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ABSTRACT

Soil moisture predictability and the associated predictability of continental climate are explored as an initial-
value problem, using a coupled land–atmosphere model with prescribed ocean surface temperatures. Ensemble
simulations are designed to assess the extent to which initial soil moisture fields explain variance of future
predictands (soil moisture, near-surface air temperature, and precipitation). For soil moisture, the decrease of
explained variance with lead time can be characterized as a first-order decay process, and a predictability timescale
is introduced as the lead time at which this decay reaches e21. The predictability timescale ranges from about
2 weeks or less (in midlatitudes during summer, and in the Tropics and subtropics) to 2–6 months (in mid- to
high latitudes for simulations that start in late fall and early winter). The predictability timescale of the modeled
soil moisture is directly related to the soil moisture’s autocorrelation timescale. The degree of translation of soil
moisture predictability to predictability of any atmospheric variable can be characterized by the ratio of the
fraction of explained variance of the atmospheric variable to the fraction of explained soil moisture variance.
By this measure, regions with the highest associated predictability of 30-day-mean near-surface air temperature
(ratio greater than 0.5) are, generally speaking, coincident with regions and seasons of the smallest soil moisture
predictability timescales. High associated temperature predictability is found where strong variability of soil
moisture stress on evapotranspiration and abundant net radiation at the continental surface coincide. The as-
sociated predictability of 30-day-mean precipitation, in contrast, is very low.

1. Introduction

Since the pioneering work on atmospheric predict-
ability (Lorenz 1965; Charney et al. 1966; Smagorinsky
1969), a wealth of numerical and observational studies
have aimed to identify mechanisms of forced variability
and, hence, sources of potential predictability for a cli-
mate system that is inherently chaotic. At the forefront
of this research, studies have demonstrated that knowl-
edge of slowly varying sea surface temperatures (SSTs)
can enhance our ability to provide skillful monthly-to-
seasonal atmospheric predictions (e.g., Lau 1990; Stern
and Miyakoda 1995), and that the strongest interannual
modes of SST variability, such as those associated with
the El Niño–Southern Oscillation, are found to be skill-
fully predictable out to a 1-yr lead time (e.g., Shukla
1998). Additionally, a growing body of evidence indi-
cates that slowly varying land surface conditions, in
particular anomalies of continental water storage, have
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a discernible influence on climate variability. The the-
oretical and observational basis of the potential role of
surface–atmosphere interactions on climate anomalies
includes work as early as that of Namias (1963), and
as recent, for example, as that of Durre et al. (2000).
Within the past two decades, numerical experimentation
has allowed a more explicit examination of the impact
of interactive continental water balance on simulated
atmospheric variability (e.g., Walker and Rowntree
1977; Yeh et al. 1984; Gordon and Hunt 1987; Delworth
and Manabe 1988; Koster and Suarez 1996, to name a
few). In these studies, the impact of modeled soil mois-
ture variability and persistence on simulated near-sur-
face atmospheric and precipitation variability is dem-
onstrated. In addition, the potential for soil moisture
initialization to aid in the accurate simulation of extreme
climate events, such as droughts (e.g., Fennessy and
Shukla 1999; Atlas et al. 1993; Namias 1991), has been
shown. Overall, studies such as these demonstrate the
impact that soil moisture anomalies can have on sub-
sequent atmospheric variability and the persistence of
extreme climate anomalies.

Remote sensing, models, and data assimilation can
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produce estimates of large-scale (i.e., continental to
global) fields of soil moisture (e.g., Houser et al. 1998;
Walker and Houser 2001) potentially suitable for ini-
tialization of climate prediction models. However, it re-
mains uncertain how useful such estimates would be for
operational climate predictions, as most sensitivity stud-
ies have focused on extreme climatic events (e.g., Og-
lesby 1991; Atlas et al. 1993). Observational evidence
(e.g., Huang and van den Dool 1993) supports the po-
tential role of soil moisture information as an opera-
tional predictor for continental temperature fluctuations,
and modeling (e.g., Dirmeyer 1999; Koster et al. 2000)
shows that soil moisture information also has the po-
tential to improve seasonal precipitation predictions un-
der certain environmental conditions. Nevertheless, two
questions arise with regard to soil moisture initialization
in climate forecasts. First, how can the information be
applied consistently with the definition, framework, and
climatology of soil moisture in the forecast model? Sec-
ond, given an optimal application of perfect soil mois-
ture information, what is the ultimate increase in pre-
dictive skill that we can gain from knowing the initial
and subsequently predicted soil moisture for climate
forecasts? The first question primarily addresses the op-
erational pitfalls that may arise from systematic biases
between a coupled model and nature (e.g., Dirmeyer
1995; Mitchell et al. 1999). The second question focuses
more on the fundamental limits of predictability of the
climate system. Moreover, insights on the latter question
might serve as a useful scientific guide toward efficiency
in operational land-data assimilation products. There-
fore, efforts should be made, through numerical exper-
iments with a variety of climate models, to explicitly
address the potential benefits of initial soil moisture in-
formation on climate predictability and operational cli-
mate prediction.

