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ABSTRACT

Statistically steady states consistent with a horizontally uniform time-averaged temperature gradient
in a two-layer quasi-geostrophic model on a beta-plane are found by numerically integrating the equa-
tions for deviations from this mean state in a doubly periodic domain. Based on the result that the flow

* statistics are not strongly dependent on the size of the domain, it is suggested that this homogeneous
flow is physically realizable. The dependence of the eddy heat and potential vorticity fluxes and eddy
energy level on various model parameters (the beta effect, surface drag, small-scale horizontal mixing)
is described. Implications for eddy flux parameterization theories are discussed.

1. Intreduction

Most turbulent transport problems are fundamen-
tally inhomogeneous. In a typical laboratory tur-
bulent shear flow, for example, momentum mixing
is predominantly due to eddies with scales com-
parable to the width of the shear zone (see, e.g.,
Tennekes and Lumley, 1972). In turbulent Bénard
convection, the eddies carrying most of the heat are
effectively ‘‘plumes” extending from one boundary
of the unstable region to the other. In both problems,
the scale of the eddies responsibie for the bulk of
the transport is determined by the scale of the mean

- flow inhomogeneity in the direction of the transport.
This absence of scale separation is the principal
source of difficulty in constructing plausible theories
for turbulent mixing.

Fortunately, horizontal eddy heat and potential
vorticity fluxes in a turbulent quasi-geostrophic
flow may not be fundamentally inhomogeneous in
this sense (although particular problems of interest
may be inhomogeneous, of course). We argue below
that when the mean flow variations in the horizontal
are small over a Rossby radius of deformation
(A) then A asserts itself as the appropriate “mixing
length,” or characteristic horizontal scale, of the
eddies transporting heat and potential vorticity. The
resulting scale separation has considerable signif-
icance for the effect of the eddy fluxes on the
mean flow and, particularly important for our pur-
poses, allows one to pose a physically meaning-
ful horizontally homogeneous problem.
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To clarify the difference between problems that
are fundamentally inhomogeneous and those that are
not, compare the quasi-geostrophic problem de-
picted schematically in Figs. la and 1b with the
Bénard convection problem in Figs. 1c and 1d. In
the quasi-geostrophic case, it is assumed that: 1)
potential temperatures relax to a given profile
0:(y,z) in the absence of a dynamical heat flux; 2) the

‘meridional gradient of 6 is constant within a region

of width L and zero outside of this region; 3) the
flow consistent with these temperatures is unstable;
and 4) the dynamical fluxes in the resulting statis-
tically steady state produce the time-averaged
profiles shown as dotted lines in the figures. A flow
for which A = L(\ < L) is illustrated in Fig. 1a
(Fig. 1b). In the latter case, we do not expect eddy
statistics near the center of the unstable region to
be greatly influenced by boundary effects, as long as
these eddies are indeed typically of scale A < L.
Accordingly, eddy statistics close to the center
should be nearly homogeneous, the divergence of
the heat flux should be small, and 6 should be close
to Og, as shown in the figure. Letting L approach
infinity while holding 86,/3y fixed, we expect that
the transient eddy statistics will reduce to those of a
horizontally homogeneous flow driven by an im-
posed time-mean temperature gradient.

We do not mean to imply in Fig. 1b that \-itself
is necessarily a good measure of the distance from
the boundary of the unstable region to which the
eddy effects on the mean flow penetrate. This pene-
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tration distance depends on other model parameters
as well, particularly the time scale on which @ re-
laxes to 0z in the absence of dynamical fluxes (see
the discussion in Section 6 below). We do expect,
however, that this penetration distance will become
a smaller and smaller fraction of L, the width of the
unstable region, as L — « while holding 86,/0y
and all other parameters fixed.

In the analogous problem for Bénard convection,
a fluid layer of depth H relaxes to an unstable
stratification 6z(z) in the absence of dynamical
fluxes. Once again, the question of interest is
whether or not the resulting turbulent flow field near
the center of the unstable region tends toward
homogeneity as H is increased, holding 86/8z
fixed. In fact, it is well known from laboratory, ob-
servational and theoretical studies that homogeneity
will not be approached. Instead, the eddies increase
in size as the size of the unstable region increases.
As a result, the eddies carrying heat through the
center of the unstable layer are sensitive to the
total potential temperature drop across the layer,
their structure having little to do with the local
gradient of 6z. To a first approximation, one
expects 860/0z = 0 as shown in Figs. 1c and 1d,
rather than 86/8z =~ 86;/0z. In contrast to the quasi-
geostrophic example, the problem of homogeneous
turbulence driven by a uniform unstable stratifica-
tion is unphysical, a result attributable to the ab-
sence of a scale analogous to A.

In order to study the homogeneous limit of the
quasi-geostrophic problem, one could analyze the
flow pictured in Fig. 1b, concentrating on the statis-
tics near the center of the unstable region. However,
to make the computational problem more manage-
able and the analysis more straightforward, we
proceed instead by assuming that the time-averaged
flow is horizontally uniform and then solving for the
forced transient flow field in a doubly periodic box.
As a result, the transient eddy statistics are
automatically horizontally homogeneous in the
domain of integration. We assume as a working
hypothesis that if the homogeneous problem is not
physically meaningful then either 1) a statistically
steady state will not exist, or more likely, 2) the
dependence of the eddy statistics on the size L of
the doubly periodic box will not disappear as (A\/L) —
0. If the eddy statistics do asymptote to finite values
in this limit, it is then reasonable to assume that
the reentrant boundary conditions do not matter
and that the statistics in this limit are, in fact, iden-
tical with those in the interior of the unstable flow
of Fig. 1b in the same limit [(A/L) — 0].

We describe in this paper a series of calculations
with a two-layer quasi-geostrophic model on a beta-
plane (Phillips, 1951; Pedlosky, 1963), limiting the
discussion to the special case of layers of equal
depth. In the most general homogeneous problem

DALE B, HAIDVOGEL AND ISAAC M. HELD

a w
= S
> S
3 5
¢ —6,
3 ' - . -—-0
e &
I w t
T []
(c) |
o (@

e

FiG. 1. A schematic of the effects of quasi-geostrophic eddies
on mean potential temperature as a function of latitude, 6(y),
in a baroclinically unstable flow (a and b), and the effects of
turbulent convection on mean potential temperature as a function
of height, 6(z), in an unstably stratified flow (¢ and d). 8 is the
potential temperature in the absence of dynamical fluxes. As the
width of the unstable region in the quasi-geostrophic case in-
creases (a — b), we argue that 6 approaches 6, away from the
boundaries of the unstable region. This does not occur as the
size of the unstable region increases in the case of turbulent
convection (¢ — d).

the mean temperature gradient need not be directed
parallel to the planetary vorticity gradient, but we
restrict ourselves here to the simplest case of a
north-south temperature gradient (or zonal mean
wind shear).

