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ABSTRACT

A turbulence closure model is applied to the case of an oscillating boundary layer; model calculations compare
favorably with data. Wave-induced oscillations can be temporally resolved in a one-dimensional model but not
in three-dimensional ocean models, and, indeed, statistical wave models, working in consort with ocean models,
can only provide information on expected wave periods and amplitudes. Therefore, in this paper, a way has
been found to parameterize the effects of bottom flow oscillations; it entails augmenting the turbulence shear
production as a function of amplitude and period of the oscillation, the bottom shear stress of the mean current
flow, and the angle between the directions of the oscillations and the mean flow. The more conventional method
of solving for an apparent wall roughness is also investigated in an appendix.

1. Introduction

The influence of short-period, surface wave–induced
oscillations on bottom boundary layers has commanded
considerable attention in the literature since the pio-
neering studies of Grant and Madsen (1979). They pre-
sented a theory that embodied analyses and several as-
sumptions including spatially linear and temporally con-
stant eddy viscosities; as a result, the effect of the os-
cillations is parameterized as an enhanced surface
roughness. This approach has been further refined by
Grant and Madsen (1986, henceforth GM86; see ap-
pendix D), Glenn and Grant (1987), and Mathisen and
Madsen (1996a,b). The latter authors introduced a cor-
rection to the Grant–Madsen theory to account for var-
iability in the eddy viscosity. These theories are alge-
braically very complicated, but in principal, they could
be used in numerical general ocean circulation model-
ing. Malarkey and Davies (1998) introduced a similar
semianalytical theory with somewhat different assump-
tions. Hagatun and Eidsvik (1986) and Li and Davies
(1996), using a k 2 e model, calculated temporally re-
solved, one-dimensional, numerical simulations of com-
bined mean current and oscillatory flow, this in con-
junction with sediment transport modeling. Papers by
Justesen (1991) and Brors and Eidsvik (1994) also suc-
cessfully applied k 2 e models to the data described
below, and their papers are complimentary to this paper.
These studies, while quite successful, did not provide
information directly useful to general ocean circulation
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models where time steps are on the order of minutes to
hours whereas, to resolve surface wave timescales, time
steps are a small fraction of a second.

The purpose of this paper is to provide a means of
parameterizing the effect of oscillations on an otherwise
stationary or slowly varying mean flow, which can be
incorporated in ocean models. The result is not much
more complicated than that inherent in basic turbulence
closure models, one of which is necessarily reviewed
here and which involves the solution of the turbulence
kinetic energy equation (TKE).

Consider a flow governed by

]u ]t
5 P 1 P cos(vt) 1 ; (1a)0 1]t ]z

u 5 u(z, t) is the ensemble mean velocity, t is time, and
z is the distance from a solid surface located at z 5 0
where u 5 0. The Reynolds stress t is taken to be a
kinematic stress, that is the dynamic stress divided by
the fluid density. This one-dimensional flow is driven
by a kinematic, horizontal pressure gradient P0 1 P1

cos(vt), which has spatially independent, steady and
oscillatory components. We further specialize to flow
in a channel whose height is 2h. Because of symmetry,
we need only solve for flow properties in the region, 0
# z # h. The time average of a fully developed (a long
time after forcing is initiated) flow is

]t t 0P 5 2 5 , (1b)0 ]z h

where 0 is the mean shear stress at z 5 0 and, of course,t
5 0 at z 5 h.t
For pure oscillatory flow, P0 5 0 5 0, P1 . 0, int

which case the active boundary layer is typically con-
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fined to a thin region near the surface. This problem
can be transformed to oscillating plate flow above which
the flow is stationary, a problem that is termed a Ray-
leigh flow or Stokes second problem (Schlicting 1979).
For laminar flow, the boundary layer thickness is dv .
7 . For turbulent flow, approximate an eddy vis-Ïy/v
cosity such that y } utmdv where is an average wall2utm

shear stress, defined below. Thus, dv . 1.2utm/v where
the constant of proportionality is determined below. The
velocity amplitude of the oscillations is ub 5 P1v21 and
a more useful formula is dv . 0.04ub/v from which it
can be shown that wave-induced, bottom boundary layer
thicknesses in the ocean are quite small and of the order
10 cm.

For fully developed mean flow (P0 . 0) superim-
posed on oscillatory flow (P1 . 0), the conceptual model
(Grant and Madsen 1979) is that the region near a (bot-
tom) surface, influenced by the oscillations, is small as
in the pure oscillatory case and directly affects the mean
flow only in this small region. Indirectly, the mean outer
flow behaves like a flow over a roughness enhanced
surface.

2. The model

The so-called Mellor–Yamada (M–Y) model (Mellor
and Yamada 1982, henceforth MY82; Mellor 2001) will
be invoked to relate the shear stress to the velocity so
that

]u
t 5 K , (2a)M ]z

K [ S ql, (2b)M M0

where q2/2 is the turbulence kinetic energy and l is the
master length scale. Generally, SM is a function of a
density stratification parameter, but here we specialize
to neutral flow so that SM 5 SM0 5 0.39. The model
does not attempt to solve for properties into the viscous
or roughness layer or inner layer; it numerically solves
for properties in the outer layer and then matches this
outer solution to empirically known inner functions. The
inner and outer solutions for velocity have a common
overlap layer, the well-known law of the wall, which is
the inner asymptote (for small z) for the outer function
and the outer asymptote for the inner function (for large
z after appropriate rescaling; Mellor 1972). The overlap
layer for q is simply a constant proportional to the square
root of the shear stress at the wall (Perry and Abell
1975; MY82).