Herein, we explore the nature of soil moisture pre-
dictability and the associated climate predictability for
a particular coupled land–atmosphere model using hy-
pothetically perfect information on initial soil moisture.
We conduct sets of ensemble simulations using a general
circulation model (GCM) of the atmosphere coupled to
an interactive land model that represents the water and
energy balances of the continental surface. In the next
section, we describe the coupled land–atmosphere GCM
used for this study, the ensemble-simulation design, and
the measure of predictability developed for this analysis.
In section 3 we present the results of the GCM ensemble
simulations. In addition, a discussion of the factors con-
trolling soil moisture and its associated atmospheric pre-
dictability is presented. Concluding remarks are given
in section 4.

2. Ensemble simulations

a. Model

Numerical experiments were conducted using the
Geophysical Fluid Dynamics Laboratory (GFDL) cli-

mate model, which includes an atmospheric GCM
(AGCM) coupled to a simple water- and energy-balance
model of the continents [similar to that used in Milly
and Dunne (1994)]. At the ocean–atmosphere interface,
SSTs were prescribed to follow observed geographic
and seasonal patterns, with no interannual variability.
The GCM contains a dynamical core that solves the
equations of motion through the use of spherical har-
monics with a rhomboidal-15 (R15) wavenumber trun-
cation in the horizontal and nine levels vertically. Grid-
based (including land) computations are performed on
a 7.58 longitude by 4.58 latitude grid. Daily-average so-
lar forcing is specified. Clouds are predicted using a
simple relative humidity criterion. Precipitation is cal-
culated so as to prevent supersaturation of the air by
water vapor. Vertical convection is treated by moist-
convective adjustment of the atmosphere. This GCM
has been shown by Delworth and Manabe (1988) to
simulate the geographical distribution of seasonally
(i.e., December–February and June–August) averaged
precipitation and annually averaged runoff reasonably
well against available observations. Moreover, the zon-
ally averaged spectra of rainfall (plus snowfall) have a
slightly red-noise characteristic. However, shortcomings
do exist in the model and will be addressed with regard
to the findings of this particular study in the concluding
section.

The land parameterization is that described by Man-
abe (1969). Soil moisture is tracked in a single store,
representing the plant-available water in the plant root
zone. Soil moisture is depleted only by evaporation;
runoff occurs only when storage capacity is exceeded
as a result of infiltration of rainfall and snowmelt. The
soil moisture (w) balance equation is

dw
5 P 2 bE 2 R, (1)pdt

where

w
b 5 min , 1 ,[ ]0.75w0

in which w0 is the soil moisture capacity (0.15 m global
constant), P is the sum of rainfall and snowmelt, Ep is
the potential evaporation rate, and R is runoff, which
occurs as needed to prevent soil moisture from exceed-
ing the capacity. Snowpack is tracked as a separate water
store. The land has no heat capacity, other than that
associated with latent heat of fusion of snow. Figure 1
shows the representation of the continents by the model
grid. Also denoted are six selected pairs of adjacent grid
cells for which results are highlighted in this paper.

b. Experimental design

Within the climate model, the full state of the climate
system at any time is described by global, two- and
three-dimensional distributions of several ‘‘prognostic’’
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FIG. 1. Map showing locations and identifiers of adjoining grid-cell pairs for which detailed results are presented in other figures. Each
shaded rectangle represents two cells having either the same latitude (United States, Australia) or longitude (all others).

variables. Soil moisture is one of these variables. For
brevity, the remaining prognostic variables are herein
collectively termed the ‘‘atmospheric state’’ of the mod-
el, although they include snowpack depth.

The ensemble simulations are designed to provide
information on the extent to which the soil moisture
field at the time of initialization predicts, on a seasonal
timescale, later anomalies of soil moisture and atmo-
spheric variables. For every month of the year (starting
on the first day of the month), 80 1-yr simulations were
run, using all combinations of 8 initial soil moisture
fields and 10 initial atmospheric states. The soil moisture
fields and atmospheric states were randomly saved from
the corresponding time of year within 18 distinct years
chosen from a 200-yr climatological run of the same
climate model.

c. Measure of predictability

To characterize predictability, we shall introduce a
measure of the proportion of any predictand’s variability
that can be explained by the initial soil moisture dis-
tribution. Each set of simulations using a common initial
soil moisture field is termed an ensemble. We denote
the ith ensemble mean of any predictand, f , by, i,f

N1
f 5 f , (2)Oi ijN j51

in which f ij is the value of the predictand in the jth
member of the ith ensemble, and N (510, here) is the
number of members in each ensemble. We define an
intraensemble variance, , of f by pooling results from2S A

all M (58, here) ensembles,

M N1
2 2S 5 ( f 2 f ) . (3)O OA ij iMN i51 j51

Strictly speaking, this statistic and other quantities in-
troduced below are neither variances nor unbiased es-
timators of variances, but the ‘‘variance’’ terminology
is conveniently descriptive and will be used herein. Es-
sentially, describes the spread of f within an ensem-2S A

ble, averaged over all ensembles. As a measure of the
total variance of f , we introduce the quantity , defined2S T

by
M N1

2 2S 5 ( f 2 f ) , (4)O OT ijMN i51 j51

in which is the mean over all members of all ensem-f
bles,

M1
f 5 f . (5)O iM i51

It can be shown that these two measures of variability
differ by a measure of the variability across ensembles,
which we shall call the interensemble variance, , giv-2S R

en by
M1

2 2 2 2S 2 S 5 S 5 ( f 2 f ) . (6)OT A R iM i51

For our measure of predictability, we form the ratio of
the interensemble variance to the total variance, and we
call it the ‘‘relative interensemble variance of f ,’’ Rf ,
given by

2SRR 5 . (7)f 2ST
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Note that f and Rf can be defined for any predicted
variable (e.g., soil moisture or atmospheric variable) or
for any time or area average thereof. For any f selected
for analysis, Rf will be a function of ‘‘lead time’’ (de-
fined herein as the time since initialization).