After presenting the model equations in Section 2,
we proceed to demonstrate in Section 3 that for a
certain range of model parameters the transient eddy
statistics are only weakly dependent on the size
of the doubly periodic computational domain. The
dependence of the homogeneous statistics on the
various nondimensional model parameters is then
examined by selecting a pivot experiment and
varying each parameter individually about this
pivot. The pivot experiment is described in Section
4 and the parameter variations in Section 5.

We focus in particular on the dependence of the
time-averaged heat (or buoyancy) flux through the
system on the various model parameters. The mean
eddy potential vorticity fluxes, the mean eddy
energy generation, and the mean eddy potential
enstrophy generation (in either layer) are all simply
proportional to the heat flux in this horizontally
homogeneous quasi-geostrophic system. Some
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implications of these results for eddy flux closure
schemes are discussed in Section 6.

A fundamental characteristic of quasi-geostrophic
flows on a beta-plane is that the energy, once
cascaded to large horizontal scales, organizes it-
self into zonal jets (Rhines, 1977; Williams, 1978).
Transient zonal jets are, indeed, generated in these
homogeneous calculations, but we postpone to a
later paper an analysis of their formatlon and
maintenance.

We have chosen to describe and compare a large
number of experiments rather than analyze any
single experiment in great detail. In particular, no
detailed comparison of these results with the pre-
dictions of turbulent closure theories is attempted.
In both of these respects, the recent work of Salmon
(1977, 1980) on essentially the same dynamical
system is complementary to ours.

2. The physicél and numerical models

In dimensional form, the equations of motion for a
flat-bottom quasi-geostrophic two-layer model on a
beta-plane can be written

0
L IQ) = -V, (1a)

80,
ot

where the subscripts 1 and 2 refer to the upper and
lower layers respectively, J is the horizontal Jacobian
and V2 the horizontal Laplacian operator. The two
layers are assumed to have equal depths when at
rest. The potential vorticities, ;, and the velocities
(u,0,), are related to the streamfunctions ¥; through
the diagnostic relations

+ J(‘Pg,Qz) = —VVG\Pg - szqu,

N

1
0=V, + By + 2—)\2(‘1'2 - ¥)

1
Q. =V¥, + By + 57\-2'(‘1’1 - W)

(ui,vi) = (—6‘1’,/6y, B‘I’ilax), i= 1, 2 ]

In these equations A is the Rossby radius of de-
formation, A = [g'H/2 f,?]"%, where H is the resting
depth of either layer, g’ is the reduced gravity
(g’ =g(ps — p1)/p:],and fols the Coriolis parameter
evaluated at some central latitude. The upward dis-
placement n of the interface between the two
layers is given by fon/H = (1223 (¥, — ¥,).

Egs. (1a) and (1b) state that upper and lower layer
potential vorticity are conserved following the hori-
zontal flow, except for the effects of dissipative
processes. These latter processes are assumed to act
on the relative vorticity (V?¥,) through a biharmonic
lateral diffusion (i = 1, 2) and a linear surface drag
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(i = 2 only) with turbulent mixing coefficients »
and «, respectively. The use of this mixed dissipative
parameterization follows recent practice, particu-
larly in oceanographic modeling (see, e.g., Brether-
ton and Haidvogel, 1976; Holland, 1978). The
scale-selective lateral dissipative term is intended to
mimic the removal of enstrophy on scales of
motion unresolved by the finite computational grid
(to be discussed below). The biharmonic form of
this horizontal mixing is somewhat arbitrary. Al-
though some scale-selective mixing is required to
regulate the accumulation of enstrophy at the
highest allowable wavenumbers, the typical expec-
tation is that the statistics of the large-scale flow
will not be sensitive to the choice of the coef-
ficient v. (This assumption will be critically ex-
amined below.) The form of the surface drag, on
the other hand, does have some justification (Ekman
pumping), and one expects the strength of this drag
to affect the energy level of the large-scale flow.
Following our discussion in the Introduction,
we assume that our turbulent fluid is characterized
by a horizontally uniform time-averaged tempera-
ture gradient (directed north-south). Equivalently,
the time-averaged vertical shear is horizontally
uniform and zonal. For definiteness, the mean
velocity (U) is confined to the upper layer, so that

\pl(xsyﬂt) = —Uy + "bl(x,yyt)
‘I'Z(xay at) = ¢2(xay ’t)

where (i = 1, 2) is the deviation of the stream-
function from its time average. Nondimensionalizing
(x,y,t, ) by (A\ANU,UN), the quasi-geostrophic
potential vorticity equations for the transient flow
become

’

(2a)

_B—tl + J(P1,q1) = -oVe&, + F,,

0
;’2 + T(nsds) = —9V, — RV + Fy,  (2b)

where the eddy potential vorticities are

q, = V3, + V(P = P1), (3a)
gz = V3 + Yo — ¢). (3b)
The forcing terms
F=-ogem i, @
F= (8- 2 (4b)
0x

represent the effects of the mean temperature and
planetary vorticity gradients on the transient flow.
All variables in Egs. (2)~(4) and in all subsequent
equations—unless otherwise noted-—are nondi-
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mensional. The parameters which appear in these
equations are 8 = BAYU, k = kNU and ¥ = v/N*U.

With the assumption of horizontal homogeneity,
we require that y;(x,y,7), i = 1, 2 be periodic over
the square domain 0 < x,y < 27L, where L = L/,
27L being the dimensional size of the domain.
Adopting the spectral approximation method, we set

N/i2-1 N/2-1
Paxy,)= S 3 Al (nelknztiw,
m=-N{2 n=~N|2
i=12 ()
where . .
ALy n(t) = [ATa(D)])%,
(km,ln) = (m, n)/lf

Note that the largest wavenumber retained in the
numerical model, kn.x = (N/2L). Substitution into
(2a,b) yields a coupled set of equations for the
evolution of the spectral coefficients A%,,(¢). These
equations are advanced in time using a leapfrog
differencing scheme, with periodic application of a
leapfrog-trapezoidal step (Haltiner, 1971) to diminish
the computational mode. The nonlinear products
J(¥,q;) are computed without aliasing error using
the transform method (Orszag, 1971).

The resulting physical/computational problem is
characterized by five nondimensional parameters
of potential interest. Only two of these—f and
k-—are associated with the physical description of
the problem, being nondimensional measures of the
planetary vorticity gradient and bottom friction.
Three others—L, kn.x and P-—are considered
computational; they reflect the computational re-
quirements of a finite domain size and horizontal
resolution, and of a mechanism for enstrophy re-
moval from the high-wavenumber end of the discrete
spectrum. Our hope is to achieve statistically steady
states independent of domain size, grid size, and
subgridscale dissipative mechanism. In all of the
experiments described below, N = 64; therefore,
the nondimensional box size (2wL) and the non-
dimensional grid size (2mkmax~!) are not varied
independently, a point we return to in Section 3. We
also neglect the computational parameters asso-
ciated with the temporal resolution of the numerical
model. The nondimensional time step in the follow-
ing calculations (typically At = 0.025) has been
chosen to avoid numerical instability and to ensure
negligibly small time truncation errors.

