O set is not a self-consistent solution. We
believe therefore that the low error should be
considered fortuitous. Using values of § other than

0.094 in (11) can also yield solutions with low
elevation discrepancies. However, in these latter
cases the discrepancy increases once #gap 1S
iterated using the proper formula, and we believe
the low discrepancies should again be considered
fortuitous. In succeeding sections, whenever the
self-attraction and loading term is iterated beyond
the scalar approximation, nygy 1S employed, and
the solutions are self-consistent.

4.2. Effects of parameterized drag in one-layer runs

This subsection explores the effects of para-
meterized drag on the accuracy of tidal elevations
in one-layer 1/2° M,-only experiments which,
except where noted, employ the scalar approxima-
tion ngap = 0.094n for simplicity. Even physically
implausible drag can improve forward model
accuracy. Fig. 2(A) plots the time-averaged global
APE and KE in simulations which have no
topographic drag, but in which ¢, is treated as a
tunable parameter. Both APE and KE decrease as
¢y 1s increased. Fig. 2(B) shows the sea-surface
height discrepancy D of the same experiments with
respect to GOT99.2, computed in waters deeper
than 1000m and over latitudes equatorward of
66°. Since APE is the global integral of #?, a
quantity clearly related to D, we expect experi-
ments with APE near that of observations to have
relatively small elevation errors. Inspection of Fig.
2 indicates that this is the case. Thus drag affects
surface elevation accuracy simply because it
controls tidal amplitudes. The optimal experiment
in Fig. 2 has a ¢; value of 0.64, 256 times larger
than the nominal value, which places significant
dissipation (1.56 TW; see SHA for details of the
model energy budget analysis) into the abyss and
yields a total M, dissipation across deep and
shallow waters of 3.09 TW, somewhat higher than
the observed 2.44 TW value. Fig. 3 displays

\/ {1 = Ngores)?), the spatial pattern of the

temporally averaged M, clevation discrepancies,
for both the nominal and optimal ¢; experiments.
Both experiments shown in this figure were
iterated with respect to the self-attraction and
loading term via the procedure described in
Section 4.1. The amount of drag clearly affects
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Fig. 2. (A) Global APE and KE in 1/2° one-layer M,-only
simulations with ngs; = 0.094y and variable ¢;. The extra
horizontal line represents the observed value of APE, taken
from Tierney et al. (2000). (B) Time- and area-averaged sea-
level discrepancy D against GOT99.2, in waters deeper than
1000 m and equatorward of 66°.

the spatial distribution as well as the magnitude of
error. APE and D are similarly sensitive to the
value of Ky in experiments (not shown) which
treat it as a tunable parameter while omitting
topographic drag. The optimal Ky in terms of
producing accurate elevations is 4.5 x 10°m?s~'.
Again, this is at least two orders of magnitude
larger than any physically plausible value.

The tunable ¢; and tunable Ky simulations
described above demonstrate that tidal amplitudes
and thus accuracies are sensitive to drag, even if
this drag is physically implausible. Fig. 4 shows
that the same principles hold when we tune the
multiplicative factor augmenting our topographic
drag scheme, which is physically motivated, and
concentrates parameterized dissipation into re-
gions of rough topography (Fig. 5), in accordance
with in situ (Polzin et al.,, 1997) and satellite

(Egbert and Ray, 2000, 2001, 2003a) observations.
Fig. 6 shows the spatial pattern of the elevation
discrepancies against GOT99.2 in the optimally
tuned one-layer M»,-only simulation. Again, as in
Fig. 3, the simulations shown in Figs. 5 and 6 were
iterated with respect to nga;. The optimal multi-
plicative factor for the iterated solutions is 7, lower
than the optimal factor of 9 in runs employing the
scalar approximation. Although the globally
averaged elevation error is not much lower than
that in the ¢; = 0.64 run, the spatial distribution of
error is different. The global tidal solution is
affected by the spatially distributed nature of the
topographic drag as well as its total magnitude.

4.3. Effects of parameterized drag in two-layer runs

To match the stratification of the ocean most
closely in a two-layer simulation, one might choose
a target density surface near the bottom of the
thermocline and initialize its depths in the model
according to a climatology. However, since such
an interface would slope in the horizontal, it would
undergo geostrophic adjustment in the absence of
forcing which could maintain it. For simplicity, we
instead choose to initialize our two-layer run with
an interface placed uniformly at 700 m throughout
the model domain. For similar reasons, we choose
one representative value of ¢/, 1.64 x 107 2ms~2,
estimated for realistic subtropical gyre conditions
from a formula in Flierl (1978) that depends on the
chosen 700 m interfacial depth. We found that the
elevation discrepancies D are not strongly sensitive
to the exact value of ¢, which we varied from
1.2x102ms2 to 1.8 x102>ms™2, or to the
exact placement of the interfacial depth, which
we varied from 600 to 900 m. Visual inspection of
the interfacial waves indicates that they are
marginally resolved in 1/2° runs, especially with
smaller ¢’ values, which render smaller horizontal
scales. Two-layer 1/4° M,-only experiments re-
solve the interfacial waves much better but yield
nearly identical elevation errors.

