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ABSTRACT

A modified energy flux is defined by adding a nondivergent term that involves S to the traditional energy
flux. The resultant flux, when normalized by the total eddy energy, is exactly equal to the group velocity of
Rossby waves on a 8 plane with constant zonal flow. In this study, we computed the normalized energy flux for
linear wave packets in baroclinic basic states with different vertical profiles. The results show that the normalized
energy flux is a good approximation to the group velocity of all parts of the wave packet for the basic states

examined.

The extension to the nonlinear case is briefly discussed. The magnitude of the fluxes of a downstream devel-
oping wave group over the wintertime northern Pacific storm track defined by a regression analysis is computed,
and the group velocity defined by the energy fluxes is found to be comparable to the group velocity of propagation
of the observed wave packet. The results indicate a very strong component of downstream energy radiation,
suggesting that downstream energy dispersion is very important in the evolution of waves in the storm track.

1. Introduction

Midlatitude tropospheric disturbances have been
found to have the tendency to propagate as baroclinic
wave groups (e.g., see Blackmon et al. 1984a; Black-
mon et al. 1984b; Lim and Wallace 1991; Chang
1993a). While the propagation of long waves is be-
lieved to be described very well by the theory of baro-
tropic Rossby wave downstream dispersion (e.g.,
Blackmon et al. 1984b; Simmons et al. 1983), the prop-
agation of synoptic-scale waves is a bit more problem-
atic, since those waves are highly unstable, and the
baroclinic nature of the waves and the background flow
must be taken into account. Using a regression analysis,
Chang (1993a) found that midlatitude synoptic-scale
baroclinic waves also exhibit the characteristics of
downstream development and group propagation, and
that the propagation is predominantly zonal over the
storm track regions. '

Orlanski and Chang (1993) studied the energetics of
downstream developing baroclinic waves and found
that the downstream dispersion of wave energy via the
ageostrophic geopotential fluxes (or more generally,
the traditional energy flux) is the triggering mechanism
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behind the growth of new disturbances downstream.
Chang and Orlanski (1993) found that this redistri-
bution of wave energy from upstream disturbances to-
ward downstream disturbances can lead to the exten-
sion of the storm track deep into regions of weak bar-
oclinicity and thus is very important in the
understanding of the extension of the storm track. Or-
lanski and Chang (1993) computed the value of the
energy flux, which, when normalized with the total
eddy energy, appears to be a good approximation to
the rate at which the disturbance is spreading out;
hence, they postulated that the total energy flux should
be a good approximation to the group velocity of the
disturbances.

It has been pointed out in the literature that the en-
ergy cycle may not be the best diagnostic tool to ex-
amine the dynamics of waves (e.g., Plumb 1983), since
the conversion terms are not uniquely defined, and even
the sense of the conversion can be reversed simply by
adding a constant term to all the conversions. It is also
well known that the energy flux appears in the ener-
getics equation only as a divergent term, and any non-
divergent quantity can be added to the flux without af-
fecting the energetics, thus introducing an ambiguity in
the definition of the energy flux. In fact, Longuet-Hig-
gins (1964) showed that for the case of barotropic
Rossby waves on a 3 plane, the traditional energy flux
is not parallel to the group velocity.
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Pedlosky (1987) suggested a form of the energy flux
that “‘naturally arises when reference is made only to
the governing equation of motion’’ and ‘‘reduces to the
product of the energy and the group. velocity’’ in the
WKB limit. This expression differs from the traditional
expression of the energy flux (up) by a nondivergent
vector. In section 2, we will review this expression of
the energy flux and relate it to the energy flux discussed
in Orlanski and Chang (1993). In section 3, we will
compare this energy flux with the group velocity of
linear wave packets in baroclinic basic states, and in
section 4 we will discuss the extension to nonlinearity.