From the potential vorticity equations (2a,b), the
globally-averaged energy and enstrophy budget
equations can be constructed. These are

oE
-;')7 = —[%(Kl + K,) + P)

s .
=E(EBT+EBC)=G+S+Da (63)
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o,

=g, + d,, (6b)
Y 81 1
P2 _ gy b5 +dy, (6¢)
ot
where
Ki=%(|V|?, (i=1,2),

b= 2<(¢l 2 %) > ’

1 U+ P\ |2
E”=E<}v( 2 ) >
gzt |P o (B )
E”C"EHV(‘ 2 ) +( 2 )>
G_2<ll’l 6x> ’
S=- -;—<|vw2|2>,
D=- §<|V(v2wl>|2 + V() |2,
pi={lg:? (=12,
= ] 2
g = 2(ﬁ+%)<q1 ax>,
_ Wi
g2 = 2B - v:)( ax>,
diE —29<Q1V6¢i), (l = 1’ 2)’
§ = *2k(42V2‘I’2)-

In these expressions, brackets indicate a global
average. The total energy E—consisting of upper
layer kinetic (K,), lower layer kinetic (K,), and
potential (P) energies; or, alternatively, of energy
in the barotropic (Egr) and baroclinic (Eg.) modes
—varies in time as a result of net generation (G)
and net loss due to surface friction (§) and lateral
viscous processes (D). Egs. (6b) and (6¢c) express
similar balances for the upper and lower layer
potential enstrophies, p; and p,. It is important to
realize that G, g,, and g, are all proportional to
each other and to the eddy heat flux through the

system; in particular,
l> < ’ 1>

2o
2 3 2

) o

fl

il
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the last expression being proportional to the heat
(or buoyancy) flux.

We shall have occasion to refer not only to the
domain averages of several of the terms in Egs.
(6a,b,c), but to their one- and two-dimensional
spectra as well. Our normalization conventions and
notation for these spectra are listed in Appendix A.

A total of 37 statistically steady states have been
obtained with this model, providing very modest
coverage of the parameter space. Each experiment
is initiated from a randomly chosen set of spectral
coefficients Ai, (i = 1, 2). After an initial period
of integration lasting 100-200 advective times, the
system appears to reach statistical equilibrium. (The
eddy generation and energy invariably overshoot
the final average values during this spin-up, some-
times quite dramatically.) Subsequent to this equili-
bration, an gdditional integration of several hundred
advective times is performed to provide time-aver-
aged flow statistics. A table in Appendix B sum-
marizes some of the properties of the statistically
steady states thus obtained.

An attempt has been made to estimate sampling
errors by splitting the averaging interval into M
= 10-20 subintervals, computing the variances of
the subaverages, and then dividing by M to obtain
an estimate of the variances of averages over the
full interval. The resulting estimates of the standard
deviation of domain-averaged energy generation or
total energy were typically O(2-5%) of the mean
values. Since successive averages over the subinter-
vals were occasionally strongly positively cor-
related, this is only a lower bound on possible
sampling errors. Inspection of the solutions reveals
the occasional presence of very long-period varia-
tions in the energy of the largest waves in the
system, making it unlikely that convincing estimates
of sampling errors can be obtained without much
longer integrations. The results described in the
followmg section—particularly those achieved by
varying L and # by small amounts (see Fig. 2a,b)—
suggest that our sampling errors are occasionally
0(10%).

3. The radius of deformation as mixing length

It is not self-evident that the meridional scale of
the eddies transporting heat and potential vorticity
in this problem, in fact, will be determined by the
radius of deformation alone. Linear instability
theory generally predicts the largest growth rates
at zonal scales comparable to A; however, the
meridional scale of the most unstable wave can
be much larger (Simmons, 1974). In our horizontally
homogeneous problem, the most unstable wave on
the time-averaged flow has no meridional struc-
ture (i.e., [ = 0). It might therefore be argued that
the [ = 0 mode must dominate the flow. However,
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although our mean flow is most unstable to single
wave disturbances of infinite meridional extent, it
can be shown (Pedlosky, 1975) that the marginally
stable mode at the minimum critical shear required
for instability is itself unstable to motions whose
meridional scale is O(\). More generally, if the flow
is at all turbulent one expects nonlinear interac-
tions to force the system toward isotropy, impress-
ing the characteristic zonal scale of the generation
process on meridional variations as well. We test this
intuition by examining the dependence of time-
averaged flow statistics on the _parameter L = LI\

As stated in Section 2, (kmaxL ) is fixed in all of our
experiments. When L is altered, holding the radius
of deformation fixed, then k., is correspondingly
altered. To help separate the different effects of
finite domain size and finite resolution when L is
varied, it is useful to examine the behavior of the
system in the # — L plane, since the effects of
finite resolution are expected to be sensitive to 7.

Figs. 2a and 2b depict the time and domain-
averaged energy generation G and total eddy energy
E obtained for a number of values of » and L, with
B = 0.25 and & = 0.5. A clear feature in this ﬁgure
at the smaller values of 7 is the rapid decrease in
G that eventually occurs as L increases at fixed .
The corresponding decrease in E is somewhat less
clear. This decrease is evidently associated with in-
adequate resolution since the value of L(kmay) at
which this transition occurs decreases (increases)
with decreasing ». Although the small number of
experiments does not allow us to be at all precise,
the results are not inconsistent with the intuitive
idea that severe distortion of the solution occurs
when the parameter

RY3'= 1/(kmaxd'®)

rises substantially above a critical value (=4). Here
R is an effective Reynolds number for the smallest
wave in the system, if velocities are of order unity.
(Fig. 2b shows that rms velocities are indeed of order
unity for this choice of 8 and &.)

If we disregard this rapid drop-off when the
resolution is inadequate, these results suggest that
the generation (or the heat flux) and the energy
level are not particularly sensitive to L. As L is
decreased, one does expect distortion due to
quantization of k-space to become evident even-
tually, but Fig. 2 indicates that the effect on G and
E is rather small and not entirely systematic, at
least down to L = 7. The only systematic variation
we find in the »-L plane, besides that attributed to
inadequate resolution, is a significant decrease in G
and E with increasing » for & = 0.2. The region in
the #-L plane within which resolution is adequate,
and 7 sufficiently small that it does not affect G and
E significantly, is evidently quite small for this
model. A model with a larger number of degrees of
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FiG. 2. The domain averaged eddy energy generation G and total eddy energy
E as functions of # and L (0r kpay) With B 0.25 and & = 0.5. R, effectively
the Reynolds number for the smallest wave in the system, is defined in the text.

freedom seems to be required in order to obtain
more satisfactory results.