It is an interesting question whether our drag
parameterization should be thought of as repre-
senting conversion to low baroclinic modes or to
high ones. This question takes on particular
interest in our two-layer simulations, in which we
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Fig. 3. Logjo of time-averaged sea level errors 4/ (7 — ;7GOT99_2)2) (in cm) for 1/2° one-layer M,-only: (A) ¢; = 0.0025 experiment and

(B) ¢4 = 0.64 experiment.

resolve the generation of the first baroclinic mode
internal tide. Our initial expectation therefore was
that less parameterized drag would be required to
obtain accurate surface clevations in two-layer
experiments. However, the sensitivity of two-layer
M, simulations to the multiplicative factor is
similar to the sensitivity in one-layer experiments.
Two-layer M»-only, 1/4° experiments having no
parameterized topographic drag (i.e., only a ¢y
value of 0.0025 for dissipation) yield an rms
elevation error of 12.8cm (against GOT99.2, in
waters deeper than 1000m and equatorward of

66°) when the full iteration of self-attraction and
loading is used. This represents an improvement
over the 14.9cm error we obtain in a nominal c4-
only one-layer run, but is much larger than the
7.4cm error obtained with an optimally tuned
multiplicative factor. The optimal multiplicative
factor of 8 is not much different from the optimal
factor of 7 found in one-layer simulations. Our
preliminary interpretation of this fact is as follows.
As was shown in the previous subsection, energy
must be taken out of the system, via parameterized
drag in the abyss, in order to bring about accurate
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Fig. 4. (A) Global APE and KE in 1/2° one-layer M,-only
simulations with g,; = 0.094#, run with our topographic drag
scheme augmented by a variable multiplicative factor. The extra
horizontal line represents the observed value of APE, taken
from Tierney et al. (2000). (B) Time- and area-averaged sea-
level discrepancy D against GOT99.2, in waters deeper than
1000 m and equatorward of 66°.

tidal energies and elevations. In two-layer experi-
ments, a substantial amount of energy is converted
from the barotropic to the baroclinic tide, as SHA
shows. However, low-mode generation is an
internal, adiabatic conversion, and, unlike para-
meterized drag, does not directly remove energy
from the system as a whole. It is computationally
infeasible for our hydrostatic, two-layer model to
resolve the generation and breaking of internal
waves at very small scales. Hence the need
apparently remains for parameterized drag, which
we have acting on the lower layer flow rather than
the barotropic flow. Since the vertically integrated
kinetic energy in the one- and two-layer simula-
tions is the same to within 10 percent, the amount
of parameterized drag required to obtain accurate
tides is similar in the two cases.

5. Surface elevation accuracy of multi-constituent
simulations

In the two subsections to follow we discuss the
surface elevation accuracy of a 1/2° one-layer ten-
constituent simulation and a 1/2° two-layer ten-
constituent simulation. Both employ #ypm to
iterate the self-attraction and loading term. In
both cases, sea-surface height discrepancies against
the Ray results were very similar in the second and
third iterations, and we take results from the third
iteration. Our topographic drag scheme was used,
augmented by a multiplicative factor of 7 in the
one-layer case and 8 in the two-layer case.

5.1. Omne-layer multi-constituent run

The third column of Table 2 lists values of D in
the one-layer run, measured against the Ray data
in deep waters equatorward of 66°. The signal S
for each constituent is given in the second column.
The RSS anomaly of all the constituents is
9.54 cm, slightly lower than the 10.1 cm found by
JS. Our M, and S, elevation discrepancies are
slightly higher than those in JS. Numbers in
parentheses denote percentage of sea-surface
height variance captured. Although the discrepan-
cies for the various constituents differ greatly in
absolute terms, the percent variance captured is
confined to a relatively narrow range (83.8-94.4)
across the constituents. In contrast, the K, O, Py,
and Q) solutions in JS capture 67, 81, 80, and 25
percent of the variance, respectively. In terms of
percent variance captured, our semi-diurnal con-
stituents, especially S, and K,, are less accurate
than our diurnal tides. Our relatively poor S,
results may be due to the air tide forcing at that
frequency, which we have not accounted for (Rui
Ponte and Gary Egbert, personal communication
2004). The percent variance captured is also
relatively low for M,, and M. This is probably
due to contamination by other low-frequency
oceanic motions (Desai et al., 1997; Egbert and
Ray, 2003b) in the Ray data, rather than to any
inherent difficulty in simulating long-period tides.
Our long-period elevations match those in the
forward long-period simulations of Egbert and
Ray (2003b) much more closely. The elevation
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Fig. 5. Logjo of time-averaged parameterized dissipation (in W m~2) in 1/2° one-layer M,-only run with (A) optimally tuned ¢, value
of 0.64 and (B) optimally tuned topographic drag scheme (multiplicative factor of 7).

discrepancies of the four semi-diurnal and four
diurnal constituents in our one-layer forward
model are all slightly lower when measured against
TPXO6.2 than when measured against GOT99.2,
such that the RSS reduces from 9.54 to 9.42 cm.
Elevation discrepancies against the set of 102
pelagic tide gauges are shown in Table 3. For the
sake of comparison, the (much lower) GOT99.2
discrepancies with the tide gauge data are also
shown. The elevation errors of our one-layer
forward model against tide gauges are larger than

the errors against GOT99.2 for all constituents
except K,. However, across all constituents, the
signal sampled by the gauges is larger than the
globally averaged signal (compare the second
columns of Tables 2 and 3), such that the percent
of the RSS signal variance captured is slightly
higher (91.9 versus 91.0 percent) when tide gauges
are used as the benchmark. As in the comparisons
with GOT99.2, our model captures diurnal eleva-
tions better than semidiurnal elevations, and again
the poorest performance is in S, and K,. The
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Fig. 6. Logjo of time-averaged sea level errors y/((n — nGOTg‘)_z)z) (in cm) for 1/2° one-layer M,-only experiment having topographic

drag with multiplicative factor of 7.

Table 2

Second column: time- and area-averaged sea-surface height signals S calculated from GOT99.2 (for the diurnals and semi-diurnals)
and from empirical mappings (for M, and M,,). Third and fourth columns: Time- and area-averaged sea-surface height discrepancies
D of 1/2° multi-constituent one- and two-layer forward simulations with respect to GOT99.2 (for the diurnals and semi-diurnals) and

to the empirical mappings (for M, and M,,).