The important boundary conditions for (1) are that u
is matched (see appendix A) to the law of the wall such
that

t (t) z0u(z, t) 5 ln , z 5 z , (3a)lw1 2ku (t) zt 0

where

1/2u (t) [ | t (t) |t 0 (3b)

and k 5 0.4 is von Kármán’s constant; z0 is the rough-
ness parameter. For smooth surfaces, z0 5 0.141y/ut

(for water, y 5 1.14 3 1026 m2 s21) whereas for rough
walls z0 5 k/30 where k is a measure of the actual wall
roughness. Here zlw represents any value greater than z0

and much less than the outer dimension of the problem,
in the present case, h. Equation (3) may be derived from
(2a,b) where t 5 t0 and the empirical findings that, in
the law of the wall region, q 5 ut /SM0 5 2.56ut (MY82)
and l 5 kz. Numerically, in our staggered grid arrange-
ment, zlw is set to its values at the midpoint between the
bottom and the first grid level nearest the bottom.

The law of wall agrees with data only when z/z0 k
1; this is easily seen in turbulent flow measurements
close to a smooth wall, for example. Generally, zlw/z0

k 1; however, there could arise cases of large z0 whence
the value of zlw might be less than z0 rendering (3a)
invalid. Specifically, this would yield a negative loga-
rithm in (3) prompting some to let l 5 k(z 1 z0) in
which case the logarithmic term in (3a) is replaced by
ln(1 1 z/z0). This issue and the matching procedure are
discussed further in appendixes A and B.

To provide q(z, t), the turbulence kinetic energy is
solved according to

2 2 3]q ] ]q q
5 S ql 1 2P 2 2 . (4)q S1 2]t ]z ]z B l1

The terms in (4) represent tendency, diffusion, shear
production and dissipation, respectively. The shear pro-
duction is given by

2
]u

P 5 K (5)S M1 2]z

and will be modified in sections 4 and 5. Model con-
stants are B1 5 16.6 and Sq 5 0.20. It may be shown
that SM0 5 5 0.39. The boundary conditions for21/3B1

(4) are ]q2/]z 5 0 at z 5 0 and z 5 h.
Finally, the master length scale equation is

22 2 3]q l ] ]q l q l
5 S ql 1 E lP 2 1 1 E ,q 1 S 21 2 1 2[ ]]t ]z ]z B kL1

(6)

where Sq 5 0.2, E1 5 1.8, and E2 5 1.33. For channel
flow the ‘‘wall proximity function’’ L is given by

1 1
21L [ 1 . (7)

(2h 2 z) z

As discussed in MY82 and following Wolfshtein (1970),
Eq. (6) is the two-point correlation function integrated
with respect to the distance separating the two points.
We have always acknowledged that (6) is the more em-
pirical part of the model and, unlike the other constants,
Sq, E1, and E2 were determined (MY82) by a best fit of
calculations with both boundary layer (for which h → `
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FIG. 1. Smooth wall velocity profiles for an oscillating flow over
a smooth wall. Labels are phases in degrees; for 1808 to 3608, the
flow is a mirror image of those shown. The solid curves are calculated
and the open circles are data from Jensen et al. (1989).

so that L 5 z) and channel flow data and by the con-
straint, l ; kz as z → 0. The boundary conditions for
(6) are that ]q 2 l/]z 5 0 at z 5 h and l 5 0 at z 5 0.

In addition to (3b), we now define

2u [ |t | and (8a)tm 0

2u [ |t |, (8b)t 0

where the overbar represents a time average. Note that,
for pure oscillatory flow, t 5 0 whereas utm . 0.u

In MY82, Mellor (2001) and elsewhere, the model
has been shown to have a large range of application; it
has proven to be a quite general turbulence closure mod-
el. Relevant to this paper, the model reproduced data
for stationary channel flow and unbounded boundary
layer flow. Using the present algorithm, the channel flow
case (not shown) has been repeated with results identical
to that in MY82. Thus, there is good reason to believe
that the model will work well for oscillatory flow and,
if it does so, it is reasonable to assume that it can sim-
ulate data for mixed mean current and oscillatory flow.

3. The oscillatory flow data of Jensen et al.

The model will now be tested against pure oscillatory
data obtained in the laboratory by Jensen et al. (1989).
This study represents an ingenious experiment whereby
water in a U-shaped channel with two straight vertical
legs and a connecting horizontal test section was made
to oscillate by imposition of oscillatory air pressure at
the end of one of the vertical legs; the other end was
open to the atmosphere. The oscillations were quite
monochromatic and could, to good approximation, be
represented by the pressure term in (1a). The test channel
depth was 0.28 m so that h 5 0.14 m. The width-to-
depth ratio, the aspect ratio, was 1.39. This is not very
large and one worries about side wall effects although
the oscillatory boundary thickness is less than h. The
length of the constant depth test section was 10 m.

Velocities were measured with a laser–Doppler ve-
locimeter (LDV) and were sampled at 158 intervals over
80 cycles so that mean and turbulence variances were
ensemble averaged. Since u(q) 5 2u(1808 1 q), t(q)
5 2t(1808 1 q), and q2(q) 5 q2(1808 1 q), only data
for 0 , q , 1808 were recorded. The period of oscil-
lation was 9.6 s; thus, q 5 3608 3 t/9.6 s. The data for
the highest Reynolds number correspond to a centerline
velocity amplitude of ub 5 2 m s21. In this pure oscil-
latory case, the stress term in (1a) at centerline is nil,
so that P1 5 vub.

The model uses 50 grid points distributed with equal
spacing except near the bottom where 8 of the grid
points were distributed logarithmically; the lowest-ve-
locity grid point was located at 0.18 3 1023h. The time
step was 0.04 s. The model was run to cyclic equilib-
rium, which was established in about 10 cycles. The
model was run for 25 cycles.