Two of these experiments—(L = 10, »'® = 0.292)
and (L 15, 3 = 0.292) are compared in greater
detail in Figs. 3—-6. These experlments conducted
at relatively high values of # and L, are the pair
most likely to show L- mdependent behavior, being
rather far removed from regions in the #-L plane
where one expects finite resolution and finite domain
size to be strongly felt. Plotted in Fig. 3 are the
one-dimensional zonal and meridional energy gen-
eration spectra, G(k) and G(l). The spectra in the
two experiments are nearly identical; there is, in
particular, no noticeable shift in the zonal or
meridional scale of the eddies transporting heat and
no significant change in the total heat flux. (The
fact that the generation peaks at or near /[ =0
should not raise concern as to the physical realize-
ability of the flow. Fig. 3 suggests that limG(/) as
L — = does exist for all /, including / = 0. If this

is the case, then for sufficiently large L an arbitrarily
small fraction of the generation occurs on scales
larger than any fixed fraction of the domain width.)
Fig. 4, a plot of zonal spectra of the eddy energy
in the barotropic and baroclinic modes, further
illustrates this similarity. Not only are the details of
the energy spectra similar on scales considerably
smaller than the domain size, as one might expect,
but the amount of eddy energy that accumulates in
the k = 0 mode is also nearly identical in the
two cases.

Closer inspection of these transient zonal jets
does, however, reveal a significant difference be-
tween the two experiments; the meridional scale
of the jets is more sharply defined in the L=15
than in the L = 10 calculation. Fig. 5 is a plot of
E(k = 0, ]) for the two experiments. Both spectra
have a peak at! = 0.5, and both have about the same
total energy under the peak (see Fig. 4) but the peak
is much sharper for L = 15 than for L = 10. It
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seems that the width of the peak is limited by the
resolution in wavenumber space. (When we repeat
this calculation with L. = 7, we find that E(0,/) has
no prominent peak at all.) This is the only differ-

ence we find between these two experiments that
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Fi1G. 6. Zonal spectra of the potential enstrophy generation

g.(k) and dissipation d,(k) in the upper layer for the same two
experiments as in Fig. 3.
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is clearly attributable to finite domain size. We ex-
pect that if [ were sufficiently large that the
model’s resolution in wavenumber space were suf-
ficient to resolve the natural width of this spectral
peak, then the structure of the peak would no longer
change if L were increased further.

On the smallest scales, some differences between
these two numerical experiments also exist, pre-
sumably due to insufficient resolution. Fig. 6 con-
tains plots of the zonal spectra of the potential
enstrophy generation g,(k) and dissipation d,(k) in
the model’s upper layer. (The lower layer enstrophy
balance is complicated by surface drag.) The en-
strophy dlssnpatlon is clearly not as well resolved
in the £ = 15 as in the L = 10 case, but there is
little apparent effect on the generation process.
Thus, despite differences at the largest scales due to
finite domain size and at the smallest scales due to
finite grid size, eddy statistical properties such as
net eddy heat flux appear to scale with the radius of
deformation to a good approximation. We tentatively
conclude that this homogeneous problem is indeed
physically meaningful.

The two experiments discussed above are both
fairly viscous. A substantial fraction (30%) of the
dissipation of Kinetic energy is accounted for by the
horizontal mixing. Fig. 2 also seems to show a small
but systematic increase in G and E with decreasing
v at these large values of the viscosity. Because
of the arbitrary character of this subgrid-scale
mixing, it is desirable to conduct most of our
experiments at a smaller value of ¥ so that: 1) the
bulk of the eddy kinetic energy is dissipated by
surface drag, and 2) the effect of ¥ on the genera-
tion is as small as possible. Fig. 7 shows the zonal
spectra of the upper level enstrophy generation
g1(k) and dissipation, d,(k), for experiments with

= 10 and with '3 = 0.292, 0.184 and 0.092.
Despite the increasing distortion of d,(k) at large
wavenumbers as ¥ — 0, the effect on generation is
quite small. The insensitivity of g,(k) to the value of
the horizontal mixing coefficient suggests that a true
enstrophy cascade connects the regions of genera-
tion and dissipation.

Fig. 8 depicts the zonal spectra of the energy gen-
eration, the energy loss due to surface drag and the
loss due to lateral viscosity for two of these experi-
ments. At p'3 = 0.092, 91% of the kinetic energy
dissipation is accounted for by the surface drag, and
the remainder by lateral mixing. In the wavenumber
range 0 < k < 1, over 97% of the dissipation is due
to surface drag. Inspection of the two-dimensional
energy spectra reveals that the feature most sensi-
tive to these changes in 7, once again, is the
sharpness of the energy peak at (k = 0, ] = 0.5).
The sharp peak in E(k = 0, 1) at/ = 0.5 when '3
= 0.292 (Fig. 5) is replaced by a smooth maximum
when »Y3 = 0.092. We notice no other clearly
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Fic. 7. Zonal spectra of potential enstrophy generation
g.(k) and dlssnpatnon dl(k) in the upper layer, for experiments
with £ = 0, 8 = 0.25, k = 0.5, and three values of b.

statistically significant changes in the energy-con-
taining eddies as ?'*® is decreased to 0.092. The
choice of an even lower viscosity results in a
significant decrease in G (Fig. 2a). We therefore
choose the (L = 10, #® = 0.092) experiment as a
pivot, about which to analyze the effects of varia-
tions in B and &, believing that some distortion of
the high wavenumbers is acceptable in order to ob-
tain as inviscid a flow as p0551ble in the energy con-
taining eddies.

4. Pivot experiment

_Having described our rationale for the choice of
(L =10, $3 = 0.092, 8 = 0.25, & = 0.5) for the
pivot experiment, we discuss this simulation in
more detail before proceeding.

For comparison, growth rates for the unstable
modes on the time-averaged flow for these param-
eters are shown as a function of k and / in Fig. 9.
Shaded regions in the figure are stable. The wave
with the largest growth rate is (k = 0.75, [ = 0).
For a given angle in this plane, ¢ = tan~!(l/k),
we find that values of (k,!) which maximize the
growth rate, and describe the locus of these points
by a dotted line.

The time-averaged spectrum of the eddy energy
generation G(k,/)—or equivalently, of the heat or
potential vorticity flux—is contoured in Fig. 10a.
The maximum generation at each angle ¢ is
marked by a dash-dotted line in this figure, this
line being transcribed onto Fig. 9 as well. There is
considerable resemblance between the generation
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Fic. 8. Zonal spectra of eddy energy generation G(k) dissipation due to
surface drag S(k) and dissipation due to horizontal mixing D(k) for two of
the experiments in Fig. 7: $2 = 0.292 and 0.092.

spectrum and the linear growth rates. In particular,
the generation has a smooth maximum near [ = 0,
and there is little generation in regions of linear
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FiG. 9. Contour plot in the k-! plane of growth rate (imaginary
part of complex frequency) of the unstable linear wave for
B = 0.25, k = 0.5, and #* = 0.092. The shaded region is stable.
The dotted line marks the maximum growth rate at each angle
tan~'(//k). The dash-dotted line marks the wave with maximum
energy generation, G(k,l), at each angle for the pivot experi-
ment (see Fig. 10a). The dashed line marks the wave with
maximum energy, E(k,/) at each angle (see Fig. 10c).

stability. The generation spectrum does seem to
have shifted to slightly smaller zonal wavenumbers
than those with the largest linear growth rates.
Larger shifts of this sort will be evident for the
more energetic flows described in Section 5.