Constituent Signal S (cm) One-layer D (cm) Two-layer D (cm)
M,, 0.49 0.17 (87.3) 0.17 (87.3)
My 0.90 0.27 (91.0) 0.28 (90.0)
Q; 1.39 0.36 (93.2) 0.38 (92.7)
0O, 6.61 1.57 (94.4) 1.53 (94.7)
P, 3.13 0.77 (93.9) 0.64 (95.9)
K, 9.54 2.45(93.4) 1.88 (96.1)
N> 5.65 1.51 (92.9) 1.37 (94.1)
M, 26.69 7.76 (91.6) 7.26 (92.6)
S, 10.57 4.26 (83.8) 4.12 (84.8)
K, 2.97 1.08 (86.8) 1.05 (87.6)
RSS 31.82 9.54 (91.0) 8.90 (92.2)

All quantities are computed in waters deeper than 1000 m and equatorward of 66°. Numbers in parentheses denote percentage of sea-

surface height variance captured in the forward simulations.

fourth column of Table 4 lists the elevation
discrepancies of our one-layer forward model
against TPX06.2 in waters deeper than 1000 m
and latitudes south of 66°S. For comparison, the

TPXO06.2 signals, and the discrepancies between
GOT99.2 and TPXO06.2, are also listed. In this
comparison, once again we fare better with diurnal
tides than with semidiurnal tides. However, the
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Table 3
Time and station-averaged sea-surface height signals S at the set of 102 pelagic tide gauges used in Shum et al. (1997), and sea-surface
height discrepancies D of GOT99.2 and of our 1/2° multi-constituent one- and two-layer forward simulations with respect to the
gauges

Constituent Signal S (cm) GOT99.2 D (cm) One-layer D (cm) Two-layer D (cm)
Q; 1.62 0.28 0.43 (92.8) 0.40 (93.9)
0O, 7.76 0.89 1.79 (94.7) 1.62 (95.7)
P, 3.62 0.37 0.84 (94.6) 0.73 (95.9)
K, 11.26 1.02 2.90 (93.3) 2.26 (96.0)
N, 6.86 0.65 1.95 (91.9) 1.83 (92.9)
M, 33.22 1.48 9.33 (92.1) 8.75 (93.1)
S, 12.62 1.03 4.44 (87.6) 4.25 (88.7)
K, 3.43 0.43 1.00 (91.4) 0.96 (92.2)
RSS 39.04 2.43 11.14 (91.9) 10.36 (93.0)

Numbers in parentheses denote percentage of sea-surface height variance captured in the forward simulations. Our calculated
GOT99.2 discrepancies agree with those in Table 2 of Ray (1999), except that he applied an air tide correction to the bottom pressure
recorder S, data which reduces the S, discrepancy to 0.94 cm. The air tide correction is not present in the Shum et al. dataset we used.

Table 4
Southern ocean time- and area-averaged sea-surface height signals S calculated from TPX06.2 and sea-surface height discrepancies D

of GOT99.2 and of our 1/2° multi-constituent one- and two-layer forward simulations with respect to TPX06.2

Constituent Signal S (cm) GOT99.2 D (cm) One-layer D (cm) Two-layer D (cm)
Q 3.79 0.40 0.50 (98.2) 0.41 (98.8)
0O, 17.60 3.89 2.11 (98.6) 1.72 (99.0)
P, 5.73 0.90 1.52 (93.0) 0.78 (98.1)
K, 18.11 2.66 5.06 (92.2) 2.53 (98.1)
Na 3.63 0.94 1.52 (82.4) 1.36 (86.0)
M, 18.96 2.01 6.75 (87.3) 5.99 (90.0)
S, 13.35 1.04 5.09 (85.5) 5.05 (85.7)
K> 3.79 0.41 1.36 (87.1) 1.32 (88.0)
RSS 35.36 5.41 10.40 (91.4) 8.66 (94.0)

All quantities are computed in waters deeper than 1000 m and south of 66°S. Numbers in parentheses denote percentage of sea-surface

height variance captured in the forward simulations.

difference is more striking in the Antarctic. The
semi-diurnal constituents are never captured at
better than 87.3 percent, while the diurnal consti-
tuents are all captured at 92.2 percent or better.
Table 5 lists the global tidal working rates
computed from T/P-constrained models by Egbert
and Ray (2003a) alongside the working rates,
computed from (1) over all model gridpoints (deep
and shallow), in our one-layer multi-constituent
run. With the exception of the Q; rate, our one-
layer forward model working rates match those in
the T/P-constrained models to within 8 percent or
better. The largest discrepancy is in the M, rate,

which is 0.2 TW too large, as is the total rate
summed over all constituents. A rough estimate of
the parameterized dissipation in the abyss of our
multi-constituent run can be made by assuming
that the topographic drag decay rate is spatially
uniform, so that the last term in (3) is —rii rather
than Ti/py,(H +n). Multiplication of —rii by
po(H +n)i and global integration would yield
—por [J(H +n)i - idA = —2rKE for the decay
rate of tidal energy. The spatially-averaged decay
rate computed from (19) in waters deeper than
1000m when the optimal multiplicative factor
of 7 is used is (2.0 days)™', very close to the
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Table 5
The global working rates of the tidal constituents

Constituent Egbert and Ray global work (TW) One-layer global work (TW) Two-layer global work (TW)
Q 0.007 0.008 (+14) 0.009 (+29)

0O, 0.173 0.181 (+5) 0.198 (+14)

P, 0.035 0.034 (-3) 0.034 (-3)

K, 0.343 0.329 (—4) 0.334 (-3)

N, 0.110 0.115 (+5) 0.114 (+4)

M, 2.435 2.632 (+38) 2.577 (+6)

S, 0.376 0.392 (+4) 0.380 (+1)

K> 0.030 0.029 (-3) 0.028 (—=7)

Total 3.508 3.719 (+6) 3.672 (+5)

The second column is from Table 1 of Egbert and Ray (2003a), computed from data-constrained solutions. The third and fourth
columns are the workings in our 1/2° one- and two-layer multi-constituent forward simulations. Numbers in parentheses indicate the
percentage differences of the model results with respect to the Egbert and Ray results.

