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ABSTRACT

Turbulence models centered on hypotheses by Rotta and Kolmogoroff are complex. In the present paper
we consider systematic simplifications based on the observation that parameters governing the degree of
anisotropy are small. Hopefully, we shall discern a level of complexity which is intuitively attractive and
which optimizes computational speed and convenience without unduly sacrificing accuracy.

Discussion is focused on density stratified flow due to temperature. However, other dependent variables—
such as water vapor and droplet density-—can be treated in analogous fashion. It is, in fact, the anticipation
of additional physical complexity in modeling turbulent flow fields that partially motivates the interest in
an organized process of analytical simplification.

For the problem of a planetary boundary layer subject to a diurnally varying surface heat flux or surface
temperature, three models of varying complexity have been integrated for 10 days. All of the models in-
corporate identical empirical constants obtained from neutral flow data alone. The most complex of the
three models requires simultaneous solution of 10 partial differential equations for turbulence moments in
addition to the equations for the mean velocity components and temperature; the least complex eliminates
all of the 10 differential equation whereas a ‘‘compromise’’ model retains two differential equations for
total turbulent energy and temperature variance.

We conclude that all of the models give nearly the same results. We find the two-differential-equation
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model particularly attractive.

1. Introduction

We undertake this study in the belief that it will pro-
vide a framework for a hierarchy of turbulent flow
models centered on hypotheses by Kolmogoroff (1942),
Prandt] and Wieghardt (1945) and Rotta (1951); we
hope to determine a model devoid of complications un-
necessary to predictive power. However, what we gain
by an organized process of model simplification could
be lost in a welter of semantics. At this time the kind
of models we are discussing are variously termed
“turbulent field” models (Daly and Harlow, 1970),
“mean turbulent field” models or “mean turbulent
energy” models (Reynolds, 1970; Mellor and Herring,
1973?%), “invariant” models (Donaldson and Rosen-
baum, 1968), or ‘“second-order” models. The last
designator is popular and simple but begs the question—
second order in what parameter? Here we supply an
answer to that question but at the same time require
more extensive nomenclature. Therefore, we introduce
semantically neutral model designators; Levels 1, 2, 3
and 4. The specific Level 4 version with which we begin
has been presented by one of us [Mellor (1973) hence-

t Support provided through Geophysical Fluid Dynamics
Laboratory/NOAA Grant E22-21-70(G).

2 Here, one will find the basic approach exploited in the present
paper. Similar thoughts toward model simplification have been
expressed by Deardorff (1973) and Donaldson (1973),

forth paper A; and Mellor and Herring (1973) hence-
forth paper B].

As a kind of table of content and referring to equation
numbers in the text, each model level is comprised of the
following equations in addition to Egs. (1), (2) and (3):

Level 4 | Egs. (4), (5), (6)
| Advection and diffusion=0/(a)
Neglect O(a?) terms
Level 3 | Egs. (20), (21), (22), (23)
Advection and diffusion= 0 (a?)
Neglect O(a? terms
Level 2 | Egs. (25), (26), (27), (28)
Neglect O(a) terms
Level 1 | Egs. (29), (30), (31), (32)

In the above, a denotes the degree of anisotropy such
that ¢ — 0 is the isotropic limit. Note that for a turbu-
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lent layer no physical process exists such that ¢ — 0 as
it does in the kinetic theory of gases where a— 0
as the mean free path approaches 0. One can only
assume that ¢ is small enough for present purposes and
then test the consequences of such an assumption.

History may be recognized in this hierarchy. Level
1 and 2 models in the neutral case bear direct resem-
blence to eddy or mixing length models utilized by
many investigators. For example, for density-stratified
flow, Level 1 relates somewhat to KEYPS (see, for
example, Lumley and Panofsky, 1964) type models.