As seen in the contoured (k-I) spectrum of non-
linear energy transfer (Fig. 10b), the net effect of
nonlinear processes is to remove energy from the
broad region of generation—centered near (k
= 0.7,1 = 0)—and to transfer it to motions of large
zonal scale (k = 0,/ = 0.5). The resulting (k-I) spec-
trum of the total eddy energy E(k,l) is plotted in
Fig. 10c; the wavenumber with the maximum energy
at each ¢ is denoted by a dashed line in Fig. 9.
The nonlinear transfer has evidently produced a
reasonably isotropic energy spectrum. In addition,
the energy maximum is clearly at smaller total
wavenumber than the generation maximum, as one
expects from the familiar two-dimensional cascade
of energy to larger scales. _

According to Rhines’s (1975) analysis of baro-
tropic flows on a B-plane, one expects the energy
cascade from smaller to larger scales to be halted
and the energy to accumulate at the total wave-
number ¥# = (B/V us)V?, at which the Rossby wave
phase speed becomes comparable, to rms particle
velocities, Vi ms. Choosing V.. = (2Egr)Y2, where
Epr is the eddy Kkinetic energy in the barotropic
mode (=0.83), we find % = 0.44 for this experi-
ment, in good agreement with Fig. 10c, which shows
energy maxima along a circle of radius = 0.5 in the
(k-1) plane. The use in this argument of the baro-
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tropic energy does not imply that all of the energy at
this wavenumber is in the barotropic mode. The
energy maximum can be created by barotropic non-
linear interactions—as described by Rhines (1977),
and Salmon (1977)—but surface drag acting on these
barotropic waves will generate substantial baroclinic
energy as well (see Fig. 4).

5. Supercriticality and surface drag

We next consider the result obtained by varying
each model parameter individually about its value in
the pivot experiment. As discussed in Section 3, the
effects of varying L (or k,,) and # on such global
statistics as total eddy energy and energy generation
are quite small, except when L is so large, or 9
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Fi1G. 10. The two dimensional -/ spectra of (a) the energy
generation G(k,I), (b) the source of energy due to nonlinear
interaction D(k,l) + S(k,}) + G(k,), and (c) the total eddy
energy E(k,!) for the pivot experiments. In (b), contours cor-
responding to negative values are dashed.

so small, that the Reynolds number for the smallest
wave in the system is large enough to produce severe
distortion. Excluding L and 7, the parameters which
remain are the nondimensional 3 (or supercriticality)
and the drag k. B
Figs. 11a and 11b show how the zonal generation
(or heat flux) spectrum G(k) changes as f is respec-
tively decreased and increased from its pivot value.
As expected from the increasing linear instability of
the mean flow, G increases monotonically as 8 de-
creases to zero. Accompanying this increase in
amplitude is a systematic shift in the spectral peak
toward lower wavenumbers. In Fig. 12 we plot the
wavenumber and the growth rate of the most un-
stable linear wave as a function of 8 and & (holding
P8 = 0.092). There is a shift in the most unstable
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F1G. 11. The zonal spectra of energy generation G(k) for experiments with L = 10, 9" = 0.092, and & = 0.5, and with
various values of 8. Values of B smaller than the pivot values (0.25) are shown in (a), and values larger than the
pivot value in (b). Note the order of magnitude change in scale between (a) and (b).

wavenumber—from 0.9 (at 8 = 0.5, k = 0.5) to
0.6 (at B3 = 0, k = 0.5)—but the magnitude of the
shift is considerably smaller than that seen.in Fig.
11 (from 0.8 to 0.3). As mentioned above, the non-
linear transfer of energy to larger scales should be
significantly reduced when rms flow velocities be-

-(a) WAVENUMBER

come comparable to the Rossby wave phase speeds.
As B decreases, the nonlinear transfer can be
expected to carry energy to smaller wavenumbers
both because of the higher energy level and because
smaller B is associated with smaller phase speeds.
Fig. 13 shows the generation spectra for values of

N

(b) GROWTH RATE

FiG. 12. (a) The zonal wavenumber and (b) the growth rate of the most unstable linear wave as a
function of 3 and &, for #/* = 0.092. The pivot experiment, 8 = 0.25, k = 0.5, is denoted by a dot.
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% both above and below the pivot value of 0.5.
Once again, the monotonic increase in generation
with decreasing & is consistent with the linear
instability growth rates in Fig. 12. As in the B-
variation, the increase in generation is accompanied
by a shift of the spectrum to longer waves. It is
not possible, however, to explain this shift on the
basis of linear theory; Fig. 12 shows no significant
shift in the most unstable wavenumber as & is
varied (with 8 = 0.25). As in the B-variation, the
nonlinear cascade deposits energy at larger scales
when the energy level of the flow increases.

Changes in G as 3 and & are varied have the
same sense as changes in the growth rate of the
most unstable wave w,. However, G cannot be
thought of as a simple function of w;. In particular,
by linearizing around the pivot expenment one
finds that similar fractional changes in 8 and & have
similar effects on w;:

1
0100 _ _0.88 and 22 -
dInf 0 Ink

However, a fractional change in 3 clearly produces
a much larger change in G than the same fractional

—0.62.

change in k. Linearizing about the pivot case,
we fine _
InG InG
OInG _ 53 and 229 - _ou4s.
dIng 0 Ink

We suspect that this difference is primarily a con-
sequence of the greater effect of 8-variation on the
instability of the longer waves in which most of the
energy has accumulated.

A number of additional calculations have been
performed by varying both B and & simultaneously
(holding L = 10, #3 = 0.092 as before). Some
‘properties of the resuliting statistically steady states
—the generation G, total eddy energy F, and the
fraction of the eddy energy in the barotropic mode
Egpr/E—are summarized in -k plane dlagrams in
Fig. 14. An attempt to obtain results for (8 = 0,
&k = 0.2) proved unsuccessful; the energy increased
to such an extent that the small time step required
for numerical stability made the calculation imprac-
tical. If a statistically steady-state exists, it appar-
ently has an order of magnitude more eddy energy
than (8 = 0, k = 0.5). In the absence of the stabiliz-
ing effect of B on the larger scales to which the
energy cascades, the generation and energy level
increase much more rapidly with decreasing &.