(2.1 days)™' rate computed from (20) in the
optimal run in JS. If one multiplies (2.0 days)™'
by twice the abyssal model kinetic energy in our
optimally tuned one-layer multi-constituent ex-
periment, one estimates 2.3 TW for the parame-
terized abyssal dissipation. This is slightly larger
than the 1.85 TW abyssal dissipation we compute
from an energy budget analysis (see SHA for
details) of our one-layer multi-constituent run.
The energy budget analysis provides working and
dissipation rates at every model gridpoint, as the
model is running, while (1) holds only when
integrated globally. The energy budget analysis
thus yields a working rate that is independent from
that obtained by summing the constituent values
obtained via (1). The two estimates of the global
total working rates agree with each other and with
the global total dissipation estimate to better than
0.01 TW. The energy budget is computed through
multiplication of the momentum equation by (H +
n)i as the model is running, and hence does not
separate out the constituents. The abyssal dissipa-
tions in our one-layer model are significantly
larger than those found by Egbert and Ray
(2000, 2001, 2003a) in T/P-constrained solutions,
and by the JS and ERB one-layer forward models.

5.2. Two-layer multi-constituent run

The fourth column of Table 2 lists the elevation
discrepancies against the Ray results in our two-

layer multi-constituent run. The discrepancies are
lower than those in the one-layer multi-constituent
run across all constituents save the three smallest.
The RSS error over all constituents is reduced
from 9.54 to 8.90cm (or, from 9.42 to 8.78cm
when measured against TPX06.2). Again, the
semi-diurnal tides, especially S, and K,, are less
accurate (in terms of percentage of sea-surface
height variance captured) than the diurnal tides.
Table 3 shows that the improvement in elevation
accuracies in the two-layer forward model over the
one-layer forward model also holds when pelagic
tide gauges are used as the benchmark. The
addition of another layer yields an extra percent
of sea surface height variance captured in the RSS
signal, just as it does when elevations are measured
against GOT99.2. Table 4 shows that the inclusion
of another layer also lowers elevation errors across
all constituents when TPXO06.2 is used as a
benchmark in waters deeper than 1000m and
south of 66°S. The increase in percent variance
captured is greatest for P, and K, as it was when
measuring the one and two layer models against
the other two benchmarks. The diurnal elevations
in the two-layer forward model match the
TPXO06.2 elevations in the open Antarctic at the
level of 98 to 99 percent variance captured. The Py
and K, elevations in GOT99.2 match those in
TPXO06.2 slightly less well in the Antarctic than do
the P; and K, elevations in our two-layer forward
simulations, and our two-layer model apparently
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captures the O, elevations significantly better. The
GOT99.2 semi-diurnal elevations match TPX06.2
much more closely than do the semi-diurnal
elevations in our forward model. With the notable
exception of the O; global working rate, the
constituent global working rates of the two-layer
solution are generally slightly more accurate than
those in the one-layer solution, and the working
rate over all constituents is slightly closer to the
Egbert and Ray numbers (Table 5). Note that

(A)

although we use the energy budget analysis of
SHA, we do not employ mode-splitting, and
consequently our energy inputs and outputs in
the two-layer case balance much more closely (to
0.01 TW) than those in SHA.

Fig. 7 displays a map of the elevation discre-
pancies between our M, and K, solutions in the
two-layer multi-constituent run and TPX06.2. In
both cases, the elevation difference is scaled by the
globally averaged signal S of TPX06.2, computed

Latitude in degrees
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0 100

200 300
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Fig. 7. (A) Logyo of normalized M sea-level errors /(7 — Hrpxos2)°)/S in the 1/2° two-layer multi-constituent run, where brackets
denote time-averaging, and S is the time- and area-averaged M, elevation signal of TPX06.2 in waters deeper than 1000m and

equatorward of 66°. (B) Same but for K,.
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in waters deeper than 1000 m and equatorward of
66°. When unscaled (not shown) the M, map
closely resembles the M, error map in the one-
layer simulations, and is virtually indistinguish-
able, except at high latitudes, from an error map
computed with respect to GOT99.2. The locations
of large errors in the M, and K, maps are quite
different. A frequency sensitivity in the appearance
of error maps is also seen in Fig. 8, which plots the
scaled elevation differences in the two-layer K,
and O; solutions. In the diurnal maps “dimples”—
the surface elevation signature of first mode
baroclinic tides—can be seen between 30°S and

30°N, the latitudes of active diurnal internal tides.
Correlations between the error maps for the
various constituents were calculated. The highest
correlation coefficients are between the S, and K,
error maps (0.98), and the K, and P; error maps
(0.97), consistent with the fact that these pairs lie
close together in frequency. Coefficients for other
diurnal pairs and semidiurnal pairs lie between
0.80 and 0.94. The frequency sensitivity of the
error maps is reminiscent of the frequency
sensitivity seen in the normal mode maps of
Platzman et al. (1981). Correlation coefficients
between maps of constituent errors and the

Latitude in degrees
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200 300

Longitude in degrees

Latitude in degrees

0 100

200 300
Longitude in degrees

Fig. 8. As in the previous figure but for (A) K; and (B) O;.
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corresponding constituent signals ranged from
0.76 to 0.88, indicating that large errors often
occur where signals are large. Comparison of Fig.
8 with Fig. 9, which shows the K; and O, error
maps in the one-layer multi-constituent run,
indicates that baroclinicity alters the solution
globally. Thus, the increase in accuracy seen in
our two-layer K; solution in the Antarctic, which
takes place despite the fact that our chosen ¢’
values are more appropriate for mid-latitudes,
may be due more to the greater accuracy of the
solution elsewhere (which serves as a boundary
forcing for southern latitudes) than to local effects.

