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Abstract. The inversion of atmospheric transport of CO2 may potentially be a means for
monitoring compliance with emission treaties in the future. There are two types of errors,
though, which may cause errors in inversions: (1) amplification of high-frequency data
variability given the information loss in the atmosphere by mixing and (2) systematic
errors in the CO2 flux estimates caused by various approximations used to formulate the
inversions. In this study we use simulations with atmospheric transport models and a time
independent inverse scheme to estimate these errors as a function of network size and the
number of flux regions solved for. Our main results are as follows. (1) When solving for
10–20 source regions, the average uncertainty of flux estimates caused by amplification of
high-frequency data variability alone decreases strongly with increasing number of stations
for up to ;150 randomly positioned stations and then levels off (for 150 stations of the
order of 60.2 Pg C yr21). As a rule of thumb, about 10 observing stations are needed per
region to be estimated. (2) Of all the sources of systematic errors, modeling error is the
largest. Our estimates of SF6 emissions from five continental regions simulated with 12
different AGCMs differ by up to a factor of 2. The number of observations needed to
overcome the information loss due to atmospheric mixing is hence small enough to permit
monitoring of fluxes with inversions on a continental scale in principle. Nevertheless errors
in transport modeling are still too large for inversions to be a quantitatively reliable option
for flux monitoring.

1. Introduction

As a result of fossil fuel burning and land use changes, the
CO2 concentration in the atmosphere has been rising steadily
since the mid-18th century (Neftel et al. [1985]; currently at the
rate of ;1.5 ppm yr21 or ;0.25% yr21) and is now at the
highest level ever since modern humans appeared on Earth
[Barnola et al., 1987]. CO2 is the largest contributor to green-
house warming of all the greenhouse gases of anthropogenic
origin (;50% of the effect according to Solomon and Sriniva-
san, [1995]). Its lifetime in the atmosphere is of the order of
hundreds of years because it is unreactive and because the
timescale for full equilibration with the ocean is determined by
the ocean overturning timescale of the order of 1000 years.
This raises serious concerns as to the possible consequences
for Earth’s climate and argues for the development of moni-
toring techniques, both to improve the understanding of the
carbon cycle and for enforcing future emission controls.

A conceptually elegant monitoring method is the inversion
of atmospheric transport, using measurements of atmospheric
CO2 mixing ratios [Tans et al., 1989, 1990; Enting and Mans-
bridge, 1989; Enting et al., 1993]. An inversion is adequate in a
situation where one is interested in a cause and where (1) the
effect of the cause is more readily accessible to observation

than the cause itself and where (2) one possesses a good
conceptualization of the relation between cause and effect. In
this case, one may simply apply the inverse of this relation to
the effect to characterize the cause.

In the case of anthropogenic trace substances like CO2 the
cause is the fluxes (typically localized near Earth’s surface),
and the effect is the resulting spatiotemporal mixing ratio
distribution in the atmosphere, the flux’s “footprint.” The long-
lived anthropogenic trace substances like CO2 or SF6, for ex-
ample, are currently emitted predominantly from the main
industrial centers in the Northern Hemisphere (the North
American East Coast, Western Europe, and Southern China
and Japan). These emissions cause the well-known latitudinal
tracer distribution in the atmospheric surface layer with high
values in the Northern Hemisphere midlatitudes, a strong de-
crease toward the South Pole and a much lower decrease
toward the North Pole.

To illustrate the principles of an inversion, let us consider a
simple example. Let us conceptualize the atmosphere as a
well-mixed Northern and Southern Hemisphere box with in-
terhemispheric exchange parameterized via relaxation of the
mixing ratio difference toward zero with an interhemispheric
exchange time of the order of 1 year [e.g., Tans, 1997]. Let us
further assume that a Northern Hemisphere and a Southern
Hemisphere flux, fN and fS (Pg C yr21), is emitted at constant
rate into each of the two boxes. After a time period of the
order of 3–5 times the relaxation timescale, the difference of
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the tracer mixing ratios between the two boxes will attain a
stationary state. At a stationary state the surface fluxes and the
difference between the Northern and Southern Hemisphere
mixing ratio, xN and xS, are related according to

fN 2 fS 5
m tracer

mair

1
2 Matm~xN 2 xS! ,

and the sum of the surface fluxes to the growth rate of the
tracer inventory according to

fN 1 fS 5
m tracer

mair

1
2t Matm$@xN~t! 1 xS~t!#

2 @xN~0! 1 xS~0!#},

where mtracer and mair are the molar masses of the tracer and
air, respectively, and Matm is the mass of the atmosphere. The
mixing ratio difference between the two hemispheres and the
growth rate of the atmospheric tracer inventory hence permits
us, in principle, to infer the magnitude of the surface fluxes
without the need to measure them directly.

The inversion method that we consider in this paper is a
slight generalization of this example. The main differences are
the consideration of more than two flux regions and the use of
an atmospheric tracer transport model instead of a two-box
model. We still assume that the spatial mixing ratio pattern
with respect to a reference station is stationary.

To set up the inversion method, we partition Earth’s surface
into R regions. We then emit an annually repeating tracer flux
wr 5 wr(q , w , t), r 5 1, z z z , R (g m22 s21) from each
region, where q is latitude, w longitude, and t time. The spatial
pattern of the fluxes would, in practice, be chosen as near as
possible to the real (unknown) spatial pattern. To a good
approximation, the annual mean of the mixing ratio difference
with respect to an arbitrary reference station

Dx r~x , t! ; x r~x , t! 2 x r~x ref, t!

reaches a stationary state Dxr(x) within a few years, when
integrated forward in time from some initial distribution. To
obtain flux estimates, we arrange the observations and the
footprints sampled at the observation stations as vectors, Dxobs

and Dxr, respectively. We then determine the linear combina-
tion of the sampled footprints Dxr that reproduces the obser-
vations most faithfully, by minimizing

U Dxobs 2 O
r51

R

l rDx rU
with respect to the multipliers lr, where lr is the estimate of
the flux from region r in units of the annual flux f r 5
*1 yr *region r wr(q, w , t) ds dt (Pg C yr21) (ds is a surface
element). If lr is positive, then the region r is a source; if lr is
negative, it is a sink.

This approach allows strictly only the estimation of fluxes
that are constant in time. To extend the method to fluxes with
an annual cycle superposed on a linear trend, one has to
account for the contribution to the annually averaged mixing
ratio distribution that results from the covariation of the sea-
sonally varying part of the flux with atmospheric transport. In
carbon cycle research this contribution has gained much atten-
tion because of its large magnitude caused by the seasonality of
biospheric exchange fluxes with the atmosphere. It is known as
“rectification” [Tans et al., 1990; Denning et al., 1995]. As an

example for rectification, consider an annually balanced bio-
sphere. If the mean transport during the drawdown season is in
the opposite direction to that during respiration, the annual
mean signal will not be zero [cf. Taguchi, 1996, Figure 1]. A
possibility to correct for rectification is to simulate the effect
with an atmospheric tracer transport model and a biospheric
model, and to presubtract the effect from the observations
before the inversion.

The inversion approach that we just described assumes that
fluxes do not change from year to year. In the case of the
carbon cycle, this is not a very realistic assumption, and the
method may sensibly be applied to periods of several years
only. In the case of CO2, it is furthermore advantageous to
subtract the simulated fossil fuel footprint from the observa-
tions before the inversion because fossil fuel emissions are the
best known component of the carbon cycle.