In contrast, at 3 = 0.4 there is a slight decrease
in G as k decreases from 0.5 to 0.2. Theories for
weakly unstable dissipative flows (Pedlosky, 1970)
predict a time-averaged generation or heat flux
proportional to k. The result for 8 = 0.4 may signal
a shift to this characteristic behavior of weakly un-
stable flows from the (totally different) behavior
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Fi1G. 13. The zonal spectra of the energy generation G(k) for
experiments with L = 10, 7% = 0.092, 8 = 0.25, and various
values of k.

exhibited by the strongly nonlinear flows at smaller 3.

As indicated in the figures, one experiment has
also been conducted with negative 8 (temperature
decreasing equatorward) Comparing the two cases
with (],3| = 0.1, k = 0.5), we find that negative j
results in the more energetic flow. If k were zero,
these two cases would of necessity be equally
energetic, as can be seen from a simple symmetry
argument. [The model equations are invariant under
the transformation 8 — —8 and (level 1) < (level
2) if k = 0.] But as Fig. 12b indicates, the presence
of & breaks this symmetry and results in larger
growth rates for 8 = —0.1 than for 8 = +0.1.

The barotropic fraction of the eddy energy (Fig.
14c) has a very well-defined behavior in the B-k
plane. It clearly decreases with increasing &, but is
independent of 8 to a surprising degree. We can
offer no explanation for this simple behavior.
Experiments with unequal depth layers (listed in
Appendix B) suggest that the barotropic energy
fraction depends on the ratio of the layer depths
(8) as well as k. i

For those points in the B-k plane far removed
from the pivot experiment, it is not clear that the
dependence on L and ¥ is at all similar to that de-
scribed in Section 3. It is not clear, in particular,
that all the results in Fig. 14 are nearly independent
of L and 7. In fact, we find in some experiments
with 8 = 0.25, &k = 0.167, and L = 15, that the de-
pendence of the flow statistics on # is much stronger
than for & = 0.5, even for ¥ sufficiently large that the
finite resolution should not be a factor (experiments
30-32 in Appendix B). However, the changes in G
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and E in the B-k plane (Figs. 14a and 14b) are
considerably larger than changes in the L-» plane
(Figs. 2a,b). We suspect, therefore, that the same
qualitative behavior would be obtained in a model
with greater resolution, in which one-could obtain
L- and #-independent results in a larger portion of
the -« plane.

6. Eddy heat flux parameterization

In the limit in which the mean flow is nearly
constant over the distance A, the results described
in Section 3—particularly those summarized in
Figs. 3—6—offer some evidence that the eddy statis-
tics are dependent on the local mean flow only, and
not on the meridional extent of the unstable region
(nor, presumably, on other global properties of the
flow). Accepting the existence of this ‘‘homoge-
neous limit’’ and ignoring possible distortion of the
results due to inadequate resolution, the parameter
variations discussed in Section 5 show how the eddy
statistics in this ‘‘homogeneous limit”> depend on
the mean flow properties. By fitting a smooth
function to the results in Fig. 14a, for example, it is
- possible to obtain a preliminary estimate of the
relation
G = G(B,k) = lim lim lim G(B,<,L,0,kpay) (8)

p—0 Lo kmax—-)oo

for the nondimensional eddy energy generation per
unit mass. [The limits in Eq. (8) are not entirely
interchangeable; as noted in Section 3, one cannot
let ¥ — 0 at fixed k.,.] For the dimensional energy
generation, G, this gives

G, = U\"'G(B,k), ©

U being the difference in mean velocity between
the two layers.. G, is also equal to the generation
of eddy available potential energy in this homo-
geneous problem; therefore, the dimensional eddy
buoyancy flux

B* = 1ag'(v; + vy)n

(where 7 denotes the displacement of the interface
from its mean position) can be expressed in terms
of G:

By = —4fNU'Gy = —4UN[,G(B,5). (10)
If we define a diffusivity & such that

B, = —Dg'on/dy = —DU f,,
then i
9D = 4AUNG(B,k). _ {an

If the factor G( B,R) were a constant, this diffusivity
could be thought of as a product of a ‘‘mixing
length’” proportional to A and a ‘‘mixing speed’”
proportional to U. Eq. (10) would then reduce to the
closure suggested by Stone (1972).

The concept of an eddy diffusivity & is particularly
useful for estimating the penetration length—the
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distance to which the effects of eddy fluxes on the
mean flow penetrate meridionally into an unstable
region (see Fig. 1b). If the mean flow relaxes to its
(unstable) equilibrium values on the time scale 7,
then we expect the mean flow to be affected by the
eddies in a boundary layer of thickness y = (@7)"2.:
Using (11) we have

v = 2QA0UTG)? = 2N(GTi7,)"2,

where 7, = MU is the advective time scale.

We focus now on the dependence of B, on the
mean horizontal and vertical density ‘‘gradients’’,
holding g, f, and H fixed. The horizontal gradient
of the vertically-averaged density,

(12)

is, then, proportional to U, while the density differ-
ence in the vertical,

Pz = P = HA,
is proportional to A\*. Therefore,
B, « A2AM2G(B,k).

Perturbing A, and A,, noting that 8 « A,A,! and
k o« AM2A 71 yields

olnB, , 9InG _ 6InG

8 InA, dlnB  dlni ’
9B, _1, 4lnG 1 4InG
olnA, 2 olnB 2 8lnk

Using 'the (Section 5) values around the pivot ex-
periment, ‘

OlnBy 5 423+ 046~43,

8 InA, -
OInBy s —23-023~-20.,
8 InA,

‘The variations in & have a small (10%) effect on the

fluxes. The variations in 83, in contrast, enhance the
heat flux sensitivity to A, by more than a factor of
2 and change the sign of the response to perturba-
tions in A,. Held (1978) finds similar results by
analyzing sensitivity experiments with a two-layer
primitive equation atmospheric model. Fig. 14 sug-
gests, however, that k-variations grow in importance
as 8 and & decrease.

The dimensional potential vorticity fluxes in upper
and lower layers can also be written in terms of G,

—2q7 = —2G, U™ = —2U\'G(B,%)

- HZ‘B G(B,i0)

? [
Uiqy =

o

2B
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Knowledge of the transient eddy potential vorticity
fluxes is generally required in order to solve for the
time mean potential vorticity and, therefore, for the
time mean geostrophic flow. If all dissipative and
diabatic terms are linear, so that non-conservative
effects do not introduce any additional coupling
between the transients and the mean, then the eddy
potential vorticity fluxes in the two layers are, in
fact, all one needs to know about the transients in
order to compute the mean flow. In this simple case,
G(B,k) is the only transient statistic needed for
closure in the homogeneous limit.
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FiG. 14. Domain-averaged eddy energy generation G, total
eddy energy E, and the fraction of this energy in the barotropic
mode Eg;/E, as functions of 8 and &, for L = 10, #® = 0.092.