How should we expect Rf to vary with lead time?
When f is soil moisture (i.e., Rf [ Rw), all members
of a given ensemble initially have the same value, by
design, so Rw is initially equal to unity. As lead time
advances, intraensemble differences in soil moisture
will arise (due to initially different atmospheric states)
and grow, causing a decrease in Rw. Sufficiently far into
the future, assuming transitivity of the land–atmosphere
system, separate members of an ensemble can be ex-
pected to ‘‘lose the memory’’ of the initial soil moisture.
At such lead time, it can be shown that

MN 2 1
2 2E[S ] → S , (8)T MN

in which S 2 is the variance (in its conventional form)
of f in the model. It can also be shown, for large lead
time, that

N 2 1
2 2E[S ] → S . (9)A N

To a first approximation, it then follows that for any f

M 2 1
R → R 5 5 0.089f ` MN 2 1

(for our choice of M and N ). (10)

The timescale of the decay of Rw from unity to this long
lead-time value is a measure of the predictability of soil
moisture.

For any atmospheric variable a, Ra is equal to zero
at the start of the simulation period, because all initial
atmospheric i are identical by the experimental design.f
At large lead time, Ra will approach the same asymptotic
value found for soil moisture. Between these two end-
points, the behavior of Ra will depend on the extent to
which the atmospheric variable is affected by soil mois-
ture. If the atmospheric variable is not sensitive to soil
moisture, then Ra can be expected to rise monotonically
to its large lead-time value. If, however, soil moisture
has a significant influence on the atmospheric variable,
then Ra will initially rise with lead time to a peak higher
than the large lead-time value, to which it will subse-
quently decline asymptotically. The timescale of the ini-
tial rise is determined by the response rate of the at-
mosphere to the underlying land, which we assume to
be faster than the decay rate of Rw to R`. The apex of
the rise should also be proportional to the sensitivity of
the atmospheric variable to soil moisture. Furthermore,
the timescale of the large lead-time decay of Ra (toward
R`) is expected to follow that for soil moisture.

3. Predictability results

a. Soil moisture predictability

Gridpoint samples of Rw time series based on daily
(end of day) soil moisture are shown in Fig. 2, using
results from the simulations initialized in June. The time
series have the characteristics predicted in the previous
section: they start at unity and decay over lead time to
a value that fluctuates around the expected asymptotic
value. The decay is not regular but can be viewed as
the sum of a smoothly decaying function of lead time
and a random variation. The rate of decay, or charac-
teristic timescale of the underlying smooth function,
varies from one grid point to the next. In all presented
cases, the decay to the asymptotic value is realized by
a lead time of 3 months, but in some cases the decay
is much faster. The size of the fluctuations at large lead
time provides a simple index against which the signif-
icance of early-time predictability can be subjectively
assessed.

To characterize the temporal behavior of Rw, we have
fitted (via least squares) an exponential decay curve to
each Rw as a function of lead time, t, given by

2t/tWR (t) 5 (1 2 R )e 1 R ,w ` ` (11)

in which R` is the known long lead-time expectation
for Rf [given by Eq. (10)], and tw is a characteristic
timescale of soil moisture predictability (i.e., the e-fold-
ing timescale of the fitted exponential). Continuous lines
in Fig. 2 show fits of Eq. (11) to the data, and Fig. 3
(top) shows the superposition of the Rw(t) data from
Fig. 2, using a normalized abscissa in time. The ex-
ponential function captures the essence of the under-
lying temporal decay of Rw(t).

Also shown in Fig. 3 (bottom), for the same sample
grid points, are histories of Rw based on 30-day mean
soil moisture. These are constructed by taking f (t) to
be the 30-day running-mean value (in this case, soil
moisture) centered around t, and then calculating Rf as
given by Eqs. (2)–(7). The resultant quantity is hereafter
referred to as ‘‘30-day Rf ,’’ for any given f . The effects
of using 30-day means instead of daily values are
smoothing of the 30-day Rw(t) curves and slight length-
ening of the characteristic timescales. The analysis of
soil-moisture predictability and atmospheric response
that follows will be based on the 30-day R results.

The parameter tw is used to characterize the spatial
and temporal pattern of soil moisture predictability. The
time series for 30-day Rw at all land grid points and all
initialization dates were computed and fitted to the ex-
ponential-decay model, and, hereafter, the timescale ob-
tained from this calculation will be referred to as ‘‘30-
day tw.’’ Figure 4 shows how the zonal mean values of
the estimated 30-day tw depend on month of initiali-
zation and latitude. Values of 30-day tw range from less
than a week in the Tropics to several months for the
ensembles started during high-latitude fall and winter.
Summer values of 30-day tw in the middle and high
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FIG. 2. Relative interensemble variance of daily soil moisture, Rw, for the selected grid-cell pairs (of Fig. 1), as a
function of lead time, t (days). Each cell within a pair is denoted by its east/west (E/W) or north/south (N/S) position
with respect to its counterpart. Results shown are from the simulations starting in June. Also shown are fitted exponential
functions (solid curves) associated with tw, and theoretical value of R` (dashed horizontal lines).