(A)

Fig. 10 shows the amplitude and phase of K,
surface elevations in our one-layer multi-constitu-
ent solution, in our two-layer multi-constituent
solution, and in GOT99.2, along longitudes 140°E
in the western Pacific and 330°E in the Atlantic,
where relatively large reductions in the surface
elevation errors are realized with baroclinicity
(compare Figs. 8A and 9A). In the two-layer
solution, the direct signature of the baroclinic
tide is evident as small-amplitude, small-scale
oscillations superimposed on the large-scale
surface elevation fields. The inclusion of barocli-
nicity shifts the large-scale surface elevation field

Latitude in degrees
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200 300

Longitude in degrees

)

Latitude in degrees

0 100
Longitude in degrees

200 300

Fig. 9. As in the previous two figures but for (A) K, and (B) O, solutions in the 1/2° one-layer multi-constituent run.
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Fig. 10. Amplitude along (A) 140°E and (C) 330°E, and Greenwich phase along (B) 140° E and (D) 330° E of K, solutions.

towards the GOT99.2 elevations. It is this shift in
the barotropic tide induced by baroclinicity, rather
than direct surface effects, that lies behind the
lower elevation errors in the two-layer run. Note
that the baroclinic signature in the surface eleva-
tions is not evident in GOT99.2. As explained in
Ray and Mitchum (1996, 1997), most T/P-
constrained tide models filter out the baroclinic
tide by averaging across tracks. Fig. 10 suggests
that small spatial scales should perhaps be filtered
out of the surface elevations in our two-layer
model before comparison is made to elevations in

T/P-constrained models. However, we have chosen
for simplicity not to perform such filtering, and we
note that this choice is appropriate for comparison
to pelagic tide gauge data, which does not filter out
the surface signature of baroclinic tides.

6. Interfacial displacements and velocities in two-
layer M, run

Fig. 11 displays a snapshot of the interfacial
height in a 1/4° two-layer M;-only experiment with
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Fig. 11. Snapshot of interfacial height (m) in 1/4° M,-only two-layer run with a multiplicative factor of 8, taken after the model has

equilibrated. The lower layer only exists where the water column depth exceeds 700-7, m.

a multiplicative factor of 8. The experiment has
been iterated with respect to ygsp. The snapshot
was taken long after model equilibration was
achieved. “Hotspots” for the generation of low-
mode baroclinic tides, such as Hawaii, show up
clearly. The globally integrated interfacial APE =
(1/2)py [[gn3dA is 2.3 times lower than that of
the two-layer nominal c;-only experiment (i.c., the
run without any topographic drag). The interfacial
displacements in Fig. 8 of SHA are larger than
those in our Fig. 11 (note the difference in scales),
consistent with the lack of topographic drag in
SHA. Topography was mapped onto the coarse
model grids in different ways in the two papers,
and that also may affect the interfacial displace-
ments. Tidal beams do not appear to propagate as
far from their sources in experiments with topo-
graphic drag as they do in experiments without
topographic drag (again, compare Fig. 11 with
Fig. 8 in SHA). Fig. 12 plots the spatial pattern of
the ratio of modal kinetic energy densities ((H| +
Hy + n))lisc|?) /((H) + Hy +ny)ligr|’) in the 1/4°
My-only run of Fig. 11. As in the interfacial
displacement field, fine spatial structure is evident,
with local values of the modal kinetic energy
density ratio often being as large as 3. The ratio of
temporally averaged global baroclinic to barotro-
pic kinetic energy (KEpc)/(KEgpr) is 0.13; how-
ever, this ratio is sensitive to the amount of

horizontal friction present. A simulation with
Ky =250m?s™! yielded a baroclinicity ratio of
0.20, while surface elevations were virtually
unaffected. Fig. 13 plots the ratio of temporally
averaged upper and lower layer squared speeds
(|l *)/(|id2|?) in the same 1/4° Ms-only run. Once
again, much fine structure is evident, and local
values of the ratio are often as high as ten. The
larger tidal currents in the upper layer are likely
due to the action of friction on the bottom layer as
well as to the surface intensification of the
baroclinic mode in the presence of thin thermo-
clines. Arbic and Flierl (2004) explores similar
effects in idealized models of the mesoscale eddy
field.

7. Summary and discussion

Over the last two decades, open-ocean tidal
elevations have been mapped with high accuracy
in models constrained by either tide-gauge or
altimetric data. Some of these models are purely
empirical, while others have hydrodynamical cores
and assimilate data. Models of the latter type, for
instance, Le Provost and Lyard (1997), have been
able to accurately map tidal elevations without
including substantial parameterized drag in the
open-ocean parts of their domain. However, both
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Fig. 12. Logo of (H, + H, + n)liisc|*)/((H| + H1 + n,)|igr|?), where brackets denote time-averaging, in the M, simulation of the
previous figure. Areas with resting water column depths less than 700 m are shaded dark blue.
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Fig. 13. Log;o of (| %) /(|ﬁ2|2), where brackets denote time averaging, in the M, simulation of the previous two figures. Areas with
resting water column depths less than 700 m are shaded dark blue.

in situ observations and inferences from other T/P-
constrained models suggest that substantial tidal
dissipation (about 1 TW) takes place in the abyss.
JS, CL, ERB, and the present paper have all found
that the elevation accuracy of forward modeled
tidal elevations is improved when substantial
parameterized drag is included in the abyss. In
this paper we have put forth a simple explanation
for the sensitivity of model elevation accuracy to
the parameterized drag. Both the APE and KE of

semidiurnal tides depend on the amount of abyssal
drag. (The KE of both diurnal and long-period
tides is sensitive to drag. The APE of diurnal tides
is less sensitive to drag than is the APE of
semidiurnal tides, and APE of long-period tides
shows little sensitivity). Elevation errors are
minimized when the model APE is near the
observed value. Fairly accurate tidal elevations
can be obtained in runs without topographic drag,
in which other frictional parameters such as ¢; or
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Ky are treated as tunable, but only if ¢; or Ky are
made far larger than values that are physically
plausible. Using topographic drag is preferable
because it is physically motivated and concentrates
the parameterized dissipation over areas of rough
topography, as is seen in observations. Moreover,
large Ky values would prohibit modeling of
features which have small horizontal scales, such
as coastal tides, baroclinic tides, and mesoscale
eddies. Usage of topographic drag may open up
the prospect for development of global models
that capture both tides and the slowly varying
oceanic general circulation with some degree of
accuracy.