A Level 2 model has enjoyed considerable success
(Mellor, 1973), compared to the surface layer data of
Businger et al. (1971). The model predicted a critical
Richardson number of 0.21 beyond which turbulence
was extinguished by stable buoyancy and seemed also
to give reasonable results in the unstable free convection
limit. Virtually no parametric adjustment was required
over and above that required by neutral turbulent flow
data [Similar success was reported by Lewellen and
Teske (1973); however, specific parametric adjustment
to accomodate stability effects seemed to be required
by them.]]

Models closely resembling Level 3 have been ex-
ploited in the case of neutral boundary layers (Glushko,
1965 ; Mellor and Herring, 1968; Beckwith and Bush-
nell, 1968; Ng and Spalding, 1972; and others) but
apparently have not been utilized in the case of strati-
fied planetary boundary layers, previous to this paper.

Models closely resembling Level 4 have been pursued
by Donaldson and Rosenbaum (1968) and Hanjalic
and Launder (1972) although the latter authors’ subse-
quent simplifications do not follow the methodology
developed here. The model recently proposed by Lumley
and Khajeh-Nouri (1974) might be classed as a Level 5
model. (Obviously, still higher order levels are possible.)
Although inspired by Lumley’s work the calculations
of Wyngaard ef al. (1973) are more nearly a Level 4
model.

All of the aforementioned models are unanimous in
including Rotta’s energy redistribution hypothesis.?

Clarke (1974) has recently surveyed and compared
a variety of older models much in the manner of this
paper. The models he tested most nearly conform to our
Level 1 or 2 models where, however, the stability func-
tions [.S3r and Sy in Eqs. (672, b)] are empirical ; here,
they can be regarded as theoretical extensions from a
base of neutral turbulent flow data.

The kind of turbulent field closure discussed here
might also be termed ensemble mean closure wherein
turbulent statistics can be defined as the average over
many realizations of a spatially and temporally local
variable or the time average of a variable in stationary
flow or the spatial average of the flow homogeneous in
one dimension. It is noteworthy that essentially the

3In the light of the present analysis we assert that this hy-
pothesis is implicit even in eddy viscosity or mixing length models.
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same model as that which we label Level 4 has been
used by Deardorff (1973) to model “subgrid-scale
turbulence” in fully three-dimensional and unsteady
flow simulations in which case the length scale [ adopted
here is made proportional to grid spacing.

In the present case a general prescription for I (which
automatically adjusts to each problem) seems illusive.*
We have, therefore, chosen a rather simple length-scale
function which we apply identically to the three model
levels 4, 3 and 2 for the problem of a planetary boundary
layer subjected to a diurnally varying surface tem-
perature.

Having satisfied ourselves on the relative merits of
the different model levels in the present paper, we plan
to continue further work in comparing observations and
predictions with the Level 3 model; it is sufficiently
simple and does not appear to compromise accuracy
relative to the Level 4 model.

2. Governing equations

Welet D( )/Di=Ud( )/dxx+a( )/3t (in this paper
the combination of advective and tendency terms will
be shortened to advective ferm). Then, the equations of
motion for the mean velocity and mean potential tem-
perature © are

U
=0, ¢y
6xk
DU; a - 4P
FeinifrUi=—(—mu;) ———g;80, (2)
Dt axk 6x,-
DB o __
——=——(—Mk0), (3)
Dt oxp

where P is the mean kinematic pressure, g;= (0, 0, —g)
the gravity vector, f;= (0,f,,/) the Coriolis parameter
(the vertical component will not be subscripted), and

= —(9p/0T)/p the coefficient of thermal expansion.
Molecular diffusive terms have been neglected. The
overbars represent ensemble averages; #; and 6 are the
fluctuating components of the velocity and temperature.

a. The Level 4 Model

The full mean Reynolds stress model equations (paper
A) are as follows:

Duu; 0 l‘ Ouu;  Ouuy  Ouy
q?\1< + + >:|
Dt ax,J_ A 0x; dx;
—oU; —_0U; 2¢
= —UrU; —U U ——51‘]'
Jx drr, 3 A