latitudes are typically in the range of 2–4 weeks. Most
of the tropical and subtropical regions show relatively
little seasonal variation and have relatively small 30-
day tw values of approximately 1–2 weeks. The zone
of minimum 30-day tw migrates from the northern Trop-
ics during Northern Hemisphere summer to the southern

Tropics during northern winter. The long timescales seen
in the mid- and high-latitude winter initializations are,
in part, contributed by snow cover, which decouples the
soil moisture from the atmosphere in the GFDL GCM;
that is, precipitation is not allowed into, nor evaporation
from, the soil column (and recall there is no gravitational
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FIG. 3. Relative interensemble variance of (top) daily soil moisture, Rw and (bottom) 30-day
mean soil moisture, 30-day Rw, for the selected grid cells of Fig. 1, as functions of normalized
forecast lead time, t/tw. Distinct values of tw were determined separately for the daily and 30-
day results. Results are from the ensemble simulations starting in June. Also shown is the ex-
ponential function (heavy solid curve) described by Eq. (11) and the theoretical value of R`

(dashed horizontal line).

drainage in the GFDL bucket formulation). Other con-
trols of soil moisture predictability are addressed in sec-
tion 4.

Figure 5 shows the global distribution of 30-day tw

for June and December initializations. Because these are
based on results from individual grid points, a signifi-
cant amount of random noise is present in these results.
Nevertheless, Fig. 5 suggests that global patterns of pre-
dictability depart in some regions from what would be
predicted by the zonal-mean patterns already discussed
in connection with Fig. 4. In particular, December 30-
day tw are somewhat greater than the zonal average in
central North America and in Asia, and less than the
average in Europe and coastal North America.

b. Associated predictability of near-surface air
temperature

Having reviewed the results for soil moisture pre-
dictability, we now examine the resultant predictability
of near-surface air temperature (T) and precipitation (P).
Sample RT(t) data, for daily T, are shown in Fig. 6. For
some grid points (in particular the Amazon-S and U.S.
points), the initial rise of RT from zero at initial time is
apparent; for others, the rise is so rapid as to be almost
undetectable. At large lead time, RT fluctuates randomly
around the expected asymptotic value. At most grid
points, the initial growth from zero leads into an inter-
mediate lead-time regime when RT tends to exceed the



AUGUST 2002 489S C H L O S S E R A N D M I L L Y

FIG. 4. Zonal-mean values (days; land only) of 30-day tw (as defined in the text), as a function
of initialization date of the ensemble simulations and latitude.

asymptotic value. Accordingly, we can infer a certain
degree of T predictability resulting from soil moisture
predictability.

For those grid points in Fig. 6 with a significant
initial rise of RT above its asymptotic value, the time-
scale of its decay appears to be on the order of that
of soil moisture predictability. Under our assumption
that the atmospheric response time is small compared
to 30-day tw (section 2c), it is reasonable to expect
that R of atmospheric variables will decay to R` on
the same timescale as that of soil moisture. As seen
in Fig. 6, RT is generally less than Rw for a given lead
time (even after its initial spinup from zero), indi-
cating that a given level of soil moisture predictability
does not translate fully to a corresponding level of T
predictability.

It is reasonable to expect that time averages (low-
frequency variations) of atmospheric variables will be
more predictable than daily values (high-frequency var-
iations), given that tw is typically on the order of weeks.
For this reason, our analysis will focus henceforth on
30-day RT (and RP). Figure 7 shows 30-day RT at our
sample grid points. In comparison with Fig. 6 for daily
values, the 30-day RT values tend to be significantly
larger at the intermediate time when predictability is
apparent. In many cases, 30-day RT is nearly equal in
magnitude to the fitted 30-day Rw for a given lead time.
Moreover, the expected proportional decay of RT to Rw

at long lead times is much more apparent for the 30-
day means as compared to the daily plots (Fig. 6). The
spinup period of 30-day RT is largely absent, due to the

time averaging and that 30-day RT is undefined during
the first 15 days of the simulation. At long lead times,
30-day RT fluctuates around the predicted asymptotic
value but with considerably greater temporal persistence
than for daily RT. A sensitivity test was performed for
the simulations initialized on 1 June in which the num-
ber of ensembles, M, was increased from 8 to 16. The
results showed considerable reduction in the long lead-
time fluctuations while preserving the early lead-time
peaks of 30-day RT. This would suggest that the early
lead-time peaks seen for our set of simulations where
M 5 8 can be viewed as robust.

To escape the apparent noise in gridpoint 30-day RT,
we display in Fig. 8 the zonal-mean values of 30-day
RT. Predictability of 30-day mean T is apparent at almost
all latitudes, the only exceptions being north of 608N
and south of 308S. For comparison, the corresponding
30-day Rw are shown. From 608N to 108S, zonal 30-day
Rw and 30-day RT converge within several weeks of
initialization and decay together thereafter. During the
initial phase before convergence, 30-day Rw exceeds 30-
day RT, and we associate this with the initial spinup of
the atmospheric state. The near-coincidence of the zonal
30-day R curves after the time of convergence implies
full translation of soil moisture predictability to air tem-
perature predictability, suggesting near-total control of
near-surface air temperature anomalies by soil moisture
anomalies at the 30-day timescale. This correspondence
breaks down in the Southern (winter) Hemisphere, be-
tween 108 and 408S, as the predictability of near-surface
air temperature decreases progressively to zero, despite
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FIG. 5. Global distribution of 30-day tw for ensemble simulations starting (top) 1 Jun and
(bottom) 1 Dec.

increasing soil moisture predictability (i.e., larger values
of 30-day tw).