Several CO2 inversion studies have found that the currently
available data constrain sources and sinks poorly [Keeling et al.,
1989; Tans et al., 1990; Fan et al., 1998]. For example, Fan et al.
[1998] made use of weekly mean data from 63 ground-based
observation stations, covering the period from 1988 to 1992.
They also used estimates of oceanic exchange fluxes by Taka-
hashi et al. [1997] and simulations with the biogeochemical
ocean model of Sarmiento et al. [1995]. Based on these data,
they were able to obtain robust estimates of exchange fluxes
only for North America and Eurasia. Estimating fluxes from a
larger number of regions would have increased uncertainties in
the flux estimates to the same or even larger magnitude as the
estimates themselves.

There are two principal reasons why inversions may fail. The
first is of a purely dynamical nature: the dilution of surface
CO2 flux signals by atmospheric mixing might simply be too
strong. Not only does the uncertainty of individual estimates of
fluxes increase with an increasing level of mixing (amplification
of high-frequency data variability), there is also an increasing
chance for the appearance of pairs of strong, spurious, coun-
teracting flux estimates, in particular, for regions located at the
same latitude. As “high-frequency variability,” we consider the
fluctuations in observations with periods of the order of days or
less that are caused, for example, by weather systems. As an
instrumental definition, we adopt that followed by Conway et
al. [1994], which is described in detail by Masarie and Tans
[1995] (it is, in essence, the standard deviation divided by the
square root of the number of observations of the residual
distribution of the difference between the data and a model fit
to the data.) The reason for the occurrence of counteracting
flux estimates is that zonal mixing in the troposphere is much
quicker than latitudinal mixing. Hence the footprints for fluxes
from different regions within one zonal band may be almost
indistinguishable. Consider, for example, the difference of the
annual mean spatial mixing ratio distribution with reference to
the South Pole for fluxes from the North America boreal and
Eurasia boreal regions, respectively, in Figure 1. These two
signals differ significantly from each other only within and next
to the flux regions. Because of this, if CO2 concentrations were
observed along the dateline only, the signals from fluxes from
these two regions would be almost indistinguishable. Under
these circumstances, the inversion procedure would become
unstable, and estimates would be of unrealistically large mag-
nitude [Tikhonov and Arsenin, 1977; Golub and Van Loan,
1989].

The second possible reason for failure of inversions is the
presence of systematic errors, which might be induced by the
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assumptions and approximations needed to set up the prob-
lem. For an inversion method based on annual mean mixing
ratios, these approximations include (1) the simulation of at-
mospheric transport by a model, which assumes that (a) trans-
port processes like ventilation of the planetary boundary layer
(PBL) and interhemispheric transport are correctly repre-
sented and (b) synoptic and interannual variability of transport
affect estimates only marginally, and (2) the prescription of
specific spatiotemporal flux patterns wr 5 wr(q , w , t) to
simulate the footprints Dxr(x) for the inversions. For example,
the spatial pattern of biospheric exchange fluxes may be mod-
eled proportionally to satellite measurements (normalized dif-
ference vegetation index (NDVI)), which may be close to the
truth but may also be in error.

These approximations may have two consequences. First,
estimates may be biased. Unrealistically low ventilation of the
PBL, for example, will cause a systematic underestimation of
fluxes if use is made of surface stations only. Second, there will
be additional uncertainty in the estimates over that caused by
mixing in the atmosphere alone. If, for example, there is a
mismatch between real spatiotemporal flux patterns and those
used to simulate the footprints, the differences will be misin-
terpreted by the inversion. These differences will effectively
add to and increase the estimated natural high-frequency vari-
ability of the data.

To assess the value of inversions for flux monitoring pur-
poses, the magnitude of all these possible errors will be esti-
mated here. One major emphasis of this investigation is to use
a method which avoids the convolution of the effect of various
error sources and which is independent from a specific obser-
vation network. To achieve this goal, we adopt a Monte Carlo
approach that generates ensembles of observation networks
with randomly positioned observation stations to obtain en-
sembles of estimates. From these ensembles, we calculate

mean estimates and standard deviations. We base our analysis
on the inversion method that we have already discussed. To
simulate the footprints Dxr(x), we use two atmospheric trans-
port models (SKYHI and global chemical transport model
(GCTM), both developed at Geophysical Fluid Dynamics Lab-
oratory/National Oceanic and Atmospheric Administration
(GFDL/NOAA)), and use either spatially uniformly distrib-
uted flux patterns or fossil fuel flux patterns. We then use these
footprints to invert “pseudo-observations” obtained from sim-
ulations with various models of fossil fuel burning, oceanic
fluxes, land biosphere net primary productivity and respiration,
and SF6 emissions.

In the first part of the paper, we concentrate on the relation
between the number of measurement stations and the number
of source flux regions which they permit to estimate to a given
accuracy, if there were no systematic errors. To achieve this
goal, we use the expression for the error propagation for a
linear inversion problem and the measured high-frequency
data variability of the measurements of NOAA/Climate Mon-
itoring and Diagnostics Laboratory (CMDL) as reported by
Conway et al. [1994].

In the second part, we quantify biases caused by all the
approximations listed above that are needed for inversions
based on annual mean observations. We select suitable simu-
lations for the inversions and the pseudo-observations such
that estimates are only affected by one source of error at a
time. Table 1 summarizes our choice of combinations of inver-
sion schemes and pseudo-observations. We estimate the mag-
nitude of the error in modeled transport in two ways. First, the
emissions of SF6 are estimated from the simulations of all 12
models that participated in the model intercomparison study
TransCom2 [Denning et al., 1999]. We base the inversions on
the GLOBALVIEW-CO2 network [National Oceanic and At-
mospheric Administration, 1997] (Also available on Internet via

Figure 1. Difference of the mixing ratio distribution (“footprint”) (ppm) for fluxes from Eurasia boreal and
North America boreal.
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anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/
GLOBALVIEW) and fossil fuel flux patterns. These are sim-
ilar to the flux patterns of SF6 because both are strongly tied to
energy consumption [Denning et al., 1999]. Second, we deter-
mine transport errors with the two conceptually identical in-
version schemes of GCTM and SKYHI and relate them to
differences in model transport. We address the errors caused
by neglecting the interannual variability of atmospheric trans-
port by inverting the simulations of the annually repeating
Carnegie Ames Stanford Approach (CASA) biosphere and
fossil fuel emissions from different model years and comparing
the difference of the estimates (the emissions themselves do
not vary from year to year.) We determine the errors caused by
differences between the flux patterns used to simulate the
footprints for the inversion and the flux pattern that caused the
actual mixing ratio distribution by inverting the mixing ratio
distribution that results from a highly localized source within
North America. North America itself is one of the flux regions
used to simulate the footprints for the inversion. Finally, to
estimate the biases induced by the neglect of the covariation of
the seasonal cycle of fluxes with transport in an inversion based
on annual means, we invert the annual mean mixing ratio
distribution caused by a balanced biosphere (i.e., a biosphere
with zero annual flux) predicted by CASA. A balanced bio-
sphere is suited for this purpose because of its strong seasonal
cycle.