Figure 1 shows the cyclic mean velocity from the

model compared with the data plotted in linear form,
whereas Fig. 2 shows the same information semiloga-
rithmically. The agreement between model and data is
quite good. There is some phase difference near q 5
08. [A detailed comparison of u(h, t) indicates that the
forcing in (1) might possibly contain a second harmonic
but not enough to warrant the concomitant complexity.]
The dashed lines are from Eq. (3) using model values
of t0 (t).

Figures 3 and 4 compare the Reynolds shear stress,
t, and twice the turbulence kinetic energy, q2. A flush-
mounted wall gauge measured the wall shear stress in-
dependent of the LDV-measured Reynolds stress, and
these data are shown as the open squares in Fig. 3. This
was an important measurement since the LDV mea-
surements near the wall differed significantly from the
wall gauge measurements. Measurements of the vertical
component of q2 were done separately and were scarce;
however, they did not greatly differ from the cross-
stream component so that we have set q2 5 ( )2 1u9
2( )2. The behavior of l is unremarkable; it behavesy9
like kz for small z and then asymptotically approaches
a constant 2.5 cm for large z.

Figure 5 is a comparison plot of the shear stress at



3078 VOLUME 32J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 2. Same as Fig. 1 but the vertical axis is logarithmically
distributed. The dashed lines are according to Eq. (3).

FIG. 3. Same as Fig. 1 but for the Reynolds shear stress; units are
1023 m2 s22. The open squares are measurements from a flush-mount-
ed wall gauge.the wall according to the model, the wall gauge mea-

surements and results of matching Eq. (3) to the mea-
sured velocity data in the law-of-the-wall region (0.1
cm , z , 0.9 cm). The zero stress point right around
1658 is simulated quite well. It should be noted there is
reason to believe that the law of the wall should not
apply near the point where t 5 0, but except for the
near-wall profile for 08, there is little evidence of this
in Figs. 2 or 5.

The variance measurements for z less than 1 or 2 cm
contain significant error since the LDV Reynolds stress
measurements near the wall differ from both the wall
gauge measurements and the stresses obtained from
matching the cyclic mean velocity data with the law of
the wall. This is presumably true of the q2 measurements
since, in the law of the wall region, q2/ . 6.5. The2ut

variances also differ from the model when z is greater
than about 4 cm. Variances, of course, are hard to mea-
sure, particularly in this oscillating environment. How-
ever, the fact that q2 compares quite well with the data
nearest 758 and 908 suggests these are data wherein the
centerline slug of fluid moves least off the channel mid-
point and that the other data may be influenced by the
channel ends where the channel expands and then turns
908; the closest approach to the channel ends are ex-
perienced by the fluid measured at the midpoint when
vt 5 08 and 1808.

Figure 6 includes plots of model–data comparisons
of velocity in semilog coordinates for a rough wall
where k 5 0.84 mm so that z0 5 0.0028 cm. The agree-
ment of model and data near the wall is excellent. In
the outer portions, there are some discrepancies. Figure
7 compares the model wall shear stress and the shear
stress obtained by fitting the law of the wall to the
measured velocity data in the region, 0.1 cm , z , 0.9
cm. There were no wall gauge measurements in the
rough wall case.

One must conclude that the model does a good job
of simulating the experimental mean velocities and the
wall shear stress. Otherwise, the LDV data and model
variances sometimes agree and sometimes do not agree.

4. Mixed oscillatory and mean current flows

The general case of superimposed oscillatory and
mean current is important to coastal oceanography, par-
ticularly if one adds the complication of sediment trans-
port to the problem as described by Grant and Madsen
(1979). In principle, the model, generalized for three-
dimensional flow, could be used in ocean models such
as the Princeton Ocean Model (POM; Blumberg and
Mellor 1987; Mellor 1996); in fact, the turbulence clo-
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FIG. 4. Same as Fig. 1 but for twice the turbulence kinetic energy,
q2; units are 1022 m2 s22.

FIG. 6. Same as Fig. 2 but for a rough wall: z0 5 0.84/30 mm.

FIG. 5. The wall shear stress; units are 1023 m2 s22. The calculated
values are the solid curve; the open circles are the wall gauge mea-
surements and the crosses are determined by matching Eq. (3) to the
velocity profile data for z0 5 0.141y/ut. A cosine curve (dashed) is
added for reference; it is phase shifted so that its zero crossing agrees
with the data and the calculations.

FIG. 7. Same as Fig. 5 but for a rough wall. There are no wall
measurements and the crosses are determined by matching Eq. (3)
to the velocity profile data for z0 5 0.84/30 mm. A cosine curve
(dashed) is added for reference.

sure model used here is a part of POM. However, such
models cannot be run economically with the small time
steps necessary to resolve wave induced oscillations
with periods on the order of 10 s. Thus, it is necessary
to parameterize the effects of the oscillations, and this
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will be the remaining goal of this paper for which we
will compare calculations with the oscillations tempo-
rally resolved, as in section 3, with calculations where
they are parameterized.

The momentum equations for the more general prob-
lem are

]u t ]t0x x5 1 u v cos(vt) 1 , (9a)bx]t h ]z

t ]t]y 0y y
5 1 u v cos(vt) 1 , (9b)by]t h ]z

where we directly introduce the important problem pa-
rameters: mean (kinematic) wall stress vector ( 0x, 0y),t t
and the velocity oscillatory amplitude vector (ubx, ubx).
The only other modifications to the closure model are
that (2a,b) becomes

]u ]y
(t , t ) 5 K , , (10a)x y M1 2]z ]z

K 5 S ql (10b)M M

and (4b) becomes

2 2
]u ]y

P 5 K 1 . (11)S M 1 2 1 2[ ]]z ]z

Instead of (3), the model velocity near the wall is
matched to

[t (t), t (t)] z0x 0y[u(z, t), y(z, t)] ; ln , (12a)1 2ku (t) zt 0

z 5 z , (12b)lw

where

2 2 2 1/2u [ (t 1 t ) .t 0x 0y (13)