JS used the topographic drag formula
poNkhzii/2 for steady flow over monochromatic
topography /% sin(kx). They had no theoretical
guidance behind their specific choices of 4 and k in
the face of real topography, which has a spectrum
of topographic heights and wavenumbers. Our
scheme begins with an exact linear analysis for the
drag on an oscillatory background flow over
arbitrary small-amplitude topography. The linear
analysis is supplemented by dimensional reason-
ing, based on arguments in the atmospheric
literature, which differentiates between linear drag
arising from radiating waves and quadratic drag
arising from turbulence that results when flow
deflects around topography. We have found that
our calculated drag must be supplemented with a
multiplicative factor, which we tune to minimize
anomalies of our forward-modeled -elevations
against observations. Our current interpretation
is that the multiplicative factor accounts for the
unresolved small scales in the input topographic
datasets, on which both flow-splitting and genera-
tion of breaking high mode internal waves likely
take place. We find an optimal multiplicative
factor of 7 in the one-layer M»-only case, and
then use this factor across all constituents in one-
layer multi-constituent simulations. It is the only
free parameter in our model. JS also had a tunable
parameter (topographic wavenumber k). The area-
averaged decay rate in waters deeper than 1000 m
lies between (2.0 days)™' and (2.2 days)™' in our
optimally tuned run, the optimally tuned run in JS,
and the optimally tuned run in Hirose et al.
(2001), who examined the accuracy of models of

wind-driven barotropic motions. The consistency
in decay rates suggests that topographic drag
probably affects both wind-driven and tidal
motions. Arbic and Flierl (2004) find that eddy
vertical and horizontal structure in idealized
models of baroclinically unstable geostrophic
turbulence matches that of mid-ocean mesoscale
eddies best when bottom friction is fairly strong.
The current paper and others have argued that
topographic drag may be a dominant source of
this bottom friction.

Consistent with ERB, we have documented the
lack of convergence in straightforward iterations
of the self-attraction and loading term, and
demonstrated that convergence can be achieved
when a memory of the tidal elevations in prior
iterations is retained. We have therefore obtained
self-consistent forward solutions for the global
tide. In waters deeper than 1000 m and in latitudes
covered by the T/P altimeter, the sea-surface
height discrepancy D against GOT99.2 in our
optimally tuned ten-constituent one-layer forward
model is 9.54 cm, slightly lower than the 10.1 cm
found in JS. Across different constituents, the
absolute values of D vary widely, but the percent
variance captured is consistently high (84 percent
or greater). The discrepancies of our one-layer
multi-constituent forward model against the set of
102 pelagic tide gauges used in Shum et al. (1997)
is 11.14cm, substantially larger than the error
measured against GOT99.2. However, the tidal
signals sampled by the gauges are larger than the
globally averaged signals in altimeter-constrained
models, such that the percent elevation variance
captured by our one-layer forward model is similar
whether tide gauges or T/P-constrained models are
used as the benchmark.

As far as we know, this paper and SHA are the
first to publish simulations of baroclinic tides on a
global scale. Both papers display global snapshots
of the interfacial displacements, which show a
great deal of fine structure including tidal beams.
Both papers also document a substantial impact of
baroclinicity on the tidal velocity field. Here we
have mapped the ratio of temporally averaged
baroclinic to barotropic kinetic energy densities,
local values of which are as high as 3, and the ratio
of temporally averaged squared upper to lower
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layer current speeds, local values of which are as
high as 10. SHA calculate conversion rates of
barotropic to baroclinic tidal energy. In the
present paper we have shown that the addition
of another layer improves the surface elevation
accuracy of our forward model across all of the
larger constituents, when each of three different
benchmarks is used. The improvement in surface
elevation accuracy is not due to the direct
elevation signature of the baroclinic tide, which
is small, but to shifts in the surface elevations
induced by baroclinicity. The RSS sea-surface
height discrepancy of our multi-constituent for-
ward tide model against GOT99.2 reduces from
9.54 to 890cm, and the discrepancy against
pelagic tide gauges reduces from 11.14 to
10.36 cm. Improvements in elevation accuracy
from the one-layer to two layer model are also
seen in waters deeper than 1000m and south of
66°S, where we consider the TPX06.2 model to be
our benchmark. Against all three benchmarks,
especially the Antarctic one, the improvement in
elevation accuracy with baroclinicity is most
noticeable for the P; and K; constituents. Our
two-layer model apparently captures 98 to 99
percent of the open southern ocean diurnal height
variance. The multiplicative factor for topographic
drag was re-tuned in the two-layer case and the
optimal value is 8. This is nearly the same as the
optimal factor in the one-layer case, against our
initial expectations that the explicitly resolved
generation of low modes would allow less para-
meterized drag. In a follow-up paper we will
combine the low-mode conversion diagnostic of
SHA with the topographic drag used in the
current paper to more thoroughly explore the
roles of parameterized drag and resolved low-
mode conversion in baroclinic tide models. We will
explore the possibility that direct removal of
energy from the low-mode baroclinic tides via
parametric subharmonic instability (MacKinnon
and Winters, submitted 2004) or other mechan-
isms, might allow a reduction in the amount of
parameterized topographic drag needed at the
bottom.