7. Concluding remarks

Assuming that the time-mean flow in the two-layer
quasi-geostrophic model on a beta-plane is a hori-
zontally uniform vertical shear, the equations for
the evolution of deviations from this mean flow can
be integrated numerically in a doubly periodic do-
main. The resulting statistically steady state is
horizontally homogeneous within the model domain.
We have examined the dependence of this statis-
tically steady state on various model parameters and
have found, in a particular parameter range, that the
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eddy statistics do not change significantly as the
size of the doubly periodic domain is increased,
holding fixed all other parameters. Being nearly
independent of domain size, we suspect that the
results are also nearly independent of boundary
conditions and, therefore, that essentially the same
homogeneous statistically steady state would be ob-
tained whenever the forces driving the unstable flow
are characterized by sufficiently large horizontal
scal€s. The existence of this ‘“homogeneous limit”’
in the two-layer quasi-geostrophic model makes the
turbulent closure problem in this model funda-

mentally different from the closure problem in three- -

dimensional shear flows and in turbulent Bénard
convection. -

We have attempted a preliminary description of
the dependence of various eddy statistics of inter-
est on the model parameters. A number of ques-
tions have been left unanswered, each of which
suggests directions in which these results can be
extended. We list some of these directions:

e While ourresults suggest that the eddy statistics
are independent of the size of the domain L if L
is sufficiently large and if thé model’s numerical
resolution is adequate, our choice of experiments
has not resulted in a very precise definition of the
model’s behavior in the #-L plane (Fig. 2). The
extent to which the -« plane results depend on the
values of » and L should certainly be examined
more carefully before any quantitative results are
taken seriously.

o In the 3-k plane, the limit 8 — B, where By
is the minimum value of 8 required to stabilize the
mean flow, is of particular interest. The extent to
which these homogeneous results can be understood
in terms of weakly non-linear theory when -8
is small is deserving of careful analysis.

e The model provides a simple framework in
. which to study the generation of transient zonal

jets in a baroclinically unstable environment. Our
pivot experiment does not, unfortunately, provide
a particularly good example of this phenomenon, its
energy spectrum being rather isotropic. Several
other of our experiments produce much more aniso-
tropic spectra, dominated by a peak at k = 0 and
| =l # 0. What determines [, the characteristic
meridional scale of these jets? Is it determined by
- the energy level of the flow (Rhines, 1975; Wil-
liams, 1978), or by the radius of deformation, at
least in weakly nonlinear cases in which one may
be able to think of these jets as generated by
secondary baroclinic instability (Pedlosky, 1975)?
We have not obtained a sufficient variety of ex-
periments with zonal jets of sharply defined
meridional scale to address this point.
e By concentrating on wavenumber spectra, we
have neglected other ways of describing the results.
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Analysis of frequency spectra, in particular, would
allow one to compare the characteristic phase
speed of disturbances with the predictions of linear
theory (and also help one estimate the sampling
errors in the computation of mean statistics). Casual
inspection of the flow field in several experiments
indicates that a surprising amount of energy is in
disturbances that move very slowly with respect to
the lower layer flow.

e There are other qualitative features of the flow
in physical space that are difficult to analyze in a
spectral representation. Flow fields in some experi-
ments are dominated by more or less isolated vor-
tices. In other experiments the eddies seem to be
organized into wave packets, each packet consisting
of more or less the same number of wavelengths of
the dominant wave. Some experiments show a fila-
mentary structure in the vorticity fields similar to
that often observed: in two-dimensional turbulence
simulations, while other experiments do not exhibit
this characteristic structure. How one would make a
precise analysis of these various physical space
features is unclear.

o In oceanic applications of the two-layer model,
one generally chooses a shallow upper layer and
deep lower layer. While a few statistically steady
states with unequal layer depths have been ob-
tained (see Appendix B), the dependence of the
eddy statistics on the ratio of layer depths has
not been investigated systematically.

o Neither have we considered problems in which
the planetary vorticity gradient and mean tempera-
ture gradient are not parallel (or anti-parallel). The
direction as well as the magnitude of the heat or
potential vorticity flux vector is needed for closure
in these more general problems.

It will undoubtedly be difficult to find an environ-
ment in thé atmosphere sufficiently homogeneous
for a theory valid in the homogeneous limit to be
directly applicable (not to mention the problem of
applying results from a two-layer model). Finding
an application in the oceanic interior seems more
likely, though still far from certain. Yet one can
still hope that an asymptotic theory valid in the
limit (ML) — 0 may be of qualitative value even
when (ML) = 1 (as is often the case with WKB-like
approximations).

Independent of any possibility of immediate prac-
tical application, we believe these results are of
interest for several theoretical reasons:

1) The homogeneous results and theory can be
used to test proposed parameterization schemes.
These schemes should at least reduce to the correct
theory in the limit (A/L) — 0. :

2) The computation of the eddy flux in this homo-
geneous problem can be attempted with turbulent
closure schemes of varying sophistication (e.g.,
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Salmon, 1980), thus providing a point of contact
between work on parameterizing atmospheric and
oceanic eddy fluxes and work on homogeneous
turbulence.

3) Using one’s understanding of the local homo-
geneous theory, one can hope to construct sys-
tematically a weakly nonlocal theory as the next
term in an asymptotic expansion in (A/L).
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APPENDIX A
Notation for Spectra

Using (5), the eddy kinetic energy density in the
ith layer, for example, becomes

i

[ Va(u? + v¥)dxdy

Q@nL)
Ni2—1 Ni2—-1 )
= z z Kinn,

m=—N[2 n=—N|2
with
Kinn = l/é(km2 + ln2)|Amnlz-

The reality of ¢ implies that |AL,, _,|> = |AL,|? so

Ni2 Ni2—1 .
Ki = 2 z Cm 2 K;n"
m=0 n=—N/(2
Ni2 Nj2 ) )
=2 E 2 CmCa(Kopn + K;n,—n),
m=0 n=0
where '
[1/2, if m=0 or m=N/2
Cm = .
1, otherwise.

If Yi(x )y ,t) is a solution to (2), then Y(x, —y,f)is alsoa
solution. These solutions must have the same statis-
tics, assuming that there is only one statistically
steady state with non-zero probability of evolving
from random initial conditions. Therefore |A,,,|?
= |Ap-z|? and K&, = K&, _,.. (It follows from this
symmetry argument that the time-averaged merid-
ional flux of zonal momentum is identically zero.)
We therefore define the two-dimensional spectrum,

Ki(kmaln) = Zﬁz[K:nn + Kﬁn,—n]s
so that
Ni2 Nj2

K = L_z z Z CmcnKi(kmsln)-

m=0 n=0
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In the limit of infinite resolution, then,

K; = J J dk dl Ki(k,D)

0 0

since Ak = Al = L~'. One-dimensional spectra are
defined by '

. Ni2
Kl(k) = L—l 2 CnKi(kyln),
n=0
R N/2
Ki{l) =L ¥ cnKilkn,D),
m=0
so that
. Ni2 . Ni2
K, = L™ z CmKi(km) =L"! z CnKi(ln)-

m=0 n=0

In order to avoid too elaborate a notation, we use
the same symbol K; to refer to the domain average,
the two-dimensional spectrum K;(k,l), and both the
one-dimensional spectra, K(k) and K(/); the in-
tended meaning is always clear from the context.
Spectra of the other quantities discussed in the text
are defined analogously.