As Fig. 8 shows, the relation of 30-day Rw to at-
mospheric-variable 30-day R can provide a measure of
atmospheric response to a given level of soil moisture
predictability. To formalize this, we introduce the ‘‘as-
sociated predictability ratio’’ for any atmospheric var-
iable, a, as

R (t) 2 Ra `A 5 . (12)a R (t) 2 Rw `

Note that A cannot be independent of time until after
the initial atmospheric spinup, and even then only as an
approximation. To allow for the spinup period, we refine
this relation to

R (t) 2 R 5 A [1 2 exp(2t/t )][R (t) 2 R ], (13)a ` a a w `

in which ta is an atmospheric spinup time, reflecting
the timescale of response of the atmosphere from its
initial state. Using this relation together with the ex-
ponential curve to evaluate 30-day Rw, we estimated AT

for all grid points and simulation start dates so as to
minimize the squared difference between the two sides
of this equation. For this purpose, we also vary ta, but
we prescribe a maximum value of 2 weeks, which is
characteristic of a saturation timescale for atmospheric
error growth (cf. Palmer 1993; Simmons et al. 1995;
Shukla and Kirtman 1996). Perhaps the most dubious
aspects in estimating our Aa metric [i.e., curve fit of Eq.
(13)] are for grid points in which tw , ta, that is, when
the soil moisture predictability timescale is relatively
short (typically when tw & 1 week; refer to Fig. 5). This
would imply that the soil moisture memory is shorter
than (or comparable to) the spinup timescale from the
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FIG. 6. As in Fig. 2, but for relative interensemble variance of daily near-surface air temperature, RT, for ensemble
simulations starting 1 Jun. Also shown for reference are fitted daily Rw curves (solid lines) and theoretical long lead-
time value, R` (dashed horizontal lines).

atmospheric initialization. In such cases, associated at-
mospheric predictability from soil moisture initializa-
tion is intuitively untenable (but from our curve fits
result in values close to 1), and we therefore prescribe
Aa 5 0. Figure 8 shows the zonal averages of the fitted
curves for the June initialization of the ensemble sim-

ulations. Because we use both 30-day RT and 30-day Rw

to solve for AT in Eq. (13), we distinguish the diagnostic
as ‘‘30-day AT’’ (likewise for our precipitation analysis
that follows).

Figure 9 shows the dependence of zonal-mean 30-
day AT on latitude and month of initialization. In the
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FIG. 7. Relative interensemble variance of 30-day mean near-surface air temperature, 30-day RT (open circles) for
selected grid cells, for ensemble simulations starting 1 Jun, as a function of lead time (days). Also shown are the
fitted 30-day Rw curves (solid lines) and the theoretical value of R` (dashed horizontal lines).

Tropics, 30-day AT is maximized and zonal-mean val-
ues are almost always greater than 0.5 and average
around 0.75. There is a tendency for the zonal max-
imum to migrate with the latitude of the intertropical
convergence zone. In the northern midlatitudes, 30-
day AT has a strong seasonal cycle, with small values

during the cold season and values greater than 0.5 in
early summer. The geographical distribution of 30-
day AT is shown in Fig. 10. The global distribution
of 30-day AT is well predicted by the zonal means;
there are no strong regional departures from the zonal
means.



AUGUST 2002 493S C H L O S S E R A N D M I L L Y

FIG. 8. Zonal averages (land only) of relative interensemble variance for 30-day running mean near-surface air
temperature, 30-day RT (open circle), for ensemble simulations starting in June, as functions of lead time (days). Also
shown are the corresponding data for soil moisture, Rw (cross hair), the zonal mean values of the fitted air temperature
curve obtained through the curve fit of Eq. (13) (solid line), and the theoretical value of R` (dashed horizontal line).

c. Associated predictability of precipitation

Analysis of our experiments indicated far less asso-
ciated predictability for precipitation than for air tem-
perature. Figure 11 shows the zonal-mean traces of 30-
day RP for June initialization. There are departures of

30-day RP above the asymptotic value that appear to be
significant in some cases, but the magnitude of the pre-
dictability is negligibly small. As a result, the values of
30-day AP (not shown) that result from the gridpoint
curve fitting of (13) reflect an absence of widespread
associated predictability of precipitation in the model.
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FIG. 9. Zonal-mean values (land only) of 30-day AT as a function of initialization date of the
ensemble simulations and latitude.

The implications of negligible associated precipitation
predictability are addressed in the next and concluding
sections.