2. Expression for the ‘““modified energy flux’’

Pedlosky (1987, section 6.10) derived several ex-
pressions for the energy flux vector and suggested the
following form to be preferable due to the aforemen-
tioned reasons:
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where the standard quasigeostrophic scaling has been
assumed. Here  is the streamfunction and is equal to
@lfo, where ¢ is the geopotential; E is the product of
the background density (p,) and energy density. The
derivation of this expression is straightforward and will
not be repeated here. Since time derivatives are not
readily available from observation, here we will rewrite
(1) using the ageostrophic velocities. The ageostrophic
velocity is defined by
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Using (2), (1) can be rewritten as
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The notation used here is standard. Hence the vector S
differs from the traditional energy flux by the vector k
X V(p,By*/2), which, as discussed in Longuet-Hig-
gins (1964), represents circulation of energy around
high and low centers. Using arguments similar to those
in Hayes (1977), it is easy to show that the vector de-
fined by (3) is equal to the product of the group velocity
and the eddy energy in the limit of ‘a uniform zonal
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flow when eddy energy is conserved. The argument
does not work for the traditional energy flux because
the ageostrophic velocity as defined in (2) involves y
explicitly. This explicit dependence on y is removed in
(3) by the vector k X V(p,Byy?/2).

While examining the nonlinear evolution of wave
packets, Orlanski and Chang (1993) used the traditional
energy flux vector to depict the transfer of energy be-
tween energy centers and found that they had to (ar-
bitrarily) remove a nondivergent component from the
energy flux in order to show clearly the divergent trans-
fer from one energy center toward another. More re-
cently, Orlanski and Sheldon (1993) used an energy
flux vector equal to (3) to leading order in a case study
of downstream baroclinic development over western
North America and found that the resultant vector de-
picts the energy transfer very clearly even for highly
nonlinear waves, and the transfer shows up much better
when compared to using the traditional energy flux. As
discussed above, the main difference between the two
fluxes is that for the modified flux defined in (3), the
nondivergent circulation of energy around high and
low centers is removed. :

3. Group velocity of wave packets in a baroclinic
flow

While the vector defined by (3) is exactly equal to
the product of the group velocity and energy density of
wave groups propagating in a uniform zonal flow, it is
not so clear that the relation still holds in a medium
with shear. The numerical results of Orlanski and
Chang (1993) suggest that the energy flux at the leading
edge, when normalized by the energy density, is ap-
proximately equal to the speed that a linear wave packet
spreads out. But can we make that statement more pre-
cise and independent of possible errors and uncertain-
ties inherent in analyzing results of numerical experi-
ments?

In any case, we need to find a working definition for
the group velocity of wave groups propagating in a
medium that has vertical shear and supports instability.
The theory of absolute and convective instability (Mer-
kine and Shafranek 1980; Pierrehumbert 1984) gives
us such a definition. According to the theory, the as-
ymptotic form of any part of a wave packet moving
with a speed x/t = V can be determined by solving the
two equations

D(w,k)=0 “)
and
Ow
%=V (5)

where D(w, k) is the dispersion relation. Lin and Pierre-
humbert (1993) outlined a (numerical) procedure on
how to solve (4) and (5), and Swanson and Pierrehum-
bert (1994) gave examples on how the structures of
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various parts of a wave packet vary with the velocity
V. Clearly, V is the group velocity of that part of the
wave packet, and by being able to solve for the struc-
ture that is moving with the group velocity V, we will
be able to compute the energy fluxes and compare it to
the group velocity. Obviously, this procedure works
only for linear wave groups. We will return to the non-
linear case in the next section.

For simple models such as the Eady model, (4) and
(5) can be solved analytically. But for more general
cases involving variable shear, a background g, vari-
able stability or density, surface friction, etc., solutions
to (4) and (5) would require the use of numerical so-
lutions [as outlined in Lin and Pierrehumbert (1993)).
But the Eady model is invaluable in that the numerical
technique can be checked with the analytic results. We
have computed the value of [S)/[E] (here [ ] repre-
sents averaging over half a wavelength) for many dif-
ferent models, but because of limitation in space, we
will show only the results from two cases here. The
first is a modified Charney model (with a rigid lid at
10 km, profile A), and the second is a slightly more
realistic (while still idealized) vertical profile repre-
senting a jet centered at around 12.5 km near the tro-
popause [profile B; this profile is similar to one used
by Kuo (1980)]. The vertical profiles of the nondimen-
sionalized zonal wind and stability are shown in Fig.
1. The density-scale height is taken to be 10 km; for
typical midlatitude tropospheric conditions, nondimen-
sional 8 = B*H/eA ~ 0.6 and the nondimensional me-
ridional wavenumber ! = IxH/e'"> ~ 1 have been as-
sumed. Here A is the vertical shear (~3 m s™!/km),
and € = f*N>. For profile B, we have also incorpo-
rated the effects of an Ekman boundary layer with v
~ 10 m? s~