APPENDIX B )
Table of Numerical Experiments-

All of the statistically steady states analyzed are
listed in the following table. Several of these are not
discussed in the text, including some with the ratio
of layer depths, 8 = H,/H,, not equal to unity.
When 8 # 1 the radius of deformation is defined to
be A2 = g'H H,/[f*(H, + H,)], and the energy in
the barotropic mode is

Egp = <l V(Hlllh + Hzlllz) 2> .
2 H, +H,
(6 = 1 unless otherwise specified in the table.)
Listed in the table are the following:

E total eddy energy

E(k = 0) total eddy energy in the X = 0 mode

p total potential enstrophy [=p, + p.]
p(k = 0) total potential enstrophy in kK = 0 mode
G eddy energy generation

Egr/E ~ fraction of energy in the barotropic mode

S/D ratio of energy dissipation due to surface
drag to that due to horizontal viscosity

kg the nonzero zonal wavenumber at which
E(k) attains its maximum value

k¢ the zonal wavenumber at which G(k)
attains its maximum value

lg the meridional wavenumber at which

E(k = 0, ]) attains its maximum value.
(An asterisk implies that this maximum
is sharp, no other values of [ having as
much as half the energy of the indi-
cated wavenumber.)

All quantities in the table are nondimensional.
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TABLE Bl. Table of numerical experiments.
Exp. pl3 E
no. L B i x10 8 E k=0 p k=0 G Eg/E SID kg ke Ig
1 7 025 05 0.645 2.20 2.56 13.5 109 0.112 0394 20.0 3/7 4/7 317
2 7 025 0.5 0.921 1.94 2.02 10.7 8.54 0.101 0.389 14.8 3/7 4/7 317
3 7 025 0.5 1.84 1.86 1.11 924 9.10 0.101 0.359 5.35 3/7 4/7 3/7
4 7 025 0.5 2.92 1.50 1.85 7.14 734 0.087 0.327 2.26 3/7 517 @, H7
5 10 -0.1 0.5 0.921 6.36 7.12 393 30.2 0.785 0.401 20.3 0.3 0.4 0.1
6 10 00 035 0921 17.7 21.4 100.0  73.0 1.94 0.477 16.5 0.2 0.2 0.3
7 10 00 05 0921 8.97 890 544 372 0913 0.402 16.3 0.2 0.3 0.3
8§ 10 0.1 0.5 0.921 025 249 246 400 304 0.094 0.156 890 0.4,0.5 0.5 0.5
9 10 0.1 0.5 0.921 5.17 576 322 240 0.419 0.418 13.1 0.3 0.5 0.5
10 10 0.167 0.5 0.921 0.50 2.40 222 233 15.,6 0.119 0.267 9.38 0.4,0.5 0.6 0.5
11 10 02 05 0.921 2.85 2.98 176 129 0.171 0.402 11.0 0.5 0.5 0.5
12 10 0.25 0.167 0.691 4.19 464 266 156 0.183 0.566 11.0 0.4 0.5 0.3
13 10 0.25 0.167 1.38 2.95 7.24 120 166 0.139 0.535 7.21 0.4 0.4 0.3*
14 10 025 02 0.921 3.04 4.08 15.8 125 0.146 0.523 9.85 0.4 0.5 0.4
15 10 0.25 035 0921 2.39 2.28 14.2 9.46 0.128 0.449 10.1 0.5 0.6 0.6
16 10 025 0.5 0.461 2.03 136 25.1 9.64 0.075 '0.470 11.7 0.6 0.6 0.8
17 10 025 0.5 0.921 2.08 2.89 12.9 122 0.109 0,397 10.0 0.5 0.6, 0.5
18 10 025 0.5 1.38 2.08 2.40 10.9 9.60 -0.112° 0.376 7.35 0.5 0.6 0.5*
19 10 025 05 1.84 1.87 2.46 9.31 9.44 0.104 0.366 5.10 0.4,0.5 0.6 0.5%
20 10 025 0.5 2.92 1.66 1.45 7.82 11.1 0.098 0.334 2.36 0.5 0.6 0.5*
21 10 0.25 0.65 0.921 2.00 1.78 12.6 8.50 0.098 0.364 10.1 0.4, 0.5 0.6 0.6
22 10 025 1.0 0.921 1.76 2.04 10.9 '9.86 0.067 0.304 9.54 0.5 0.6 0.7*
23 10 03 0.5 0.921 1.61 1.90 10.0 8.30 0.072 0.392 9.14 0.6 0.7 0.5
24 10 04 0.167 1.38 1.01 4.82 4.73 142  0.035 0.517 4.91 0.6 0.7 0.4*
25 10 04 0.2 0.921 1.17 5.28 6.50 -17.1 0.040 0.511 7.57 0.6 0.7 0.6
26 10 04 05 0.921 1.16 3.06 7.48° 123  0.045 0398 7.76 0.6,0.7 0.7,0.8 0.5*
27 10 04 1.0 0.921 1.04 2.90 644 13.0 0.026 0.301 7.28 0.6 0.7 0.4, 0.6
28 10 05 0.5 0.921 0.814 2.25 5.11 972 0.023 0.367 6.50 0.1 0.8 0.6*
29 15 0.0 05 1.38 6.38 6.81 396 298 0.607 0.411 7.37 /15 6/15 3/15
30 15 025 0.167 1.38 3.56 4.83 18.5 139  0.175 0.564 4.21 5/15 8/15 4/15
31 15 0.25 0.167 2.76 2.12 6.60 8.13 159 0.113 0.487 2.23 (1, 6)/15 8/15 6/15*
32 15 0.25 0.167 5.52 0.901 2.20 3.58 6.02 0.071 0.394 0.552 1/15 9/15 5/15
33 15 025 0.5 0.731 1.06 0.63 11.6 4.52 0.038 0.486 5.62 9/15 10/15 12/15
3 15 025 0.5 0.921 1.37 0.96 12.3 5.82 0.060 0.468 5.10 8/15 10/15  (6-9)/15
35 15 0.25 0.5 1.38 1.66 2.01 10.6 9.04 0.091 0416 4.38 (7, 8)/15 (9-11)/15 7/15
36 15 025 0.5 2.92 1.62 1.35 7.69 7.25 0.095 0.329 2.19 7/15 11/15 7/15*
37 15 04 0.167 1.38 0.874  5.46 484 163 0.031 0.536 3.15 9/15 12/15 7/15*
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