2. Methods for Error Estimation
2.1. Amplification of High-Frequency Data Variability
by the Inversion Process

Dilution of flux signals by mixing in the atmosphere leads to
uncertainty of flux estimates because of amplification of the
natural high-frequency variability in the data. To quantify the
uncertainty of flux estimates due to this error source, it is
helpful to arrange the footprints of regional fluxes, sampled at
a specific network, in a matrix A 5 {Dx1, z z z , DxR}. The ith
component of the vector Dxr is the annually averaged mixing
ratio (with respect to a reference station) observed at station i

for a tracer emitted from region r . The matrix A maps a
specific combination of regional fluxes to the observed spatio-
temporal pattern: Dx 5 Al. Correspondingly, the flux contri-
butions to an observed signal in units of fr are obtained from
its pseudo-inverse by l 5 A21Dx [Golub and Van Loan,
1989]. The variance-covariance matrix of the flux estimates,
Cw, may now be expressed in terms of the pseudo-inverse of A
and the covariance matrix of the data C Dx as C w 5
A21CDx( A21)T. The diagonal elements of Cw and CDx are
the variances of the flux estimates and the data, respectively.
The off-diagonal elements are the correlation of estimates
from different regions and data from different observation
stations to each other, respectively. There are hence two parts
which contribute to the uncertainty of estimates: the data co-
variance CDx and its amplification, which is given by the ma-
trices A21 and ( A21)T which bracket CDx. The matrix
ErrAmp [ A21( A21)T, with units (Pg C yr21 ppm21)2, is
called the error amplification matrix [e.g., Menke, 1989]. This
matrix is independent of any assumptions on data uncertainties
and hence reflects exclusively atmospheric transport properties
and the choice of sites and number and location of source
regions. It is one decisive piece of information for the deter-
mination of the detection limit of fluxes with an inversion
method. Writing out its diagonal elements, ErrAmprr 5 ¥k51

S

(dfr/dDxk)(dfr/dDxk), helps to clarify its meaning: they are
the sum over all observation stations of the sensitivities of the
flux estimate of region r to changes in data. Finally, an overall
measure for the amplification of high-frequency data variabil-
ity is the average over all regions: (1/R) ¥r51

R ErrAmprr,
which we will call mean error amplification.

2.2. Method to Estimate Systematic Errors and
Amplification of High-Frequency Data Variability
Independently From a Specific Network

Let us assume for the moment that the mixing ratio distri-
bution observed in the atmosphere is the one from fossil fuel
emissions, DxFF(x), and that we would like to estimate the
regional fluxes that caused DxFF(x) with an inversion. Let us
further assume that we have no preconception of the spatial

Table 1. Choice of Combinations of Footprints and Pseudodata to Evaluate the Magnitude of Errors Caused by the Error
Sources in an Inversion Based on Annual Mean Observations

Error Source

Footprints Pseudodata

Model Flux Pattern Model Flux Pattern

Atmospheric model
Transport GCTM (five regions) fossil fuel burning participants of TransCom2: CCC,

CSU-GCTM, GFDL-GCTM,
GFDL-SKYHI, GISS, GISS-
UVIC MUTM, NIRE, TM2, TM3

SF6 emissions

GCTM (17 regions) spatially uniform SKYHI (17 regions) spatially uniform
Interannual

variability
GCTM and SKYHI

(17 regions)
spatially uniform TM2, 1992 and 1993 biosphere (CASA)

fossil fuel emissions
Flux pattern used in

the inversion
Spatial GCTM (17 regions including

North America)
spatially uniform GCTM (a small subregion of

North America)
spatially uniform

Temporal SKYHI (17 regions) spatially uniform SKYHI biosphere (CASA)
(seasonal rectification)

CCC, Canadian Climate Centre general circulation model; CSU-GCTM, Colorado State University general circulation model; GFDL-GCTM,
Geophysical Fluid Dynamics Laboratory global chemical tracer transport model (Princeton, New Jersey); GFDL-SKYHI, Geophysical Fluid
Dynamics Laboratory general circulation model; GISS, NASA-GISS tracer transport model; GISS-UVIC, GISS-UVIC tracer transport model;
MUTM, Melbourne University tracer model; NIRE, NIRE tracer transport model; TM2, tracer model version 2; TM3, tracer model version 3,
CASA, Carnegie Ames Stanford Approach; and SF6, sulfur hexafluoride.
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pattern of these fluxes so we choose spatially uniform fluxes to
simulate the footprints for the inversion. The resulting smooth
mixing ratio distributions contrast drastically with the fossil
fuel mixing ratio distribution, which exhibits very large local
maxima at the main industrial regions, since the emissions are
strongly concentrated there. Accordingly, it is not possible to
represent exactly the fossil fuel mixing ratio distribution in the
atmosphere as a linear combination of the footprints, and the
estimate of fossil fuel emissions will be biased. To illustrate this
point, consider in Figure 2 the difference ¥r51

R fFF ,rDxr(x) 2
DxFF(x) between the mixing ratio distribution, which results
from the combination ¥r51

R fFF ,rDxr(x) of regional footprints
generated by homogeneously distributed fluxes multiplied with
the regional fossil fuel emissions (fFF ,r [ *Region rwFF(q , w)
ds dt), and the actual fossil fuel footprint DxFF(x). Near the
industrial centers the approximation of the fossil fuel mixing
ratio distribution with those based on homogeneously distrib-
uted sources is poor. As a consequence, stations positioned
there will drastically misinterpret the local signals, and the
estimates will be unprecise. Typically, estimates based on
pseudodata sampled at a concrete observation network like
GLOBALVIEW-CO2 indeed deviate strongly from true fluxes
(here fossil fuel). Nevertheless these estimates convolute dif-
ferent causes of errors with each other. For example, it is
unclear how much of the disagreement is due to the limited,
possibly insufficient size of the network, how much due to the
specific positions of the observation stations, and how much is
really due to spatial mismatch. One needs a methodology that
permits one to distinguish the contributions of these various
error causes to a flux estimate, and furthermore, one would
like to determine biases, like the one caused by spatial mis-
match, independently from a specific observation network.

For this reason, we use here a Monte Carlo approach which
positions observation stations randomly to generate ensembles
of estimates. To determine biases caused by systematic errors,
we specifically proceed as follows. First, we determine a mean
flux estimate from a particular footprint Dx(x) used as pseudo-
observation (e.g., the one resulting from fossil fuel emissions)
by taking the mean over an ensemble of N estimates based on
N random networks: fmean [ (1/N) ¥ i51

N Ai
21Dxi. Here Ai

is the map between regional fluxes and observations for the ith
random network and Dxi are the values of the pseudo-
observations. The mean estimate fmean will generally differ
from the true fluxes because of the differences of the spatial
structure of footprints and pseudodata. The difference be-
tween the mean estimate and the true fluxes then is the bias:
fbias [ fmean 2 ftrue, where ftrue are the “true” fluxes that
were used to generate the pseudo-observations. Mean esti-
mates, determined as described, are found to be essentially
independent from the fixed number of stations used, as long as
they encompass no less than 50 stations.

Similarly, we may measure the enhanced scatter of estimates
caused by differences of the spatial structure by the standard
deviation of the estimates of the ensemble of random net-
works:

STDr 5 S 1
~N 2 1! O

i51

N

~f i,r 2 fmean,r!
2D 1/ 2

,

where f i ,r is the estimate of the flux from region r based on the
randomly chosen network from the ith draw. For the example
above, for instance, one expects large scatter of the estimates
of fluxes from the main industrial centers if based on networks
with randomly positioned stations, because of the large dis-

Figure 2. Difference between the mixing ratio distribution resulting from the linear superposition of the
regional footprints (simulated using spatially uniform flux patterns) multiplied by the annual regional fossil
fuel emissions (fFF ,r 5 *1 yr,regionrwFF ds dt) and the mixing ratio distribution resulting from fossil fuel
emissions (DxFF(x)): ¥r51

R fFF ,rDxr(x) 2 DxFF(x).
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agreement between the footprints and the fossil fuel mixing
ratio there, and much less scatter of the estimates for the
remaining regions.

We use a similar approach to determine how much estimates
are affected by the neglect of interannual variability of trans-
port in an inversion. We determine mean estimates (fmean) for
two different years with different atmospheric transport but
identical biospheric and fossil fuel flux patterns simulated by
TM2 (which is based on analyzed winds). To determine the
maps Ai, we use the footprints generated with source strengths
that are spatially-uniformly-distributed. The difference be-
tween the mean estimates (fmean) from different years gives us
an estimate of the magnitude of the differences of estimates
caused by the interannual variability of model transport. Al-
though this use of two specific years may be criticized for its
lack of generality, we obtained similar conclusions using two
different years, and our main point is to estimate the order of
magnitude of the biases and which regions are most affected.