4. Controls of predictability

a. Control of the soil moisture predictability
timescale

We have seen empirically that the decay of Rw can
be approximated as an exponential function in time.
Here we present a theoretical model for the decay. As
a starting point, we summarize the model of Delworth
and Manabe (1988), which treats soil moisture as a lin-
ear, first-order Gauss–Markov process. The soil mois-
ture budget equation (1) can be written as

dw w
5 P 2 2 R, with w # w , (14)0dt tE

where

t 5 0.75w /E .E 0 p (15)

We also assume for now that the soil moisture process
is stationary; no seasonality of P or Ep is considered.
Delworth and Manabe (1988) have noted that the as-
sumption of uncorrelated, Gaussian ‘‘white noise’’ for
P, with Ep constant and R negligible, leads to w being
a ‘‘red-noise’’ process, with an autocorrelation function
given by

r(t) 5 exp(2t/t), (16)

in which the autocorrelation timescale of soil moisture
t is identical to tE. Further, they showed, by simulation
of selected cases, that the main effect of runoff is to
shorten the timescale, t, relative to tE, under humid

climatic conditions (i.e., when mean precipitation is
comparable to, or greater than, EP in magnitude). Al-
though not allowed in the GFDL bucket formulation,
runoff can also occur during subsaturated conditions.
Thus, w behaves as though (14) and (15) were re-
placed by

dw w
5 P 2 , (17)

dt t

where t # tE.
The soil moisture autocorrelation timescale t is close-

ly related to the timescale of decay of soil moisture
predictability, tw, as we show here. Under the assump-
tions leading to (17), it is possible to describe the growth
in variance, s2, of w over time after any known initial
value (e.g., Gelb 1974, p. 79),

2 2ds 2s
5 2 1 q, (18)

dt t

in which q is the rate of variance production by the
process P. In our predictability application, we are in-
terested in the solution of (20) for no initial variance
(known initial soil moisture) and P described by a
white-noise process (which we assume), which can be
written

2 22t/t 2s 5 (1 2 e )s ,0 (19)

where is the variance of soil moisture for long lead2s 0

time.
The variance s2 is directly related to our soil moisture

intraensemble variance ( ), although the former de-2S A

scribes a population, whereas the latter is a sample sta-
tistic. Likewise, is a process characteristic and our2s 0

overall variance ( ) is a sample statistic. Here we ig-2S T



AUGUST 2002 495S C H L O S S E R A N D M I L L Y

FIG. 10. Global distribution of 30-day AT for ensemble simulations starting (top) 1 Jun and
(bottom) 1 Dec.

nore these distinctions, which is equivalent to assuming
that M and N are sufficiently large. Then we find, from
(6), (7), and (21),

2s
22t /tR (t) 5 1 2 5 e . (20)w 2so

Equation (22) explains the empirically determined ex-
ponential character of the Rw curves and predicts their
decay timescale to be half the timescale of the decay of
soil moisture autocorrelation,

t 5 t/2.w (21)

All of this theory has been developed without con-
sideration of seasonal changes in climate. To the extent
that t is much shorter than 1 yr, this theory can be
assumed to apply during any particular season of the
year, with Ep being representative of that season. In
seasons for which the t so determined would be several

months or longer, the error of the estimate of t (and
therefore tw) will be a function, in part, by antecedent
and subsequent statistics of the seasonality of Ep (or,
more generally, the atmospheric forcing) as well as the
strength of land–atmosphere feedbacks (Koster and Sua-
rez 2001).

In light of these expected limitations, the utility of
using (23) to predict tw is demonstrated for the simu-
lations initialized in June (Fig. 12). In order to obtain
an estimate of t for (23), 7-day lagged autocorrelations
of daily soil moisture are determined from the 200-yr
climatological run (described in section 2). These point-
wise autocorrelations are then inserted into (16) and
solved for t (with a value of t 5 7 days). A robust
spatial correspondence is found between the predicted
and actual values of tw, with the global, spatial corre-
lation coefficient significant (50.67, land points only)
above the 99% significance level.
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FIG. 11. As in Fig. 8, except for relative interensemble variance of 30-day running mean precipitation, RP (in place
of near-surface air temperature).

b. Control of air temperature predictability

We have introduced AT as a measure of the translation
of soil moisture predictability to predictability of near-
surface air temperature. Here we examine the controls
of 30-day AT. We expect significant influence of soil
moisture predictability on T predictability when soil
moisture variance is a major control of variance in heat-

ing of the near-surface environment. Such control can
be expected when and where both surface energy avail-
ability, Rn (which controls Ep), and the variance of the
soil moisture stress factor, b, are large. The simplest
index including both these factors is

s R ,b n (22)

in which sb is the standard deviation of the monthly
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FIG. 12. Global distribution of soil moisture predictability timescales, tw. (bottom) Equation
(23) is used to obtain a theoretical estimate of tw. To obtain an estimate of t, 7-day lagged
autocorrelations from the GCM’s 200-yr climatological run are used to solve Eq. (16) with t 5
7 days. This estimate is compared to (top) the tw values obtained directly from the GCM ensemble
simulations. Results are shown for the ensemble simulations initialized 1 Jun.

mean soil moisture stress factor and n is monthly meanR
net radiation. Relatively large values of this index
should reflect an environment that supports strong, local
coupling between soil moisture and turbulent heat-flux
partitioning, hence T variability, and, therefore, a high
value of 30-day AT. On the other hand, when (24) is
small, we expect 30-day AT to tend to zero. The ability
of this index to predict 30-day AT is demonstrated for
the simulations initialized for June (Fig. 13). The index
shows a robust (and significant at the 99% level) con-
sistency with 30-day AT for June (Fig. 10). Overall, a
significant geographical correspondence between this

index and 30-day AT is seen for all initialization months
of the ensemble simulations (Fig. 14). However, this
correspondence does not necessarily imply causality.