Figure 2 shows the values of [S)/[F] (zonal compo-
nent) computed for the modified Charney model (pro-
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FiG. 1. The vertical profile of nondimensionalized zonal-mean
wind (left) and stability (right) for profiles A (line with circles) and
B (dotted line).
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FiG. 2. Plots of [SV/[E] (line with circles), [UEJ/[E] (dotted line),
and [M}/[M] (line with crosses) against V for proﬁ!e A. The actual
group velocity (equals V) is also plotted (solid line) for reference.

file A). For this model, the (lower and upper) limiting
velocities for the expansion of an initially localized
wave packet are 0.00 and 0.82, respectively. We see
that the value of [S)/[E] corresponds very well to the
group velocity over the entire wave packet, differing
by at most 0.03 (the maximum jet speed being 1.0).
Also shown in Fig. 2 are the contributions from the
advection part of S. We see that the advection part gen-
erally overestimates the group velocity at the trailing
end and underestimates the group velocity at the lead-
ing end. As discussed in Orlanski and Chang (1993),
over at the leading (trailing) edge the wave packet is
concentrated in the upper (lower) levels, where the
ageostrophic fluxes are predominantly directed down-
stream (upstream). Thus, the contribution from the
ageostrophic fluxes systematically corrects the ‘‘er-
rors’’ of the advection fluxes toward the group velocity.
Near the leading edge of the wave packet, advection
contributes to about 70% of the total fluxes, and
ageostrophic geopotential fluxes make up the re-
maining 30%. :

The results for profile B are shown in Fig. 3. For this
case, the limiting velocities for a wave packet are about
0.04 and 0.70. Note that the ageostrophic geopotential
fluxes again correct the contributions from the advec-
tion term toward the group velocity. The correspon-
dence between [S)/[E] and the group velocity is slightly
worse than that for profile A, but the error is every-
where less than 8% of the maximum jet speed. We have
computed [S}/[E] for various other profiles and found
qualitatively (and quantitatively) similar results.

The energy flux is not the only eddy flux that is par-
allel to the group velocity in the WKB limit. During
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FiG. 3. Same as Fig. 2 but for profile B.

the past decade or so, several fluxes have been pro-
posed for diagnosing wave propagation. Among them
are the E vector of Hoskins et al. (1983), the F vector
of Andrews (1983), the E; vector of Plumb (1985), and
the M; vector of Plumb (1986). As discussed in Plumb
(1986), the E vector of Hoskins et al. (1983) is actually

not parallel to the group velocity, and the M7 vector of

Plumb (1986) is a more suitable generalization. While
the F vector of Andrews (1983) and the E; vector of
Plumb (1985) are based on conservation laws (conser-
vation of the eddy activity A = E + p,q'*/2T’, where I’
= 0Q/0V¥, and ¢’ and Q are perturbation and mean
potential vorticity, respectively), the interpretation of
[FI/[A] (or alternatively [E;]/[A]) as a velocity of wave
propagation is ambiguous, since the wave activity A (a
quantity similar to the pseudoenergy) is not positive
definite (because I is in general negative) and in fact
changes sign over different regions of a wave. The M,
vector of Plumb (1986) is based on an approximate
conservation law, and the conserved quantity M (de-
fined below) is positive definite. Here we will compute
[M;]/[M] for the two profiles and compare the results
to [SI/[E] discussed above.

Plumb (1986) showed that assuming the mean po-
tential vorticity gradient is slowly varying relative to
the length scale of the transient eddy statistics, the fol-
lowing conservation law is satisfied:

oM
‘;91— + V-'Mr = Sum, (6)
where
q12
M = Ps Tiew =1 s 7
P 21Vl @)
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for pseudowestward flow, and S, is a nonconservative
term. Here e is the energy density. The zonal compo-
nent of [Mz)/[M] for the two profiles A and B are also
shown in Figs. 2 and 3. We see that for both cases (and
others considered, which are not shown), over much of
the wave packet, [M;}/[M] systematically underesti-
mate the group velocity. As discussed above, over their
leading portion (and also true for the case of barotropic
Rossby waves), wave groups in general propagate
faster than advection by the mean flow. However, un-
like the ageostrophic fluxes, the correction term in
[M;], which is proportional to v'*> — e, is in general .
negative (except for the case of barotropic Rossby
wave, where it is positive because of the absence of
potential energy). Thus, we see that for a flow with
vertical shear, [SV[E] is a much better approximation
to the group velocity than [My)/[M], even though both
are exactly equal to the group velocity for the case of
a uniform zonal flow. As pointed out by Plumb (1985),
the nonuniqueness of fluxes defined on the basis of con-
servation laws where only the flux divergence is in-
volved raises general questions as to whether one may
interpret such fluxes in general as indicators of the di-
rection of eddy activity propagation. Currently, we
have to resort to empirical evidence to settle this point.

4. Discussions
a. Nonlinear wave packets

The discussion in the above section is based on linear
wave packets, since we do not yet have a complete
theory of nonlinear wave packets. Linear wave packets
that are initially localized will eventually expand to fill
the whole domain. Observed wave packets in the at-
mosphere (e.g., Lee and Held 1993; Chang 1993a) ob-
viously do not behave in that manner. Thus, one may
question whether the results of the previous section are
relevant to the real world at all, even if we assume that
WKB descriptions such as group velocities are relevant
for the atmosphere, which has a spatially varying basic
state.

The evolution of a nonlinear wave packet on a baro-
clinically unstable jet has been studied numerically by
Swanson and Pierrehumbert (1994). In particular, they
found that ‘‘linear wave packet theory accurately
bounds the upstream and downstream development of
the synoptic disturbance throughout the nonlinear evo-
lution,”” that ‘‘the waves that reach the largest ampli-
tude are the waves at the leading edge of the wave
packet,”” and that the group velocity of the localized
nonlinear wave packet that eventually forms is equal
to the speed of the downstream fringe predicted by the
linear theory. In section 3, we have seen that the ex-



15 DECEMBER 1994

pression [SV/[E] approximates the speed of all parts of
a linear wave packet quite well. In particular, [SV/[E]
near the downstream fringe of the wave packet is a
good approximation to the wave packet speed at the
downstream edge. Since this speed has been shown by
Swanson and Pierrehumbert (1994) to be the group ve-
locity of a nonlinear wave packet, we have reasons to
believe that [S)/[E] is also a good approximation to the
group velocity of a nonlinear wave packet.

b. Application to observed wave packets

In order to test whether [S}/[E] is a good approxi-
mation to the group velocity of nonlinear wave packets,
we have compared its value to the group velocity of an
observed nonlinear wave packet. To generalize S from
(3), which is based on quasigeostrophic theory, we
have used the following expression suggested by Or-
lanski and Sheldon (1993):

¢’ )
2f»m/

It is easy to show that this expression is equivalent to
(3) to leading order.

Based on examination of data analyzed by the Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF), Chang (1993a) found that synoptic-scale
waves over the wintertime Pacific storm track region
propagate as downstream developing wave groups.
Figure 4, taken from Chang (1993a), shows a Hov-
moller diagram of the 300-mb v’, computed from time-
lagged correlation of the 300-mb v’ (averaged between
30° and 60°N) based on the time series at the date line.
In this figure, we can see a wave group propagating
across the Pacific. From Fig. 4, we can estimate the
groull) velocity of the wave group to be about 35
ms™.

Using the wave group located over the Pacific storm
track region analyzed by Chang (1993a) based on a
regression analysis, we can compute group velocities
as defined by [SV/[E]. For details of what individual
fields of u’, v', and T’ of the wave group look like,
please see Chang (1993a). Using the data, the value of
the expression [S)/[E] is computed to be 34.6 m s,
very close to the group velocity of about 35 m s~ es-
timated from Fig. 4. In addition, the contribution from
the advective fluxes to [SV/[E] is found to be 24.6
m s, or about 71% of the group velocity (the rest
coming from the ageostrophic geopotential fluxes).
This 7:3 split between the advective flux and the ageo-
strophic geopotential flux is very similar to the ratio
found at the leading edge of the linear wave packets
discussed previously in section 3.