For the determination of systematic errors, we generally use
randomly generated networks with 150 observation stations
because (1) ;150 stations are necessary to estimate fluxes on
a continental scale (for 10–20 regions), if positioned randomly,
to suppress the errors caused by the amplification of high-
frequency data variability; (2) because systematic biases man-
ifest themselves strongly if inversions are based on small net-
works with 40–80 stations but there is a “saturation” level from
which point on biases do not decrease much further with ad-
ditional stations; for the estimation of 10–20 regions this sat-
uration level is reached at ;150 stations, and (3) because for
the large number of 150 stations, networks with randomly
positioned stations are almost as efficient as optimized net-
works (cf. section 4.1).

Finally, to determine the relation between estimate uncer-
tainty and number of observation stations, we average the
mean amplification of high-frequency data variability over ran-
dom draws of observation networks with a fixed number of
stations (section 2.1):

1
N O

i51

N S O
r51

R 1
R ErrAmprr

~i!D 1/ 2

.

3. Description of Models, Simulations, and
Footprints Dxr(x)
3.1. Model Characteristics

The off-line atmospheric transport model GCTM [Mahlman
and Moxim, 1978] developed at GFDL/NOAA is driven at a
time step of 26 min by linearly extrapolated 6-hour time-
averaged, annually repeating climatological winds. These were
originally simulated by a modified, seasonally varying version
of ZODIAK [Holloway and Manabe, 1971]. GCTM has no
diurnal physics. It solves the tracer transport equation on 11
sigma levels, extending from Earth’s surface to about 30 km
height. The centers of the lowermost layers lie at 0.08, 0.5, 1.5,
and 3.1 km height. Horizontally, an equal-area grid with an
;265 km 3 265 km box size is used. Vertical subgrid-scale
transport is parameterized by an eddy diffusion coefficient,
which takes mixing due to velocity shear, as well as convection
in case of unstable density profiles, into account. In addition,
within the PBL, a mixing length scheme with decreasing mixing
length from the lowest to the third model layer is added [Levy
et al., 1982, 1989]. The mixing lengths for these three levels

have been adjusted so as to match 222Rn profiles compiled by
Liu et al. [1984].

The atmospheric general calculation model (AGCM)
SKYHI [Fels et al., 1980], developed at GFDL/NOAA, calcu-
lates tracer transport on-line, has 40 vertical levels extending
from the surface up to ;80 km, uses a hybrid pressure-sigma
coordinate in the vertical, and has a diurnal cycle of solar
radiation. The horizontal grid is regular, and the resolution
used for this study is 38 longitude by 3.68 latitude. There are
eight layers between the surface and 5.2 km height, the lower-
most ones centered 0.08, 0.27, 0.74, and 1.38 km above Earth’s
surface. The parameterization of vertical mixing in the PBL in
SKYHI differs from that of GCTM: in case of potential tem-
perature inversions, the vertical diffusion coefficient is set to
the maximal value that does not cause numerical instability. A
detailed description of SKYHI and its climatology is given by
Hamilton et al. [1995].

The transport core of the TM2 model derives from the
Goddard Institute for Space Studies (GISS) tracer transport
model version of Russell and Lerner [1981], and European
Centre for Medium-Range Weather Forecasting (ECMWF)
analyzed winds are used to drive tracer transport off-line
[Heimann, 1996]. The model grid encompasses nine layers in
the vertical, extending from the ground up to 1 mbar (lower-
most layers 0.22, 0.8, 1.85, 3.56, and 5.86 km), and the hori-
zontal resolution is 88 latitude by 108 longitude, which is much
coarser than that of both GCTM and SKYHI. Subgrid-scale
transport is simulated by a cumulus cloud convection scheme,
and vertical diffusion in the PBL is parameterized in a similar
way as in GCTM.

References for the models participating in TRANSCOM2
are given by Denning et al. [1999].

3.2. Footprint Simulations

We simulated two different types of footprints, Dxr(x), r 5
1, z z z , R , for the inversion schemes: one type with spatially
uniform flux patterns (within a region) and another type with
the flux pattern of fossil fuel burning. For the first type, we
build the following sets by combining or partitioning the foot-
prints of 17 basic regions (Figure 3): (1) 11 source regions:
Eurasian boreal and Eurasian temperate combined, North
American boreal and temperate combined, Indian Ocean trop-
ical and temperate combined, Atlantic tropics and South At-
lantic temperate combined, Australasia, Pacific tropics, and
South Pacific temperate combined, and all remaining 17 re-
gions by themselves; (2) 22 source regions, including five ad-
ditional regions, which result from splitting South America,
Africa, South Pacific temperate, Australasia, and North Pacific
temperate in two parts (Figure 3); and (3) 25 regions (focus on
North America): N. American boreal and temperate split up in
10 subregions. For the second type, we simulated footprints
with the pattern of fossil fuel emissions from five regions:
North America boreal and temperate, Eurasia boreal and tem-
perate, and the combination of South America, Africa, and
Australasia.

For use as pseudo-observations, we simulated mixing ratio
distributions for the following flux patterns: fossil fuel emis-
sions for the year 1990 [Andres et al., 1996], estimated oceanic
fluxes [Takahashi et al., 1997], and estimates of land biosphere
net primary productivity and respiration derived from satellite
measurements (NDVI [Potter et al., 1993]). Each of these pseu-
do-observations have been simulated with GCTM, SKYHI,
and TM2. We also use the simulations of the distribution of
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SF6 in the atmosphere from the participants of TransCom2
[Denning et al., 1999].

3.3. Relation Between Footprints Dxr(x)
and Model Transport Properties

Annually averaged surface mixing ratio distributions due to
regional fluxes (Figure 4) may be conceptualized as a super-
position of an approximately zonally symmetric “background”
field, reflecting the predominance of zonal winds and related
rapid zonal mixing in the troposphere, and a strong, “regional”
signal within the flux region itself, determined by the ventila-
tion rate of the PBL. Background fields exhibit interhemi-
spheric slopes in the surface layer between 62 ppm Pg C21

yr21, and regional signals vary from 2 to 4 ppm Pg C21 yr21 for
the northernmost continents to 1–1.2 ppm Pg C21 yr21 in the
midlatitude regions, and to 0.6 ppm Pg C21 yr21 in tropical,
continental regions where convective ventilation of the PBL is
largest.

The magnitude of the regional signal differs considerably
between SKYHI and GCTM, but the spatial structure (i.e.,
form of isolines) is almost identical; the background fields are
also similar. Some signals resulting from fluxes from a bounded
region at Earth’s surface as simulated by GCTM and SKYHI
are shown in Figure 4. For most regions, regional annual-mean
surface mixing ratios simulated by SKYHI are lower than those
simulated by GCTM, with the exception of the three north-
ernmost regions: North Atlantic polar, Eurasian boreal, and
North American boreal. There, surface mixing ratios simulated
by GCTM are smaller by about 50%. The reason for these
discrepancies is that the PBL ventilation simulated by SKYHI
is stronger than that by GCTM for most regions (for the reason
explained in section 3.1). The exceptional regions are the
northernmost ones, for which SKYHI predicts near-ground
inversions during winter and hence surface fluxes are trapped,
resulting in high surface concentrations. The resolution of the
PBL of ZODIAK, from which the off-line winds for GCTM
derive, is too coarse to resolve such wintertime inversions, and

the PBL ventilation rate is therefore much larger there. Raw-
insonde data from these regions support the simulations of
SKYHI.