It is convenient to continue numerically with the (lat-
erally unbounded) channel flow problem as described
by (9a,b), but since the effects of oscillations and their
ultimate parameterization are confined to the near-wall
region, we fully expect the latter to apply to boundary
layers where (9a,b) might include advective terms or
Ekman layers where Coriolis terms must be added to
(9a,b). Although we will continue to deal with numerical
simulations dimensionally, the final results must lean on
dimensional analysis to reduce the parameters of the
problem. Thus, for example, in the near-wall region, we
expect the mean current velocities near a wall to be
represented by

tt 0y0xu 5 f 2 g, (14a)
u ut t

t t0y 0xy 5 f 1 g, (14b)
u ut t

where the nondimensional profiles are

zv u z vt 0f 5 f , , f, , (14c)1 2u u ub b b

zv u z vt 0g 5 g , , f, (14d)1 2u u ub b b

and where

2 2 2 1/2u [ t [ (t 1 t ) (15a)t 0 0x 0y

2 2 1/2u [ (u 1 u ) . (15b)b bx by

The angle f between the oscillatory amplitude vector
and the mean wall shear stress is given by

|u t 2 u t |by 0x bx 0ysinf 5 . (15c)
u tb 0

In section 3, the data and model simulations were
such that the oscillatory boundary layer almost filled
the entire channel, roughly from z 5 0 to 10 cm. Using
the model as a tool, we will now explore the relationship
between oscillatory and mean currents with h 5 2 m.
The value h 5 2 m is much larger than the oscillatory
influence depth dv but still small enough to provide good
numerical resolution. The parameter h is missing from
(14) since, again, we do not expect the outer flow to
influence the near surface flow. Because of the larger h
and perhaps the inclusion of a mean current, the model
was run for 500 cycles whence equilibrium was estab-
lished.

In all of the numerical calculation performed below,
we will set 0y 5 0 so that (14a,b) simplifies to 5t u
( 0x/ t) f and 5 ( 0x/ t)g.t u y t u

The model is first applied to the case where 0y 5t
uby 5 0, ubx 5 2 m s21, and 0x 5 0.004 m2 s22. Also,t
set the oscillatory period to 9.6 s or v 5 0.654 s21, a
habit left over from section 3. The roughness is z0 5
3.06 3 1025 m so that z0v/ub 5 1025. Thus, this is a
flow where the oscillatory velocity component and the
mean current component are collateral; that is, f 5 08.
The time dependent velocity profiles are shown in Fig.
8 both in linear and semilogarithmic plots. The shear
stresses are similarly shown in Fig. 9. For, say, z $ 30
cm, the velocity shear and stress are not affected by the
oscillatory flow near the wall.

Figure 10 shows time-averaged profiles in semilog-
arithmic coordinates for 0y 5 0 and a range of valuest
of 0x. Figure 10a shows cases where ubx 5 2, uby 5 0t
m s21 so that f 5 08; Fig. 10b demonstrates cases where
ubx 5 uby 5 m s21 so that f 5 458; and Fig. 10cÏ2
has cases where ubx 5 0, uby 5 2 m s21 so that f 5
908. The dashed lines are law-of-the-wall plots from the
phase-averaged Eq. (12a).

For both f 5 0 and f 5 908, the function g of (14a,b)
is identically zero, because of symmetry considerations,
so that Figs. 10a and 10c, suitably nondimensionalized,
yield the function f for z0v/ub 5 1025. However, for
intermediate values of f, g is nonzero as seen in Fig.
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FIG. 8. Calculated profiles for a mixed mean current, ( 0x, 0y) 5t t
(0.004, 0) m2 s22 plus oscillatory flow (ub, y b) 5 (2, 0) m s21, v 5
0.654 s21 on a rough wall z0 5 3.06 3 1025 m: (a) linear–linear plot,
(b) log–linear plot. The dashed lines are from (12).

FIG. 9. Same as Fig. 8 but for the Reynolds shear stress;
units are m2 s22.

10b for f 5 458. This relates to the fact that the half
cycle of the oscillation with a component in the direction
of the mean current should behave differently than the
half cycle opposite to the mean current. For 0y 5 0,t
(9b) can be time-averaged and one obtains t0y 5 0 5

M ] /]z 1 , where the overbars are time av-K y K9 ]y9/]zM

erages and the primed quantities are deviations from the
averages. For 0 , f , 908, the average of the deviatory
terms are not zero and therefore neither is ] /]z.y

The function, g, while not zero, is fairly small, so in
the interest of needed simplification, we shall henceforth
assume that g 5 0.

In Figs. 11a and 11b, the velocity profiles from Figs.
10a and 10c are repeated and are compared with mean
current simulations with no oscillations; that is, ubx 5
uby 5 0; these are the dashed curves. Thus Fig. 11
demonstrates error in stationary calculations if oscilla-
tions are present but neglected. The law-of-the-wall
lines from (12a) are shortened here and fill the space,
0.03 cm . z . z0.

Law-of-the-wall slopes

The problem now before us is to develop a way of
parameterizing the stationary mean current calculations
in order to eliminate much of the error shown in Fig. 11.