Maps of elevation error reveal large regions over
which our forward model differs substantially
from data-constrained models. We believe there-

fore that our forward model is still missing some
important physics. It is possible that the lack of
other oceanic motions in our model degrades its
accuracy. This, however, seems unlikely to us,
since the largest elevation errors do not generally
occur in regions of strong currents. Furthermore,
as measured by percentage of sea-surface height
variance captured, our forward-modeled diurnal
tides are more accurate than our semi-diurnal
tides, despite the fact that diurnal frequencies lie
closer to those of other energetic oceanic currents.
Desai et al. (1997) found that the remaining errors
in empirical ocean tide models are due largely to
the oceanic general circulation. However, these
errors are much smaller than those in our forward
model. The general circulation affects the global
distribution of density, which in turn affects the
internal tides. Here we have used a single value of
reduced gravity, and a single value of the resting
interfacial depth, to characterize stratification, but
stratification in the actual ocean is more compli-
cated. Usage of the simpler topographic drag
scheme of JS, or of large ¢; or Ky values, produces
elevation accuracies comparable to those achieved
with our topographic drag scheme. ERB tried
three different topographic drag schemes in
their forward model and found little effect on
elevation accuracy. We therefore doubt that
changes to the drag scheme will make a practical
difference in the elevation accuracy. Improvements
in the underlying topographic datasets might
reduce errors in forward models. The globally
averaged sea-surface height discrepancy in pre-
liminary M, experiments with the IOC et al. (2003,
“GEBCO”) topographic dataset is larger than in
experiments using the Coward dataset, which was
constructed primarily from Smith and Sandwell
(1997). Model sensitivity to the underlying bathy-
metry, along with the related sensitivities to
grid resolution and to the types and widths of
filters used to map topographic datasets onto
model grids, will be explored in a future paper.
Another potential improvement to our forward
tide model would be to use load calculations from
a solid-earth model that incorporates lateral
inhomogeneities (Tom Jordan, Tony Dahlen, Jerry
Mitrovica, and Konstantin Latychev, personal
communication 2003).
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Appendix. Details of topographic drag scheme

We begin with the linear analysis for oscillatory
background flow, and then discuss the augmenta-
tions from the dimensional analysis for drag due to
low-level breaking. We assume for simplicity that
the background flow is characterized by a single
frequency w. For simplicity, in this paper we take
w to be that of M, in all of our simulations,
including those with multiple constituents. For the
linear analysis, we assume that |ii||l€| < w, also for
simplicity. (The linear solution in the general case
is given by Bell, 1975a). ] Let the Fourier amplitudes
of the topography be h(k) where k = - (k, ) s the
horizontal wavenumber. Let u; =i - k/ |k| be the
component of the background flow # along
the gradient of the terrain component having
wavenumber k. The linear boundary condition is

W(K) = iuglkIh(k), (24)

where W(l?) is the Fourier transform of W(x,y) =
w(x,y,z = 0), the vertical velocity component at
the bottom. We assume gradual vertical variations
such that d(|m|~!')/dz<1, where m is the vertical
wavenumber, and also assume m>|dp/dz|/p,
where p(z) is the vertical profile of density. By
ignoring horizontal variations of the Brunt—Vai-
sala frequency N, neglecting vertical variations of
p, and considering hydrostatic scales |k|<m, we
can write the WKB approximation

Wk, z) = W(k)exp (i / ) mdz/), (25)
0

(e.g., Chapter 9 of Holton,
oscillatory case

1972). For the

m = —NIk|/\/w? — f2. (26)

We have excluded nonhydrostatic waves by
assuming that w < N. Note that throughout the
analysis N refers to the value of N at the bottom,
which we compute at every model gridpoint from
Levitus et al. (1998).

From (24) and (25) it follows that, at the
bottom,

o NIkl -~

w_ | MK el 27)
0z w? — >

Conservation of mass implies that ow/0z = —V -

u’, where o' is a perturbation velocity, and since the
momentum equation implies

. 0
(312 +f )(—v i) =7 SV, (28)

where p’ is a perturbation pressure, we may
operate on (27) with the transform equivalent of
V4% + f?) to obtain p = p(N,hlk|~"ik) -

where N, = Ny/w? — f2/w. If o> | f|, the Fourier

synthesis is

p=—pVy - i, (29)
where y is defined by

1(x,y) = —N, // exp(zk X)dkdl, (30)



3096 B.K. Arbic et al. | Deep-Sea Research IT 51 (2004) 3069-3101

with X = (x, y). The spatial-transform equivalent is

N, h(x)
s =5 [ [ 5L av ey, &)

¥ — ¥

which is a slightly smoothed version of the terrain
h(X). The input topography must be filtered to
retain only the topographic scales that force
internal gravity waves.

The drag is determined by the pressure at the
bottom according to

1= —p'Vh = [pVy(Vh)']i, (32)

where the T superscript denotes the transpose
operator. Formula (32), when multiplied by # and
averaged over one tidal cycle, is equivalent to the
modal energy conversion formulae in Nycander
(2004, submitted), except that Nycander uses a
filter to limit the length scales over which (31) is
computed, instead of imposing a sharp cutoff at
40 km as we did. The factor in brackets, which we
denote by T, is a tensor that depends only on the
amplitude, variance, and anisotropy of the topo-
graphy. In the Appendix we let angle brackets
denote a grid-cell average and we obtain

(1) = (T (33)

for the estimate of drag at the coarse resolution
model gridpoints. The velocity perturbation be-
comes unbounded (resonant) at the latitudes
where o = |f|, but the drag itself vanishes
smoothly as these latitudes are approached from
the equator. We set the drag to zero poleward of
the latitude where f equals the M, frequency.