Results of inversions based on zonally averaged models rely
strongly on the interhemispheric gradient resulting from asym-
metric fluxes in both hemispheres. The magnitude of this in-
terhemispheric gradient for fixed source strength depends both
on the efficiency of PBL ventilation and interhemispheric mass
exchange. We use a simulation of the CO2 distribution result-
ing from fossil fuel emissions to compare the models. The
zonally averaged interhemispheric gradient resulting from fos-
sil fuel burning for 1990 [Andres et al., 1996] as simulated by
GCTM is larger than that by SKYHI by ;10–15%, whereas
the latitudinal structure is similar (the interhemispheric ex-
change times are 0.8 and 0.9 years, respectively). The zonally
averaged interhemispheric gradient from pole to pole as sim-
ulated by TM2 is similar to that by GCTM, whereas in the
northern midlatitudes the mixing ratios are smaller than in
GCTM by ;15–20%. An intercomparison study by Law et al.
[1996], which encompassed 11 other models as well, showed
that the interhemispheric gradient simulated by GCTM caused
by fossil fuel emissions is larger in the midlatitudes of the
Northern Hemisphere compared to most other models. A
large part of the discrepancy is attributable to the higher spa-
tial resolution of GCTM, which permits much larger spatially
localized signals compared to the remaining models (compare
with Denning et al. [1999, Table 1 and Figure 4]).

4. Evaluation of Error Sources
4.1. Relation Between Estimate Uncertainty
and Number of Observation Stations

An essential concern in applying inversions to the monitor-
ing of surface fluxes is a determination of the minimum num-
ber of stations needed to estimate fluxes to a reasonable ac-
curacy for a given number of regions. Also of interest is the
maximum number of regions for which surface fluxes may be

Figure 3. Partitioning of Earth’s surface in regions used for the inversion schemes.
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estimated to satisfying accuracy, given a fixed number of ob-
servation stations (the “spatial resolvability” of the method).

To determine average flux estimate errors from amplifica-
tion of high-frequency data variability (with the formula
A21CDx( A21)T) (section 2.1)), one needs an estimate of
high-frequency data variability (the diagonal elements of CDx)
as a function of latitude and longitude. We cannot rely on our
model simulations for these estimates because our biospheric
model has no daily cycle of biospheric fluxes. Here we will
instead use the variability in the available observations. Guided
by the magnitude of observed variability, two types of obser-
vation stations, “continental” and “remote,” positioned on is-
lands in the oceans, are usually distinguished. High-frequency
data variability for remote stations were reported by Conway et
al. [1994]. Standard deviations of annual mean data from the
year 1992 are mostly of the order of 0.1–0.2 ppm, with the
exception of three stations (maximal standard error for Cape
Meares, s ; 0.3 ppm, where winds loaded with pollutants
occasionally blow from the land). Data variability at continen-
tal stations in temperate and boreal ecozones is larger. For

example, Bakwin et al. [1995] report mixing ratios from mea-
surements on a very tall tower in North Carolina. Monthly
standard deviations of daily mean CO2 mixing ratios at 496 m
height are of the order of 4 ppm. The standard error of the
annual mean mixing ratio accordingly is ;1.2 ppm, the value
that we adopt in the following for continental stations.

Consider in Plate 1 (left panel) the dependence of the am-
plification of high-frequency data variability on the number of
observation stations and flux regions. For all surface partition-
ings the decrease of the mean error amplification with increas-
ing amount of stations is dramatic for small networks of up to
;150 stations and modest for larger ones. Installation of more
than 150 monitoring stations on a continental scale (i.e., solv-
ing for 10–20 flux regions) is hence not very helpful because
uncertainties decrease only very marginally. The decrease fol-
lows ;1/=N (i.e., like statistical counting error), where N is
the number of observation stations. The level of amplification
of high-frequency data variability for large networks is not
sensitive to the number of flux regions used for the inversion.

Conversely, these curves show that trying to estimate fluxes
from more regions than approximately a tenth of the number
of observation stations is not possible (at least if stations are
positioned randomly) because the flux errors caused by the
amplification of high-frequency data variability alone (not to
mention systematic errors) in that case reach uncertainties of 1
Pg C yr21 region21 (the product of the value of error ampli-
fication with the value of high-frequency data variability),
which makes the solutions useless for most purposes.

Finally and most important, for an intermediate value of
high-frequency data variability of 0.5 ppm for each of 150
stations used to estimate fluxes from 10–20 regions, the am-
plification of high-frequency data variability for the estimation
of fluxes results in errors of the order of 0.2–0.3 Pg C yr21

region21 (the product of the mean error amplification ;0.5 Pg
C yr21 ppm21 region21 with the level of high-frequency data
variability ;0.5 ppm). Note that a larger value of ;0.4 Pg C
yr21 region21 is obtained if only remote stations are used (for
which the high-frequency data variability is only 0.2 ppm, but
the mean error amplification is 1.9 Pg C yr21 ppm21 region21).
The ratio of the number of observation stations needed to the
number of regions to be estimated, as far as amplification of
high-frequency data variability is concerned, is therefore ;10;
monitoring of CO2 exchange fluxes would thus be feasible with
a fairly reasonable measuring effort.

The amplification of high-frequency data variability in-
creases strongly with height because information on fluxes
fades away quickly with increasing distance to the ground. We
find approximately a fivefold increase between 0 and 5 km
height, and a 20-fold increase between 0 and 10 km height. The
profile of error amplification with height over Earth’s surface
was determined for layers centered at 0.08, 0.5, 1.5, 3.1, 5.5, 8.7,
and 12 km height and using the same method as described in
section 2.2. The values are global averages. This result means
that airplane transects at high altitudes ($5 km) are not effi-
cient in constraining inversions to estimate surface fluxes. It is
important to notice what this result does not imply. First,
high-altitude transects may well be of considerable value in
constraining the modeling of atmospheric transport, as sug-
gested for example, by the results of the model intercompari-
son study TransCom2 [Denning et al., 1999]. Second, the result
is restricted purely to high-altitude transects and is not valid for
vertical profiles extending to the earth surface.

Note also in Plate 1 the convergence of optimal networks

Figure 4. Carbon dioxide mixing ratio distribution (ppm)
with reference to the South Pole for a flux from Eurasia boreal
simulated by (top) SKYHI and (middle) GCTM, and (bottom)
a flux from South America simulated by SKYHI.
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toward random networks with increasing number of observa-
tion stations. An optimized network with 40 stations is ;10
times more efficient in constraining sources and sinks com-
pared to a randomly positioned network for the estimation of
17 regions, whereas an optimal network with 160 stations (for
which the mean error amplification is minimal) is only mar-
ginally superior to a random network (by ;25%). This is one
of the justifications for the use of 150 stations for random
networks as a basis to determine the magnitude of systematic
biases. Optimal networks were determined by minimizing the
uncertainty of estimates, given a best estimate of high-
frequency variability. The optimizations were performed with
the simulated annealing algorithm [Kirkpatrick et al., 1983]. For
a more detailed discussion, we refer to M. Gloor et al. (Opti-
mal network design for the purpose of inverse modeling: A
model study, submitted to Global Biogeochemical Cycles,
1999).

The decline of biases with the number of stations is illus-
trated in Plate 1 (right panel) for the same example as in
section 2.2: the recovery of fossil fuel emissions with an inver-
sion based on spatially uniform fluxes. The main feature here
is that there is a saturation level for the number of stations,
above which biases do not decrease any further with additional

stations. For the estimation of 10–20 regions, this level is
approximately reached with 150 stations, which is the second of
the justifications mentioned in the Introduction to base our
analysis on 150 observation stations.