Before delving into this matter, we first explain why the
oscillatory law-of-the-wall slopes differ from stationary
slopes for the same mean wall stress. The explanation is
fairly simple since the time average of (12a) is

1 t z0xu 5 ln , (16a)1 2 1 2k u zt 0

and therefore differs from the average of t0x(t) divided
by the time average of ut(t) which is correct for mean
(or slowly varying) current flow with no oscillations.
Figure 12, corresponding to the profiles of Fig. 10, is
a plot of the factor

ku z ]u (t /u )t 0x t5 (16b)
t ]z (t /u )0x 0x t

for f 5 08 (for which 0x/ t 5 t), f 5 908, z0v/ubt u u
5 1025, and a range of values of t/ub. This plot isu
shown to emphasize the effect of oscillations on the
log–law slope. That the nondimensional slope differs
from unity is somewhat at odds with the practice of
using the mean current value of t in the law of theu
wall but altering the roughness parameter z0 to param-
eterize the effects of the oscillations. However, we will
return to this subject in appendix D.
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FIG. 10. Phase averaged profiles with the same parameters as Fig.
8 but for different values of 0x and f. The labels on the curves aret

0x with the units, 1023 m2 s22. The roughness parameter z0 5 3.06t
3 1025 m and the oscillatory parameters are v 5 0.654 s21: (a) (ub,
y b) 5 (2, 0) m s21 so that f 5 0, (b) (ub, yb) 5 ( , ) m s21Ï2 Ï2
so that f 5 458, and (c) (ub, y b) 5 (0, 2) m s21 so that f 5 908.
The dashed lines are from the phase-averaged Eq. (12). In the case
f 5 458, a cross current is generated that is fairly small and which
henceforth will be neglected.

FIG. 11. The solid curves in (a) and (b) are repeated from Figs.
10a,c respectively, whereas the dashed curves are for the mean current
alone, (ub, y b) 5 (0, 0). The differences between solid and dashed
represent an error if oscillations exist but are neglected.

FIG. 12. The ratio of the phase-averaged law-of-the-wall slope to the
slope obtained from the mean wall stress as expressed in (D1b).

5. A procedure to parameterize the effects of
oscillatory flow on the mean currents

The effects of oscillations on the mean current flow
are felt through an increase in KM, which is due to an
increase in q, which in turn is due to an increase in
shear production in Eq. (2a) or (10c). After some trial
and error, a way has been found to approximate the
effects of oscillatory flow without actually resolving the
oscillations. The strategy is to add a term, PA (apparent
production), to the shear production in an otherwise
stationary flow case. Thus,

2 2
]u ]y

P 5 K 1 1 P . (17)S M A1 2 1 2[ ]]z ]z

Now the question is how to construct the function, PA.
First we note that

2P /vu 5 fcn(u , f, z v/u , zv/u ).A b t /u 0 b bb
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FIG. 13. The nondimensional production due to oscillations. The
solid curves are obtained from numerous calculations where 0x andt
z0 are varied. The dashed curves are an approximate fit to the solid
curves according to Eq. (21). The labels on each set of lines are
values of log10(z0v/ub); for the value 23, the vertical grid was altered
so that the bottom-most grid point was greater than z0.

FIG. 14. A comparison of phase-averaged resolved solutions (solid
curves) with the parameterized solutions (dashed curves) using Eqs.
(9), (17), (18), (19), and (20). The labels on the curves are 0x witht
the units, 1023 m2 s22. The oscillatory parameters are, v 5 0.654
s21 and z0 5 3.06 3 1025 m (a) (ub, y b) 5 (2, 0) m s21 so that f 5
0; (b) (ub, y b) 5 (0, 2) m s21 so that f 5 908.

What we have found, surprisingly, and will shortly dem-
onstrate, is that the sensitivity of the function to ut/ub

is negligible. Furthermore, the following separated form
1/3P zv z vA 05 F (f)F , (18)f z21 2 1 2vu u ub b b

is a good approximation. Here, Fz is obtained diagnos-
tically from the phase averaged shear production from
the pure oscillation cases for different values of z0. A
semilogarithmic plot of Fz is obtained from calculated
oscillatory cases with no mean current flow and is
shown as the solid curves in Fig. 13 for a three orders
of magnitude spread in z0v/ub. The power, 1/3, intro-
duces a convenience for numerical interpolation pur-
poses, but physically it represents the fact that q is pre-
dominantly proportional to as discerned by inspec-1/3PS

tion of (4), and it is the increase in q and therefore KM

that affects the calculated velocity profiles.
Before testing this procedure and before determining

Ff, it is necessary to modify the law of the wall since,
with the added shear production, the relationship be-
tween q and ut in the law-of-the-wall region will change.
Now, from (10a,b) and l 5 kz, we obtain

]u ]y
(t , t ) 5 kS zq , ,0x 0y M0 01 2]z ]z

which can be integrated while incorporating z0 to obtain

(t , t ) z0x 0y(u, y ) 5 ln , z 5 z , (19)lw1 2kS q zM0 0 0

where 0 is the value of close to the wall. Actually,q q
(19) is more general than the stationary form of (12a,b)
and includes the standard situation when PA 5 0 and
SM0q0 5 ut. Note that 0 is intrinsically positive definite,q
whereas the definition t 5 | 0 | 1/2 is a relatively com-u t
plicated construct.

Calculations that include resolved oscillations are
compared with parameterized calculations—using the
phase averaged (9), (17), (18), and (19)—and are com-
pared in Fig. 14a for the case f 5 0; a best fit is obtained
when Ff 5 1.44. In Fig. 14b for the case, f 5 908, Ff

5 1.00 is obtained. Further comparative calculations
(not shown) for the intermediate values of f 5 22.58,
45.08, 67.58 show that the parameterized profiles and
the oscillation resolved profiles compare similarly to the
08 and 908 cases.