5. Closing remarks

a. Summary

Using a coupled land–atmosphere model, we have
explored the nature of soil moisture predictability and
associated atmospheric predictability. Sets of ensemble
simulations were performed using the GFDL R15 GCM
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FIG. 13. Global distribution of the product of the variance of the bucket soil moisture stress
term, sb, and the mean net radiation at the surface, n. Variance and mean are based on JunR
mean outputs from the 200-yr climatological run of the GCM.

FIG. 14. Monthly results of the spatial (area weighted) correlations between the global fields
of sb, n, and 30-day AT. The nonshaded area represents values above the 99% significance levelR
(two-tailed test).

(forced with climatological SSTs) coupled to a simple
land model. A timescale of soil moisture predictability
and a measure of the local impact of predicted soil mois-
ture on near-surface air temperature and precipitation
predictability are defined in terms of normalized inter-
ensemble variance.

The predictability timescale of soil moisture is found
to vary from approximately 2 weeks up to 6 months
and depends on location (primarily latitude) and the

season of initialization. The longest timescales of soil
moisture predictability are associated with simulations
that start in the winter at mid- and high-latitude regions.
The shortest timescales are largely confined to the Trop-
ics and subtropics. However, timescales are also at their
shortest at midlatitudes for simulations starting in the
summer. The long timescales of soil moisture predict-
ability at high latitudes are likely a result of low po-
tential evaporation rates and the presence of snow cover,
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which in the GFDL bucket hydrology decouples soil
moisture from the atmosphere.

The associated predictability of near-surface air tem-
perature over the land is strongest in the Tropics and
the subtropics. However, a notable impact is also seen
in the midlatitudes for simulations initialized in the late
spring through summer. The associated predictability of
precipitation, however, is insensitive, locally, to pre-
dicted soil moisture. The geographic locations of great-
est associated predictability of near-surface air temper-
ature are coincident with locations in which net radiation
at the surface is abundant and the temporal variability
of soil moisture control on surface heat fluxes is high.
No substantial associated precipitation predictability of
precipitation was found.

b. Discussion

The diagnostic results of simulated soil moisture pre-
dictability and associated atmospheric predictability are,
indeed, model dependent. This study was based on nu-
merical experimentation using the GFDL AGCM cou-
pled to a simple land model. The theoretical relationship
(presented in section 3) between soil moisture persis-
tence and predictability timescales [Eq. (23)] was built
upon the GFDL land model’s linear relation between
soil moisture and its stress on evapotranspiration
(among other simplifying assumptions), which allows
the soil moisture budget equation to be viewed as a
linear Markov process. More complex (i.e., nonlinear)
relations between soil moisture and its stress on evapo-
transpiration exist in most land models that are used for
computational climate research [for reviews see Shao
and Henderson-Sellers (1996) and Mahfouf et al.
1996)]. As such, the relation between soil moisture pre-
dictability and persistence presented in this work is not
guaranteed to apply as a general rule. However, a recent
study by Koster and Milly (1997) shows that the annual
cycle of the water budgets of more complex land models
can be captured through linear approximations (as a
function of soil moisture) of their evaporation and runoff
formulations. Therefore, it is reasonable to expect that,
to a certain extent, the relation between soil moisture
predictability and persistence in most land models can
be approximated through a linear, Markovian frame-
work. Perhaps more compelling, the results of Vinnikov
and Yeserkepova (1991) using gravimetric soil moisture
observations (for primarily grassland plots) over the for-
mer Soviet Union empirically support the Markovian
behavior of soil moisture persistence and, therefore, by
extension of our analysis, its predictability. Therefore,
while the limited scope (both in space and bio-geolog-
ical extent) of their observations precludes any general
conclusions in this regard, it warrants further studies to
do so.

A similar consideration of our theory relating soil
moisture predictability and persistence should be made
with regard to nonlinear and nonlocal interactions be-

tween soil moisture and precipitation (as well as a re-
mote SST influence on precipitation, which is addressed
in a subsequent paragraph). Note that for the limiting
case of a local, linear interaction between soil moisture
and precipitation, a linear damping term similar to that
used for evapotranspiration stress (i.e., the b term) can
be included in the soil moisture budget equation [Eqs.
(14) and (17)] to represent the local response of pre-
cipitation to soil moisture. Therefore, the essence of the
linear Markov process for soil moisture is retained.
However, a nonlocal and/or nonlinear impact of soil
moisture on precipitation cannot be conveniently de-
scribed within the context of a linear Markov represen-
tation of the soil moisture budget. Nevertheless, any
persistence of precipitation induced by nonlinear and/
or nonlocal feedbacks will, in turn, enhance soil mois-
ture persistence and predictability [beyond what would
be estimated by Eq. (23)]. In this case, our theoretical
model of the soil moisture predictability timescale could
be viewed as an underestimate. The results of recent
numerical experiments (Koster et al. 2002) show a wide
range of strength in land–atmosphere coupling (in par-
ticular, the response of precipitation to land surface
evaporation efficiency) for four particular GCMs. The
precipitation processes that are parameterized, the land–
atmosphere coupling strategies employed, (Polcher et
al. 1998) as well as the degree to which near-surface
atmospheric profiles are adequately resolved (K. Findell
2002, personal communication) likely contribute to the
model scatter and the accuracy of any model result.
These issues further underscore the sensitivity of the
numerical representation of coupled-climate processes
on their coupled modes of predictability. Nevertheless,
the low AP found in our analysis [qualitatively consistent
with three of the four GCMs’ results in Koster et al.
(2002)] is indicative of a weak, local soil moisture–
precipitation interaction in the GFDL GCM. Therefore,
our theoretical model [Eq. (23)] is able to predict the
soil moisture predictability timescales reasonably well
(Fig. 12), because the theory leading to Eq. (23) is based
upon an assumption (among others) that precipitation
is a white-noise process (i.e., no land–atmosphere feed-
backs occur).