4.2. Relation Between Atmospheric Transport
and Regional Flux Estimate Uncertainty

The Monte Carlo approach applied to regional error ampli-
fication permits one to identify the regions with largest infor-
mation loss (Figure 5). For the 17-source region partitioning,
these are South America, Africa, Australasia, and to a lesser
extent, Eurasia temperate. Further subpartitioning of the first
three regions into tropical and subtropical zones reveals that
the weakest constrained regions are equatorial South America,
equatorial Australasia, and equatorial Africa (the average er-
ror amplifications for Africa, South America, and Australasia
are 0.31, 0.54, and 0.32 Pg C yr21 ppm21 region21, respective-
ly). As mentioned above, fluxes from continental, equatorial
regions, result in comparably small signals within the source
region itself. This is due to strong convective ventilation of the
PBL. The regional error amplification is hence inversely re-
lated to the regional signals. This simple result illustrates that
what really determines the amplification of high-frequency

Plate 1. (left) Average error amplification ((1/R) ¥r51
R ErrAmprr)

1/ 2) and (right) average bias for the
estimation of fossil fuel emissions for an inversion scheme based on a uniformly distributed flux from Earth’s
surface as a function of the number of observation stations for various partitionings of Earth’s surface. The
determination of the averages over random networks is described in section 2.2. The red curve was obtained
permitting only stations in the oceans, and the black dots were determined with an algorithm that places
stations optimally for the estimation of surface fluxes with minimal uncertainty.
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Plate 2. Estimates of SF6 emissions from footprints simulated with 12 different transport models for North
America temperate and boreal, Eurasia temperate and boreal, and South America, Africa, and Australasia
combined. The observation network is GLOBALVIEW-CO2, and the inversion uses fossil fuel footprints. See
Table 1 footnote for acronyms.

Plate 3. Average estimates of fluxes of 1 Pg C yr21 region21 simulated in SKYHI and estimated with the
inversion scheme of GCTM and 150 observation stations. The flux patterns used for the inversion with GCTM
are identical with those in SKYHI used to generate the data mixing ratio fields. Average estimates are aligned
horizontally for a flux of 1 Pg C yr21 for each of 17 regions listed on the y axis at a time and a flux of 0 Pg
C yr21 from the remaining regions.
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data variability and hence a lower bound for the flux detection
limit of the inversion is the intensity of tropospheric mixing. It
also implies that the continental, equatorial regions need higher
data coverage than others for equally trustworthy flux estimates.

4.3. Systematic Errors

4.3.1. Errors caused by differences of modeled transport.
Estimates of fluxes from inversions are biased, in part, because
modeled transport differs from the true transport. To get a
handle on the magnitude of these errors, given the state of art
of atmospheric transport modeling, we estimate SF6 emissions
from mixing ratio distributions simulated by 12 models, based
on an identical flux pattern. We then analyze in greater detail
the relation between errors and transport differences for the
two models GCTM and SKYHI.

The simulations of SF6 mixing ratio distributions were per-
formed during TransCom2 [Denning et al., 1999], a model
transport intercomparison study. We estimated the SF6 emis-
sions using fossil fuel footprints calculated with GCTM for the
following five regions: Eurasia boreal, Eurasia temperate,
North America boreal, North America temperate, and all re-
maining continental regions combined. We use the simulations
of emissions from fossil fuel burning with GCTM. As the
observation network, we use GLOBALVIEW-CO2 [NOAA,
1997] (also available on Internet via anonymous FTP to ftp.
cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW). the largest
self-consistent data set of CO2 observations currently available.
The estimates of SF6 emissions derived from each of the 12
TransCom2 model SF6 results are shown in Plate 2. Note that
differences between flux estimates and the true emissions are
of the same order of magnitude as the emissions themselves.
The reason for this is mainly attributable to different transport
properties of the models because 66 stations (the number of
observation stations of GLOBALVIEW-CO2) are enough to
reduce the error from amplification of high-frequency data
variability to an insignificant level (cf. section 4.1).

In the case of the GCTM SF6 overestimate of the flux from
Eurasia boreal, the reason cannot be transport because the SF6

mixing ratio distribution and the fossil fuel footprints are both
simulated with GCTM. In this case the error is caused by the
difference of the SF6 emission pattern, based on electrical
energy consumption and population density [cf. Denning et al.,
1999] and the CO2 emission pattern, based on fossil fuel en-
ergy consumption, cement manufacture, and population den-
sity [Andres et al., 1996]. Differences are particularly large at
the Westerland monitoring station (88E, 558N) next to the
North Sea, where the fossil fuel emission pattern predicts com-
parably smaller values than the SF6 emission pattern, which in
turn, results in an overestimation of the Eurasian boreal flux.

We next use SKYHI to generate pseudo-observations for
constant fluxes from each of 17 regions, and the footprints
simulated with GCTM, based on exactly the same spatially
uniform flux patterns, for the inversion to estimate the emis-
sions in SKYHI. This procedure isolates the effect of model
transport differences completely from all other sources of er-
ror. In addition, to get error estimates independently from a
specific observation network, we follow again the Monte Carlo
approach described in section 2.2. We obtain annual-average
estimates for the flux from each of the 17 regions from the
inversion of each of the 17 mixing ratio distributions simulated
by SKYHI for a spatially-uniformly-distributed flux of 1 Pg C
yr21. For a given emission region these average estimates are
aligned horizontally in Plate 3. For example, the estimate of
emissions in SKYHI from the Atlantic tropical region (line six)
attributes a flux of ;0.7 Pg C yr21 to Atlantic tropics, ;0.15 Pg
C yr21 to Pacific tropics, and approximately 60.05 Pg C yr21 to
all the remaining regions. If there would be no transport error,
fluxes from the Atlantic tropics would be estimated to be 1 Pg
C yr21, and 0 Pg C yr21 would be estimated for all other
regions. More generally, if there would be no difference in the
transport properties between the two models, all diagonal el-

Figure 5. Average error amplification for each of the 17 source regions of Figure 1 and an observation
network encompassing 500 observation stations. The determination of the average over random networks is
explained in section 2.2.
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ements in Plate 3 would be 1, whereas all the off-diagonal
elements would be zero. Most flux regions hence are correctly
localized by the inversion scheme, with the exception of the
three northernmost and the southernmost ones.

A comparison of the ratio of the integrated “regional sig-
nals” (the signals within the flux regions) as simulated by
SKYHI and GCTM (*region rDx SKYHI(x) ds /* region r

DxGCTM(x) ds) for the case above (Figure 6) reveals the
following.

1. As long as the ratio of regional signals due to a regional
flux is “small” (of the order of 10–20%), transport errors affect
only the estimate of the flux from the flux region itself.

2. If differences of regional signals are of the order of 50%,
as for the three northernmost regions, fluxes are misattributed
to several regions. It is noteworthy, however, that the misat-
tribution is only to other regions within the same zonal band as
the flux region itself.

3. Differences of estimates for the remaining regions may
partially be explained by the ratio of the “regional signals”
between GCTM and SKYHI (Figure 6) (;40% of the discrep-
ancy) which are a result of stronger PBL ventilation in SKYHI
and correspondingly smaller regional signals. The remaining
discrepancy is attributable to different interhemispheric ex-
change rates: SKYHI’s exchange is more rapid by ;10%.
Fluxes from the regions besides the northernmost ones are
underestimated by approximately the same percentage. This
result suggests that too rapid interhemispheric exchange will
cause underestimates of the magnitude of fluxes for all regions
and that the estimates scale inversely with interhemispheric
exchange rates.