A straight-line fit for Ff between f 5 08 and f 5
908 would be acceptable, but a better representation is

F 5 1.22 1 0.22 cos(2f).f (20)

For ease of transportability, a curve fit (for Fz . 0;
otherwise Fz 5 0) is

2F 5 20.0488 1 0.029 17lz 1 0.017 03lzz

41 [1.125(lz 1 5) 1 0.125(lz 1 5) ]0 0

23 (20.0102 2 0.002 53lz 1 0.002 73lz ), (21a)

where
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lz [ ln(zv/u ) and (21b)b

lz [ log (z v/u ) (21c)0 10 0 b

and is shown in Fig. 13 as dashed curves.
Thus, to parameterize the effect of an oscillatory bot-

tom boundary layer, one simply modifies the computer
code that solves (17) and (19) and includes a subroutine
that uses (18), (20), and (21) to deliver PA as a function
of ub, v, f [provided by (15c) and wave amplitude
components and wall stress components], and z0.

6. Relation to the wave parameters

To use the results in ocean circulation models, wave
parameters might be determined from wave climatolo-
gies or empirical wind related relations. Better yet, the
ocean model should be wedded to a wave model.

For completeness we cite here the well-known wave
relation. Presuming that the wave field can be approx-
imated as a monochromatic wave with significant wave
height Hs and dominant frequency sp, then

(k , k )H g px pys21/2(u , u ) 5 8 , (22a)bx by s coshkhp

s hp
5 k h tanhk h, (22b)p pg

where kp is the wavenumber, h is the water column
depth, and the wave direction is specified by (kpx, kpy)/
kp.

Conversely, the apparent shear production formula-
tion, which here is input to the boundary layer submodel
of the circulation model, is dissipation information for
the wave energy equation (Komen et al. 1994). As dis-
cussed in appendix C, the wave dissipation is equal to
v Fz where Fz is given by (21). Spectral wave models2ub

require the vertically integrated dissipation; thus
dw

2 3D 5 vu F dz, (23)w b E z

z0

where dv bounds the region where Fz . 0.
After transforming from the linear z variable to a

logarithmic variable, and then made dimensionless, the
integration is carried out numerically to obtain

3log (z v/u , D /u )10 0 b w b

5 (26, 0.000 47, 25, 0.000 95, 24, 0.001 65,

23, 0.003 57) (24a)

or, approximately,
log (z v/u )10 0 bD 5 0.029 3 2 .w (24b)

7. Summary

In this paper, we first demonstrate that the M–Y tur-
bulence closure model is capable of simulating the os-

cillating flow data of Jensen et al. (1989) as has been
demonstrated in the past for other flows. The models of
Justesen (1991) and Brors and Eidsvik (1994) did equal-
ly well in simulating the same data but were not ad-
vanced to the case of combined mean plus oscillating
currents.

It is possible to temporally resolve the oscillations in
a one-dimensional model but computationally imprac-
tical to do so in a three-dimensional ocean model. A
new method has been determined to parameterize sta-
tionary calculations and the results have been compared
with the resolved profiles. The method calls for the ad-
dition of a term to the shear production in the TKE
equation while at the same time using the original rough-
ness parameter in the law of the wall. The method is
able to account for the effects of mean currents and the
oscillatory parameters for a fairly large parameter space.
A byproduct of this work is the determination of bottom
wave dissipation for use in spectral wave models.

In appendix D, the method, wherein an apparent
roughness parameter is used, is also determined as a
function of mean currents and the oscillatory parame-
ters; the results are compared with those obtained by
the theory of GM86. The apparent roughness can be a
couple of orders of magnitude larger than the actual
roughness, a problem discussed in appendix B, and can-
not describe the flow nearest the wall.

Although we have made reference to surface waves
in this paper, the flow researched here lacks a free sur-
face and there are no orbits and therefore no mean
Stokes drift component of the mean flow; there is no
‘‘streaming flow’’ (Longuet-Higgins 1953), the effect of
the bottom boundary layer in creating a wave Reynolds
stress in addition to the conventional turbulence stress.
Nevertheless, it is believed that the dissipation of os-
cillatory energy feeding into the turbulence kinetic en-
ergy equation, as quantified in this paper, should also
apply to the interaction of surface waves and turbulent
bottom boundary layers although there remain outstand-
ing research questions.
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APPENDIX A

Wall Boundary Condition

The purpose of this appendix is to detail how the
numerical velocity solutions are matched to

(t , t ) z0x 0y[u(z), y(z)] 5 ln , z 5 z . (A1)1/21 2kS q zM0 0 0

In our basic model, the grid is arranged so that z 5
0 and k 5 1 is at the top of the ocean and z 5 2H and
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FIG. B1. A comparison of stationary profiles using two forms of
the law of the wall, Eqs. (A1) (upper curve) and (B1) (lower curve):
z1/2 5 0.04 cm and z0 5 0.1 cm; 0x 5 0.004 m2 s22. Note that z1/2/t
z0 5 0.4; lesser values would be unstable using (A1) but stable using
(B1).

k 5 kb is at the bottom. For this paper, where the bottom
is the focus of attention and to simplify discussion, it
was convenient to transpose the grid so that z 5 0 and
k 5 1 denotes the bottom here and throughout the entire
paper. The grid is staggered such that turbulence quan-
tities are at the primary grid points, whereas the mean
properties, u and y, are in the midpoints of these points.
Thus z1/2 is defined here as the velocity grid point, half
a grid spacing from the bottom.

In POM and for the one-dimensional problem of this
paper, the solution is split so that the horizontal pressure
gradient, advective, diffusion terms and the Coriolis
term are included according to ũk11/2 2 5 2Dt 3n21uk11/2

(pressure gradient, etc.) and the vertical diffusion terms
are included according to 2 ũk11/2 5 2Dt 3 ]tx/n11uk11/2

]z. Here n is the leapfrog time step and k is the vertical
grid level. The step nearest the bottom may be discre-
tized according to

n11 n112Dt u 2 u3/2 1/2n11u 2 ũ 5 K 2 t ,1/2 1/2 M1 0x1 21 2z 2 0 z 2 z1 3/2 1/2

or, invoking (A1),
n11u 2 ũ1/2 1/2

n11 n11 n112Dt u 2 u u3/2 1/2 1/25 K 2 .M11 2[ ]z 2 0 z 2 z kS q ln(z /z )1 3/2 1/2 M0 0 1/2 0

(A2)

This implicitly relates to and constitutes then11 n11u u3/2 1/2

lower boundary condition to our problem and incor-
porates the roughness parameter, z0. Further numerical
details can be found in Blumberg and Mellor (1987)
and Mellor (1996).