Our relation between soil moisture persistence and
predictability further emphasizes the crucial role accu-
rate soil moisture modeling plays in climate prediction;
if a particular land model exhibits spurious modes of
soil moisture persistence (due to inaccurate parameter-
izations), this will likely lead to spurious modes of soil
moisture predictability (and associated atmospheric pre-
dictability). As such, future efforts should be made to
evaluate simulated soil moisture persistence of current
land models over large scales (continental to global) at
resolutions consistent with AGCMs. Current efforts to
run land models at the global scale over many years
(Polcher 2000), as well as the collection of in situ (e.g.,
Entin et al. 2000) and remote sensing data (e.g., Walker
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and Houser 2001) to monitor and analyze soil moisture
globally, will prove valuable in this regard.

Delworth and Manabe (1988) showed some redness
and, hence, some (implied) associated predictability of
spatially filtered (i.e., nine-point smoothed) precipita-
tion in the GFDL AGCM. The results presented here
indicate that the local impact of soil moisture variability
on subsequent precipitation is weak. The apparent dis-
parity between these findings has been addressed by
calculating our R and Aa diagnostics on spatially filtered
(i.e., five-point smoothed) soil moisture and precipita-
tion fields. These complementary diagnostics were con-
ducted for the forecasts starting 1 June and indicate that
spatially filtered values of precipitation lead to small,
but discernible, peaks of 30-day RP that rise above R`

at early lead times (unlike the flat curves of zonally
averaged 30-day RP shown in Fig. 11). This would in-
dicate that spatial filtering of 30-day mean precipitation
could lead to more robust results for the AP diagnostics,
but only marginally so. Overall, the results indicate a
potential enhancing effect of spatial and temporal av-
eraging on these types of explained-variance/predict-
ability diagnostics.

Looking further at the results of Delworth and Man-
abe (1989), we see a strong impact of soil moisture
variability on the power spectrum of near-surface rel-
ative humidity index (a reddening effect). Koster et al.
(2000) present an intuitive basis for the conditions in
which a strong coupling between land surface and pre-
cipitation variability would be expected. They argue
(and support through experimental results from their
particular GCM) that regions of intermediate near-sur-
face relative humidity (and where the spatial gradients
of relative humidity are strong) would be most con-
ducive to a strong land surface–precipitation interaction.
The results of this study would indicate that, although
a strong coupling between soil moisture and near-sur-
face relative humidity exists in the GFDL GCM, this
does not translate into widespread precipitation pre-
dictability. This disparity could be a result of the fact
that the apparent near-surface humidity control in the
GFDL GCM is largely a manifestation of soil moisture’s
control on near-surface temperature variability (sup-
ported by the strong AT results) rather than a moisture
flux effect (via surface evaporation).

These predictability experiments were conducted us-
ing climatological SSTs as boundary conditions. There-
fore, any influence of ocean variability on these pre-
dictability results was removed. In light of the wealth
of numerical studies that have studied the impact of the
ocean on atmospheric variability and predictability (e.g.,
see section 1), it is reasonable to assume that including
knowledge of interannual SST variations in these ex-
periments would cause an appreciable (and predictable)
response of the atmosphere (i.e., a precipitation anom-
aly). Over the continents, any predictable precipitation
response could result in a predictable soil moisture
anomaly. While this may lead to enhanced predictability

of soil moisture (and the atmosphere), it is the result of
an atmospheric response to the ocean, rather than the
response to initial soil moisture information. Our intent
for these experiments was to obtain the predictability
signal that results solely from the knowledge of initial
soil moisture, and therefore we have removed the ocean
influence.

Nevertheless, the results presented indicate that initial
soil moisture information would have a widespread, pre-
dictable effect on climate predictions with the GFDL
GCM for monthly soil moisture and near-surface air
temperature, especially for the Tropics and subtropics,
and for forecasts starting in the summer at midlatitudes.
Many previous GCM experiments have investigated the
impact of soil moisture initialization on simulating ex-
treme climate events (e.g., Atlas et al. 1993) and in some
cases used idealized and/or extreme values for their soil
moisture initialization (e.g., Oglesby 1991). Studies like
these are useful for ascertaining the role of land–at-
mosphere interactions under extreme conditions but
cannot quantify whether these events are predictable, or
whether soil moisture can provide a useful predictive
impact for climate simulations under less extreme cli-
mate conditions. The global soil moisture fields used to
initialize the ensemble simulations were essentially tak-
en at random from a climatological run of the GFDL
GCM. Therefore, a wide range of soil moisture con-
ditions (i.e., from wet to dry regions) is represented. As
such, our analysis reflects a broader perspective of the
impact of soil moisture initialization on soil moisture
predictability and its subsequent predictable impact in
coupled climate simulations.
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