4.3.2. Errors caused by the neglect of interannual variabil-
ity of atmospheric transport. We estimate the magnitude of
biases and standard deviations of estimates caused by interan-
nual variability by using footprints from one atmospheric trans-
port model (SKYHI) for the estimation of fluxes from the
atmospheric patterns simulated by two different model years of

another model (TM2). As footprints for the inversions, we use
spatially uniformly distributed fluxes from 17 regions simulated
by SKYHI; as pseudo-observations, we use the atmospheric
patterns from fossil fuel emissions and biospheric exchange
fluxes simulated by TM2. Note that TM2 is driven by analyzed
winds, which differ from year to year while the fluxes are kept
fixed from year to year. Differences of estimates from different
years are not sensitive to the spatial patterns used for the
inversions (here spatially uniform) because the estimates from
the 2 years are affected in the same way by the specific choice
of the spatial flux pattern, and their effect hence cancels out.
As above, we base the inversions on randomly generated ob-
servation networks with 150 observation stations. The biases in
this case are the difference between the mean estimates of the
2 years (as explained in section 2.2) and are tabulated in Table
2, together with the standard deviations of the estimates.

For biospheric fluxes, biases caused by interannual variabil-
ity are of considerable magnitude (;0.2–0.3 Pg C yr21 re-
gion21) for the regions where biospheric exchange fluxes are
large: Eurasia temperate, North America temperate, and Af-
rica (Table 2). Otherwise, biases are small (#0.05 Pg C yr21

region21). The standard deviations of the ensemble of esti-
mates, for a network with 150 stations, though, may be as large
as 0.5 Pg C yr21 region21. For fossil fuel emissions, biases are
smaller than for the land biosphere; maximally ;0.2 Pg C yr21

region21 (Table 2). Again, the standard deviations of the es-
timates are somewhat greater, maximally 0.25 Pg C yr21 re-
gion21, and their mean is 0.1 Pg C yr21 region21. A possible
way to reduce these biases and standard deviations might be
the use of a model with assimilated winds combined with a
time-dependent inversion scheme.

4.3.3. Errors caused by incorrect modeling of the spatial
flux pattern. To quantify the magnitude of systematic errors
introduced by spatial differences between the flux patterns
wr(q , w , t) used for the inversion and the real ones, we use the
inversion scheme based on fluxes from 17 regions and, as

Figure 6. Mean estimates of SKYHI fluxes from 17 regions with the GCTM inversion scheme (diagonal
elements of the matrix in Plate 2) and ratio of local signals of SKYHI and GCTM (cf. section 4.3.1).
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pseudo-observation, the mixing ratio distributions resulting
from a flux from a subregion within North America temperate
(Figure 3). The flux pattern underlying this pseudo-observa-
tion deviates strongly from the spatially uniform patterns used
to generate the footprints for the inversion scheme. The dif-
ference between the mixing ratio distributions resulting from a
flux from the entire North America temperate and a flux of the
same magnitude emitted from the subregion in southeast
North America displayed in black in Figure 3 is shown in
Figure 7. The mixing ratio distributions differ strongly from
each other within the source region with differences of the
order of 5 ppm Pg C21 yr, while the differences in the “far-
field” are very small (#0.05 ppm).

The average flux estimate based on an ensemble of ran-
domly generated networks is summarized in Table 2 (columns
headed Focus USA): the estimate for the flux region is almost
unbiased, but its standard deviation is very large (of the same
order as the flux itself). The bias and standard deviation for the
estimates for the other regions on the other hand are small
(#0.2 Pg C yr21 region21). This is clearly a reflection of the
spatial distribution of the difference between the signals as
described above (large differences within the flux region and
small differences elsewhere). Randomly positioned stations
within the flux region are likely to observe a signal that will be
strongly misinterpreted by the inversion; since the far field is
unaffected by the specific spatial structure of the fluxes,
though, fluxes from other regions are correctly estimated (to
be almost zero). The region for which the flux is the most
affected, besides North America temperate, is North Atlantic
temperate, its next region downstream.

On average, for networks encompassing 500 and 2000 sta-
tions the standard deviation of the estimate for the flux region

is still 0.64 and 0.4 Pg C yr21 region21, respectively. Enlarge-
ment of the network does not help. One possible way to reduce
this source of error would be to increase the number of re-
gions, which however, is cost intensive with respect to the
number of necessary observation stations (;10 stations re-
gion21), as already discussed.

The expected bias introduced in the estimate by spatial mis-
match could be estimated roughly directly from the local dif-
ferences of the mixing ratio signal (Figure 7) and the mean
error amplification as a function of the network size (Plate 1):
differences in local signals of the order of 1–2 ppm propagate
to an error in estimates of ;0.5–1 Pg C yr21 region21 for a
network consisting of 150 stations.

4.3.4. Errors caused by improper modeling of the temporal
flux pattern. The zonal average of the rectification of CO2

biospheric exchange fluxes is of the order of 2 ppm according
to the model intercomparison study reported by Law et al.
[1996]. Since the zonally averaged signal from fossil fuel burn-
ing of ;5 Pg C yr21 is of the order of 4–5 ppm [Law et al.,
1996], the rectification signal suggests a spurious carbon source
in the Northern Hemisphere of the order of 2–3 Pg C yr21.
How large is this effect if we abandon the zonally averaged
picture in favor of an approach that resolves sources and sinks
by latitude and longitude?

To answer this question, we determine a mean estimate of
the seasonal rectification of the CASA biosphere [Potter et al.,
1993] with atmospheric transport simulated with SKYHI. We
use spatially uniformly distributed flux patterns and, again,
SKYHI to simulate the footprints for the inversions. The mean
estimates are displayed in Table 2. Their magnitude does not
exceed 0.45 Pg C yr21, and their mean is only 0.2 Pg C yr21. It
is of interest to compare the CASA/SKYHI rectification in

Table 2. Systematic Errors (Biases and Standard Deviations (s.d.)) Caused by Interannual Variability of Model Transport
and by Mismatch of Flux Patterns in Space and Time (Determined With a Monte Carlo Approach (Section 2.2)) Between
Footprints and Pseudodata

Region

Pseudodata

Biosphere (TM2) Fossil Fuel (TM2)
Focus USA

(GCTM)
Rectification

(SKYHI)

Bias s.d. Bias s.d. Bias s.d. Bias s.d.

Eurasia boreal 0.04 0.06 0.04 0.0 0.00 0.06 0.45* 0.46*
N. America boreal 0.02 0.04 0.07 0.03 0.01 0.17* 0.05 0.08
N. Atlantic polar 20.06 0.06 0.03 0.03 0.00 0.04 20.01 0.04
Eurasia temperate 0.09 0.28* 0.09 0.07 0.00 0.18* 20.12* 0.28*
N. Pacific temperate 20.02 0.15* 0.08 0.06 0.00 0.24* 20.18* 0.25*
N. America temperate 0.22* 0.27* 0.11* 0.12* 0.27* 1.17* 0.41* 0.46*
N. Atlantic temperate 20.03 0.12* 0.07 0.16* 20.01 0.49* 20.06 0.13
Africa 20.38* 0.51* 20.01 0.15* 0.00 0.29 20.37* 0.48*
Indian Ocean tropical 20.07 0.51* 20.03 0.25* 20.01 0.10* 20.15* 0.19*
Pacific tropical 0.01 0.14* 20.10* 0.16* 0.00 0.14* 0.21* 0.25*
S. America 20.05 0.31* 20.23* 0.14* 0.01 0.11* 0.08 0.28*
Atlantic tropical 0.03 0.34* 0.02 0.14* 0.00 0.19* 0.26* 0.36*
S. Atlantic temperate 20.01 0.07 20.01 0.06 0.00 0.03 20.07 0.1*
S. Indian Ocean temperate 0.03 0.06 20.02 0.03 0.00 0.02 20.04 0.07
Australasia 20.03 0.21* 20.14* 0.13* 0.00 0.02 20.09 0.2*
S. Pacific temperate 0.08 0.09 0.06 0.07 0.00 0.05 20.09 0.12*
Southern Ocean 0.10* 0.01 0.00 0.01 0.00 0.01 0.02 0.04
Mean 0.1 0.2 0.09 0.1 0.02 0.20 0.21 0.27

Values are in units of Pg C yr21. Regional fluxes used to generate the footprints for the inversion scheme are based on spatially-uniformly-
distributed source strength and constant flux in time. Observation networks consist of 150 observation stations. As pseudo-observations to test
for the effect of spatial mismatch, mixing ratio distributions resulting from fluxes within the United States are used. Similarly, to test for the
influence of the temporal structure, the CASA biosphere is used.