APPENDIX B

Consequences of the Smallness of the Ratio z1/2/z0

If z1/2/z0 is less than unity then its logarithm is neg-
ative and one might suspect numerical difficulty. We
have run stationary calculations (ub 5 0) for a range of
t0 and found instabilities (the solutions would randomly
vary in time but never completely diverge), independent
of t0 when z1/2/z0 , 0.8 and stable solutions for z1/2/z0

. 0.9. We did not deem it important to refine the sta-
bility threshold, so we will say that the threshold was
z1/2/z0 . 0.85. This result was obtained without loga-
rithmically distributed bottom points. When the log
points were inserted at the bottom the threshold was
reduced to z1/2/z0 . 0.4. The fact that the threshold is
not unity is somewhat curious but that is the finding.
However, in practice, the difference between the exact
threshold and unity is not important. Note that this dis-
cussion applies whether z0 is that of sections 4 and 5
or the z0a of appendix D; the latter, however, can be
quite large. (Note also that solutions may behave nu-
merically for z1/2/z0 . 1 but the solutions can not be

assumed to be physically correct unless the ratio is
large.)

One can avoid instability by simple redefining (A1)
so that

(t , t ) z0x 0y[u(z), y(z)] 5 ln 1 1 , z 5 z . (B1)1/21 2kS q zM0 0 0

The log term behaves like ln(z/z0) for large z/z0, but
asymptotically approaches z/z0 for small z/z0 so that the
function is always positive. Together with (B1), the
model must be slightly altered so that KM [ SM0q(l 1
kz0), leaving the determination of l unchanged. Figure
B1 compares a calculation using (A1) and the unaltered
KM with a calculation using (B1) and the altered KM;
both cases have logarithmically distributed grid points
near the bottom. The difference between the two cal-
culations is small so the alterations in KM and (B1)
would seem to represent a good numerical strategy to
avoid instability. We did not invoke it in the main part
of the paper because there is some virtue in having z0

clearly represented as the u 5 0 intercept in many of
the plots.

APPENDIX C

Comments on Averaging

a. Mean currents

If we decompose KM, u, and y into their time averaged
parts denoted by overbar and the remainder oscillatory
denoted by primes, then from (9a,b)
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FIG. D1. (a) The apparent roughness to actual roughness ratio, z0a/
z0, as a function of ub/ t and the values, z0v/ub 5 1024 (dashedu
lines), 1025 (solid lines), and 1026 (dot–dashed lines). Within each
z0v/ub class, the three top-to-bottom curves are for f 5 08, 458, 908,
respectively. (b) The apparent roughness–to–actual roughness ratio
z0a/z0 from the theory of GM86.

z ]u ]u9
t 5 t 1 2 5 K 1 K9 , (C1a)x 0x M M1 2h ]z ]z

]y ]y9
t 5 0 5 K 1 K9 , (C1b)y M M]z ]z

where we continue to align the coordinate system so
that 0x $ 0 and 0y 5 0. By adding PA to the sheart t
production term in (17), we have in effect created a
parameterized KM, call it KMP, to yield very nearly the
same stationary ] /]z as in the resolved oscillatory so-u
lution. Thus, from (C1a)

K9 ]u9/]zMK 5 K 1 1 . (C2)MP M1 2K ]u/]zM

We have found that the factor in the square brackets is
very nearly Ff 5 1.44 when f 5 08 and must be iden-
tically 1.0 when f 5 908; thus, a partial explanation of
the behavior of Eq. (20). From (C1b), it can be seen
that ] /]z 5 /]z 5 0 when f 5 08 and f 5 908,y K9 ]y9M

otherwise ] /]z . 0 as shown in Fig. 10.y

b. Mean dissipation

The total dissipation (equal to the turbulence pro-
duction) is

]u ]u9 ]y9
D 5 t 1 t9 1 t9 . (C3)x x y1 2 1 2 1 2]z ]z ]z

Evidently, the dissipation of the wave portion is

]u9 ]y9
D 5 t9 1 t9 . (C4)w x y1 2 1 2]z ]z

We have made independent calculations of Dw [actually
D and then x(] /]z) is subtracted] and found negligiblet u
differences between these calculations and Fz for a range
of values of f and t/ub.u

APPENDIX D

The Apparent Roughness: Present Results
Compared with the Grant–Madsen Model

It is now almost conventional to account for the ef-
fects of oscillatory bottom boundary layers by replacing
z0 with an apparent roughness parameter z0a. This may
be a necessary approach if one’s boundary layer algo-
rithm is an eddy viscosity approach [in which case re-
instate SM0q0 with ut in (19a,b)] and therefore does not
invoke a TKE equation.

The ratio z0a/z0 is given by

z u z v0a t 02 1 5 F , f, ,1 2z u u0 b b

where F should vanish as ub/ t approaches zero. Sinceu

we are able to calculate temporally resolved oscillatory
boundary layers (e.g., Fig. 10), we can match the con-
ventional law of the wall to the phase averages of these
calculations. An algorithm was created to determine z0a

for the average of 90 resolved oscillating profiles so that
(21) could be evaluated. The results are shown in Fig.
D1a in log–log form.