We have not computed the value of [M.]/[M] from
observations. Judging from the results shown in Plumb
(1986), the nonadvective part of [M7)/[M] is more often
westward than eastward, as is for the case of the linear
wave packets discussed in section 3. Since the velocity

S=uE+p(u¢——k><V )]
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FiG. 4. Longitude—time plot of one-point lag correlation of
ECMWF 300-mb v’ averaged over 30° to 60°N for seven winter sea-
sons (1980/81—86/87). The time series at the date line is taken to be-
the reference for the correlation. Contour interval is 0.1. Positive
contours shown with solid lines and negative with dotted lines. The
zero contour is omitted for clarity. Taken from Chang (1993a).

computed from the advective part of [M7}/[M] should
be similar to the advective part of [S)/[E], we expect
that the value of [M}/[M] will only be about 70% (or
less) of the group velocity of the nonlinear wave
packet.

While we have only one case from observation, we
have also computed the value of [S]/[E] from numerical
simulations of nonlinear wave packets on various basic
states with different background zonal flow. The results
confirm that {SV/[E] is a good approximation to the
group velocity of nonlinear wave packets for all cases
we have considered. Since the results are very similar
to those discussed above for the observed wave packet,
details will not be presented here [see Chang (1993b)
for details].

5. Conclusions

In this paper, we have shown that the eddy energy
flux, when modified to take the effects of a variable
Coriolis parameter into account, gives a very good ap-
proximation to the group velocity.of wave propagation
when the flux is normalized by the total eddy energy.
The result is exact for Rossby waves in a constant basic
flow. For waves in a baroclinic basic state on a § plane,
we have shown that this relationship is not exact, but
the approximation is quite accurate as long as typical
tropospheric parameters are considered.

For a background flow with shear, the total eddy
energy does not satisfy a conservation law such as (6),
even under linear, nondissipative conditions. Hence, to
understand the evolution of the energetics of a system,
we have to consider not only the fluxes but also the
conversion between the eddy and the mean flow. It has
been pointed out by various authors that the energy
cycle is not uniquely defined and that the energy flux
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term, which can be interpreted as the redistribution of
eddy energy by fluxes, is only defined up to a nondi-
vergent term; that is, as far as the eddy energy equation
is concerned, we can add any arbitrary nondivergent
vector to the energy flux. Here, we have found that the
" modified energy flux (3) is approximately equal to the
total group velocity times the total eddy energy; hence,
its interpretation as a flux that spatially redistributes
eddy energy is unambiguous. We do not advocate
abandoning the diagnoses based on eddy fluxes that
represent fluxes of conserved eddy activities and only
consider the eddy energy fluxes. We believe that these
different diagnostic tools are complementary. The
“‘conserved’’ fluxes show more clearly the sources and
-sinks of eddy activity and eddy—mean flow interac-
tions, while the eddy energy fluxes appear to have the
advantage of more closely approximating the propa-
gation of the eddies in a baroclinic basic state.
"~ While the discussion in section 3 is limited to the
linear case, in section 4 we have found empirical evi-
dence that the results also apply to the nonlinear case.
With [S}/[E] being so closely related to the group ve-
locity of wave packets, it is not surprising that the ageo-
strophic geopotential fluxes have been found to be a
good diagnostic of where the next new development is
going to occur (Orlanski and Katzfey 1991; Orlanski
and Sheldon 1993). These results from realistic case
studies also suggest that the concepts introduced here
should also be relevant even when there is zonal asym-
metry in the basic state. Whether we can define a local
group velocity in a zonally varying basic state using
the modified energy fluxes will be left as a future ex-
tension of this research.

In section 4b, we found that the wave packet in the
Pacific storm track displays very strong relative down-
stream flux, equivalent to a relative group velocity of
about 10 m s™' (relative to the advection speed). This
shows that waves over the wintertime Pacific storm
track region radiate a lot of energy toward -the down-
stream direction. Whether this energy ends up in con-
tinued downstream propagation of the wave group, be-
ing dissipated by nonconservative processes, converted
into energy of the mean flow, or feeding other waves
via nonlinear wave—wave interaction obviously affects
the weather and climate of the eastern Pacific and west-
ern North America. As such, more detailed analysis of
the energetics and life cycle of waves over the Pacific
storm track and its downstream side is warranted in
order to understand how the downstream developing
wave groups over the central North Pacific are related
to the climate of the west coast of the United States.
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