*Values exceeding 0.1 Pg C yr21.
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Figure 8 with the seasonal rectification of the CASA biosphere
as simulated with the Colorado State University Model (CSU
model) as published by Denning et al. [1995, Figure 1]. The
effects are fairly similar both in structure and magnitude even

though the magnitude simulated by the CSU model is tenden-
tially somewhat larger. We conclude that if sources and sinks
are resolved by longitude and latitude, then the seasonal rec-
tification is significantly less dramatic than if sources and sinks

Figure 7. Mixing ratio difference (ppm) for a flux of 1 Pg C yr21 from North America temperate and a
southwestern subregion (dark subregion of the United States in Figure 1).

Figure 8. Seasonal rectification effect (ppm) as predicted by the CASA biosphere model and the atmo-
spheric tracer transport model SKYHI.
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are resolved by latitude only. The main reason is that the signal
of rectification of the land biosphere is tied to the continents,
whereas the mixing ratio distribution caused, e.g., by fossil fuel
emissions is additionally large over the oceans.

If fluxes of tracers other than CO2 are known to exhibit
minor seasonality only, then rectification is of no concern for
the inversion methodology based on annually averaged mixing
ratios.

5. Summary and Conclusions
We have analyzed the possibilities and limitations of the

inversion of atmospheric transport, using annual mean mixing
ratios, as a tool to estimate CO2-surface fluxes. The analysis is
based on simulations with different transport models. Our ap-
proach avoids the choice of a particular observation network
and the convolution of different error sources at a time. We
distinguish two main categories of errors: (1) amplification of
high-frequency data variability in an inversion and (2) system-
atic errors caused by inaccuracy of the inversion model.

The magnitude of the first error source is determined by the
level of mixing in the atmosphere and varies with the ratio of
observation stations to regions to be solved for. We find that
;10 observation stations per region are needed in order to
estimate fluxes within an uncertainty of ;0.2 Pg C yr21 (for the
current magnitude of fossil fuel emissions and biospheric ex-
change fluxes, and for randomly positioned stations); equato-
rial, continental regions need comparably more data coverage,
high-latitude regions comparably less. Even though we based
our analysis on a particular inversion method (which uses an-
nual means), we believe that this result applies similarly to
other, e.g., recursive, inversion methods. The problem of in-
formation loss by mixing in the atmosphere is hence solvable
with a feasible measurement effort, at least to estimate fluxes
on a continental scale.

For the analysis of systematic errors, we distinguished be-
tween errors caused by (1) the inaccurate modeling of atmo-
spheric transport processes, (2) the neglect of interannual vari-
ability of atmospheric transport in our annual-mean approach,
and (3) the mismatch of the spatiotemporal flux pattern used
for the inversion with the “true” flux pattern.

Of these sources of errors, the first is the largest. This claim
is based on the inversion with GCTM of SF6 distributions
simulated by 12 different models, which all used the same flux
pattern (TransCom2 [Denning et al., 1999]). We estimated
fluxes from five regions and based the inversion on the
GLOBALVIEW-CO2 network (66 stations). Because 66 sta-
tions are enough to eliminate the errors caused by the ampli-
fication of high-frequency data variability, the difference of
estimates is caused primarily by different transport properties
of the models. We find that these differences are of the same
magnitude as the fluxes themselves. We analyzed the relation
between model transport properties and biases for the models
SKYHI and GCTM in more detail and found that a major
source for biases is the differences in PBL ventilation rates.
Biases are up to 50% of the estimates and scale in this case
inversely proportional to the ventilation rates. Another major
well-known source of error is the difference among models in
interhemispheric exchange rates; as expected, the magnitude
of flux estimates scale inversely proportional to interhemi-
spheric exchange rates. Collectively, these results show that
misrepresentations of transport in models are currently a very
serious concern for inversions. A most crucial transport pro-

cess, the ventilation of the PBL in models, needs further vali-
dation for the use of inversions of atmospheric transport as a
monitoring tool.

The second largest error source for inversions based on
annual means of CO2 mixing ratios is the neglect of interan-
nual variability of atmospheric transport. This affects primarily
the estimates of regions with strong biospheric and fossil fuel
fluxes and results in biases of up to 0.4 Pg C yr21 region21

(again for estimated fossil fuel emissions of 6 Pg C yr21 for the
year 1990). Also, estimate uncertainties increase considerably
for these and neighboring regions (up to 0.5 and 0.2 Pg C yr21

region21, respectively). This source of error is nonnegligible if
inversions are to be used for emissions monitoring. The devel-
opment of recursive, time-dependent inversion methods pos-
sibly based on analyzed winds might help to reduce this source
of error.

We also investigated the errors caused by neglecting the
covariation of temporal variability of sources with atmospheric
transport by inverting the CASA biosphere. We find a smaller
effect than expected from discussions in the literature [Denning
et al., 1995]. Regions with large biospheric exchange fluxes are
most biased, with errors up to 0.45 Pg C yr21 region21. This
implies (1) that as long as fluxes are changing moderately in
time only, then the method is robust and (2) that the seasonal
rectification seems to be a less severe source of error than
anticipated. Note that this result is based on a very similar
rectification mixing ratio distribution as the one published by
Denning et al. [1995].

To examine the effect of spatial heterogeneity of fluxes, we
estimated spatially-highly-localized sources. These sources
were correctly localized by the inversion, and almost no fluxes
were wrongly attributed to other regions, but the magnitude of
the estimates was highly uncertain. Highly localized sinks and
sources are hence not properly estimable with this method.
The only strategy that would ameliorate this problem is a
subdivision of flux regions, which in turn, requires a higher
coverage with observation stations.

We conclude that monitoring of surface fluxes with inver-
sions of atmospheric transport on a continental scale is possi-
ble in principle because the damping of flux signals by mixing
in the atmosphere may be largely overcome by positioning
roughly 10 observation stations per region solved-for. The lim-
iting factor then becomes primarily the use of transport models
whose different transport properties lead to a scatter of esti-
mates of the order of 100% of the fluxes and, secondarily, the
neglect of interannual variability. Improvement of the calibra-
tion of transport models and possibly the development of time-
dependent inversion schemes are needed for inversions to be-
come a serious option for future monitoring.

Finally, it is of interest to put the recent inversion results by
Fan et al. [1998] in perspective of the findings presented in this
paper. The paper by Fan et al. [1998] restricts itself to the
estimation of fluxes from Eurasia, North America, and the
remaining continental regions. The findings in this paper on
the latitudinal distribution of error amplification and on the
number of observation stations needed to estimate fluxes, in
combination with the factual bias of existing observation sta-
tions to the Northern Hemisphere, support the choice of Fan
et al. [1998]. Similarly supported are their exclusion of the
Westerland and Tae-Ahn Peninsula station from the inversion
analysis. The strong dependence of estimates of SF6 emissions
on model transport, on the other hand, reaffirms the call in
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Fan et al. [1998] for further corroboration with alternative
transport models.
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