Figure D2 is a comparison of the resolved solutions
(solid curves), and the parameterized solutions (dashed
curves) wherein the profiles are matched to the con-
ventional law of the wall using the z0a in Fig. D1a. The
corresponding laws of the wall are shown as straight
lines which intersect the u 5 0 ordinate. They do indeed
closely approximate the resolved solutions. The problem
is that a good deal of the solution for small z is not
available; this might be important to the sediment trans-
port problem, for example. Furthermore, the calcula-
tions can be unstable if the matching point, z, is less
than z0a, which can be two or more orders of magnitude
greater than z0. In fact, for the calculations of Fig. D1a,
the logarithmically distributed grid points near the bot-
tom were eliminated so that the velocity grid point near-
est the bottom is 1022 h and always greater than z0a,
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FIG. D2. A comparison of phase-averaged resolved solutions (solid
curves) with the parameterized solutions (dashed curves) using Eq.
(23) and the resulting apparent roughness in the law-of-the-wall
matching condition from Fig. D1a. The labels on the curves are 0xt
with the units, 1023 m2 s22. The oscillatory parameters are v 5 0.654
s21 and z0 5 3.06 3 1025 m: (a) f 5 08, (b) f 5 908. The short
straight lines (solid) and the longer lines (dashed) are law-of-the-wall
plots where z0 and z0a, respectively, are denoted by the u 5 0 inter-
cepts.

thus avoiding an instability. This instability problem is
researched in appendix B.

Next we compare the above results with results from
the well-known Grant–Madsen model as we understand
the model.

There are some details in Grant and Madsen (1979)
that have been superseded (O. Madsen 2001, personal
communication) by Grant and Madsen (GM86); the lat-
ter is therefore the basis of this summary unless oth-
erwise stated.

Two boundary layer regions are defined such that

t 5 ku* z(]u /]z) so that (D1a)c cw

u(z) 5 t /(ku* ) ln(z/z ) for z , d (D1b)c cw 0 cw

t 5 ku* z(]u /]z) so that (D2a)c c

u(z) 5 t /(ku* ) ln(z/z ) for z . d , (D2b)c c 0a cw

where u is the phase averaged current. Near the wall z
, dcw, the eddy viscosity ku*cwz is characteristic of flow
with a mean current plus an oscillating current. The

roughness parmeter, z0, equals ks/30 where ks is the
Nikuradse equivalent roughness and therefore ks or z0

represents the actual wall conditions. Far from the wall
z . dcw, the flow is governed by the conventional eddy
viscosity ku*cz, but with a boundary condition that uses
an apparent roughness parameter z0a, greater than z0

due to the underlying oscillatory flow. In both cases tc

is the mean shear stress in both law-of-the-wall regions
and 5 tc. (In this appendix we generally adhere to2u c*
GM86 nomenclature but notice that t [ u*c.)u

GM86 is a theory to provide and z0a. Thus if we2u cw*
match the velocities from (D1b) and (D2b) at z 5 dcw

we obtain, after some manipulation, that

12ez d0a cw5 , (D3a)1 2z z0 0

u*ce [ . (D3b)
u*cw

For pure oscillatory flow, it is known that that dw } ub/
v where ub is the orbital (but rectilinear) velocity near
the wall. For mixed oscillatory, mean current flow, two
assumptions are made. First,

d [ 2ku /v,cw cw* (D4)

and second

2 2u* 5 u* C , (D5a)cw wm R

1/22 4u* u*c cC [ 1 1 2 cosf 1 , (D5b)R 1 2 1 2[ ]u u

where is the maximum friction velocity due to the2u mw*
oscillatory flow and

fw2 2u* 5 u , (D6)mw b2

where f w is a friction factor for wave-induced oscilla-
tory flow and ub is the near-bottom wave velocity. [In
GM86 a factor, , was erroneously included on theÏCR

right side of (3) and then an adjustment was apparently
made in a subsequent definition of f w; O. Madsen 2001,
personal communication.]

Doing the algebra, the above results may be written

12ez u* u0a cw b[ 2k . (D7)1 2z u vz0 b 0

There are several prescriptions for f w in the literature,
one in GM86 (which I could not reproduce algebrai-
cally), a curve (dashed line in Fig. 4) in Mathisen and
Madsen (1996a) for which a curve fit (courtesy of Hy-
droqual Inc. and attributed to W. D. Grant) is

20.62f 5 0.23(A /k ) , A /k # 12.5;w b s b s

20.40f 5 0.13(A /k ) , A /k . 12.5, (D8)w b s b s

where Ab [ ub/v and one by Soulsby et al. (1993, where
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other relevant papers are cited), which is a curve fit of
a fair amount of data for pure oscillatory flow; thus,

f 5 0.3, A /k # 1.57;w b s

20.19f 5 0.002 51 exp[5.21(A /k ) ], k /A . 1.57.w b s s b

(D9)

In and around midrange, Ab/ks ø 1000, the two for-
mulations are in close agreement. Where they depart at
high or low values, (D8) agrees somewhat better than
(D9) with the data in Soulsby et al. and does not require
the cutoff on the left side of (D9), which prevents oth-
erwise unreasonably large values of f w for small Ab/ks.
We therefore have used (D8) in the ensuing calculations
from the GM86 theory.

For a fixed value of Ab/ks 5 3021ub/(vz0), f w is ob-
tained from (D8). Then for an fixed f and a range of
values of t /ub 5 u*c/ub, u*cw/ub can be obtained it-u
eratively from (D5a,b) and (D6) converging on an as-
ymptotic CR. (For f 5 08 the equation set is consid-
erably simplified and the iteration avoided.) Then values
of z0a/z0 are obtained from (D3b) and (D7) and are
plotted in Fig. D1b, which can be compared with Fig.
D1a. Generally, the curves in Fig. D1a are shifted to
the right and are more compact (less dependent on z0v/
ub) relative to those in Fig. D1b.
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