Over length scales small enough for the back-
ground flow to appear steady (w< |L7||E|) the
nonlinearity parameter is the ratio of perturbation
to background velocities |L7’|/|ii|, i.e., the Froude
number

__Nh

ldd] -
In the limit o> |E| ||, the nonlinearity parameter is
the ratio of nonlinear advection to the time
tgndency term, i.e. |k||#/|/w. If we estimate
|kl|t/|/wo~V - u/w and use V - v/ = avvlaz with
the latter given by (27), we obtain Fr(|ﬁ||k|/w)2 as
our estimate of nonlinearity on large scales. The
suggestion therefore is that nonlinearities are small

Fr (34)

on large scales. Flow splitting and nonlinear drag
appear to be operating primarily when k|>w /14l,
i.e., over topographic wavelengths less than about
400 m for M.

We now discuss the dimensional reasoning
employed to include “‘nonpropagating” drag due
to deflected flow and turbulence at the bottoms of
large mountains. The dimensional reasoning we
employ uses the Froude number N//|i| for steady
flow (i.e., flow at small scales) as the nonlinearity
parameter. We assume that the topography is
characterized by well-defined features that can be
binned into height ranges. If the mountain height
exceeds a critical value A, the flow is blocked or
deflected below a level z=h — h.. For terrain
features with heights less than /., the drag is
entirely linear and propagating. For features with
heights greater than /. the drag includes both a
propagating and a nonpropagating contribution.
Internal waves are launched by the upper part of
the mountain (over a vertical length scale /4). In
order to relate the width L of the “radiating” part
of the mountain to elevation above the base, we
introduce a power law with exponent J:

L(z) = Liase(1 — z/h)°, (35)

where Ly, is the width of the mountain base. We
take 6 = 1 in the utilization of our scheme, which
corresponds to an assumption that mountains are
triangular, but we note that our drag scheme is not
overly sensitive to this parameter.

For radiating linear waves, the drag can be
scaled as pNVh*/L, where V is the magnitude of
the background velocity and L is the mountain
length scale. The scaling for nonpropagating drag
is pV*(h—he)/L. We set the nondimensional
critical mountain height (or critical Froude num-
ber) Fr. = ho(N/V).

The combination of these arguments is

Dy = agmin(1, (Fre/Fr) °)Fr*(pV? | NLpase),

Dyp = ai(1 — min(1, (Fr/Fro)' ™))
Fr()

“T+50

where D, and D, refer to the propagating and
nonpropagating parts of the base flux, respec-
tively, and a( and | are constant drag coefficients.

(ﬁ V3 /NLbase)a (36)
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To evaluate (36) over the mountains contained by
a gridpoint in the coarse resolution model, we
must have a relationship between s and Ly,s.. We
assume that

L/Ly = (h/ho)’, (37)

where Lg, hy, and y are constants (we denote the
Froude number corresponding to /iy by Frj). We
determine the latter empirically to be about 0.35,
but again, our model is not overly sensitive to this
parameter.

Integrating (36) under the stated assumptions
about mountain height distributions yields

H<(2 H>(v—8 F2+(57V3
(D) = ao CHN+H (= O)Fp

H(2y) NLy’
L H>(1+7y)— H” (y — §Frl*™

Dyy) = a) Fry <
Dnp) = a1 Fry (1 + 0)H(2)

oy’

— 38

xR (38)

where brackets denote spatial averaging, H(o) =
[Fr%, — Fra. /o, and the superscript on H means

that Fr is replaced with either Fr< = min(Fr, Fr.)
or Fr” = max(Fr, Fr.). The minimum and max-
imum values of the Froude number over the
unresolved topography (denoted by subscripts)
serve as limits of the area integration. If we let
Fr — 0 in (D,) we obtain

D* = ayp NV Q*/ Ly,

Q:Fr%

N11/2
nV [H 2+ /)] (39)

N H2y)

Refinements of the dimensional analyses above are
presented in Garner (2004, submitted).

We allow the linear result (33) to determine the
direction of drag, and modify our drag estimate by
the dimensional analysis as

(1) = <<g£§) + <%‘*P>>r*, (40)

where t now refers to the final, corrected drag, and
7* refers to the original linear result (33). The ratio
of nonlinear to linear drag coefficients a;/ag
remains undetermined, as does the critical moun-
tain height Fr.. In the current paper we set the

former to 10 and the latter to 1, consistent with
optimal values determined in atmospheric simula-
tions.

Even using the best currently available global
topographic datasets, it is impossible to directly
estimate topographic heights, and thus Froude
numbers, at horizontal scales of 400 m or less. In
order to take advantage of quantities such as y
that were calculated over resolved scales, we
computed

Frproxy = Frlargescaleg(¢)a (41)

as a proxy for the Froude number, where

2.
|V /fsteady|L

Frlargescale = T > (42)
and

Vw
&) = m (43)

The quantity Frigrgescale Scales like a Froude
number Nhi/V. The extrapolation factor &(¢)
accounts for the reduction in topographic heights
from those associated with resolved topographic
scales to those associated with the unresolved
horizontal length scales of interest. A typical tidal
velocity is denoted by V, while L denotes a typical
horizontal scale in the topography. The factor
o/(w? — /%) is introduced into &(¢) in order to
make the Froude number large as w approaches f,
so that most of the drag is nonlinear at the
resonant latitudes for the tides. As in the linear
analysis, we use the M5 frequency to calculate the
Froude numbers. Since we are interested in Froude
numbers for the small-scale (steady) limit, the
quantity ygeaqy must be used, where e qy 18 the
equivalent of y in the steady flow case—caay 18
calculated as in (31) but with N, replaced by N
(Garner, 2003; and submitted 2004). Maps of
Frproxy (not shown) indicate that it is of order one
in areas of rough topography, and we used it in the
dimensional analysis as if it was the Froude
number calculated on the small scales where
flow-splitting takes place. In the future we may
consider whether more reliable estimates of the
Froude number at small scales can be made.
Perhaps the extrapolation from large to small
scales could utilize (37). With a; /ag = 10, ({(D,) +
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(Dnp))/D* does not vary by more than a factor of
two over all Froude numbers. Thus alterations of
the Froude number cannot change the drag by
more than a factor of two. Such factors would be
absorbed into our multiplicative factor.
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