4 For example, we feel that the popular use of a transport
equation for dissipation to supply a macro-length scale is funda-
mentally incorrect.
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q 0ij oU; 9U; Thus, if u2=¢?, we have
—— wat;——¢* |+C1g* +— L
311 3 6x,» axi Dq2 3 aq2 6uiuk
e )
—B(guif+giub) Dt oml \ow o
+CoB (g +guf—3b:gaub) (4) ___8U; —
= — Qugt— —28gud—2—, (8)
Oxr Ay

DeE 9 06? __ 98
~———[qx2—] - —dw——217 )
Dt Ox xp dxe  Ag

Duf 9 ou  dud

)

Dt 0%k Xk dx;

= —umk———Huk——-—ﬁg,az———uﬂ—l-csg,BW (6)
axk axk 3l

Terms that have been modeled contain either /i, s,
C1, Cz or C3 [and are based on the energy redistribution
hypothesis by Rotta (1951)7, A; or A; [and are based
on the local isotropy hypothesis by Kolmogoroff,
(1941) 7], and Ay, Ay or A3 which are length parameters in
diffusion terms. As discussed in paper A several ten-
sorial forms are available for diffusion terms and we
have chosen one rather arbitrarily. (One attractive
feature of the Level 3 model is that all forms collapse
to identical expressions.)

In this paper, to simplify discussion we have not in-
cluded the Coriolis terms [ (et €initirm;) in (4)
and fyepmib in (6); within the boundary layer they are
relatively small.

Level 4 modeling consists of solving Egs. (1), (2), (3),
(4), (5) and (6). For a PBL—after the hydrostatic
approximation—this consists of solving 13 simultaneous
partial differential equations. All length scales are as-
sumed proportional so that

ll,l2= A 1Z,A zl,
Al,A2= Bll,Bgl.

(7a,b)
(7¢,d)

It should be noted that the values (A41,42,B1,B2,Cy)
= (0.78, 0.78, 15.0, 8,0. 0.056) have been gleaned from
neutral turbulence data as described in papers A & B
when, if I=Fkz, the stratified surface layer data of
Businger et al. (1971) were predicted quite well. The
constants, Cs, Cs, are the only coefficients specifically
related to bouyancy terms. We take Co=Cs5=0 as in
paper A. Here we also assume that Ag=XA,=2; and from
paper B we learn that \;=0.23].

ORDERING OF TERMS

To reduce the complexity of the Level 4 model we
wish to neglect or simplify terms in a systematic way.

Now Eq. (4) may be separated into an isotropic part
and an anisotropic part. The isotropic part 1s the energy
equation obtained by contracting (4).

whereas, if we subtract the product of (8) and 6;;/3 from
(4), we have

D 8 i) 3?74;' aM Oust
—.<Miuj—'_”k2)—"’—{g)‘1[ + {
Di 3 0y 0% 9x; 0%

5{,‘/3%12 Quty,
)
3\om.  om
—9U; ___aU; aU,
= —uu; Ul 28,000 ——
axk axk 6xk

—Bg 6+ g0 —35,;110)

l]( di 2>+C 2(6U¢+
—~—\ wiu;——q gl —
311 ! 3 ' 8x,-

We now define nondimensional departures from iso-
tropy, ai; and b;, so that

3
Uithj= (——+aij>qz; a;i=0,
3

ui0=biyq e,

U j) ©

Ax;

(10)

(11)

where =62 Using (10) and (11) we write Egs. (8) and
(9) as (12) and (13) in Table 1. Eq. (5) has no aniso-
tropic part and is repeated as (14) in Table 1 whereas
(6) has no isotropic part and is repeated as (15). We
now let I=0(1)=0(;) and A=0(A1)=0(A,), and
further define a?=0(a:?), U2=0[(0U./dx,)*], B2
=0[(99/3x,)*], B2=0(b?) and g?=g?

The ordering of each term in Table 1 is accomplished
in two steps corresponding to the two rows of terms
below each equation. It is our plan to assume that I/A,
@ and b are small and, in fact, we will show that a?
=0(?)=0(/A). The procedure is inspired by the
kinetic theory of gases where / plays a role like the mean
free path. Unlike the kinetic theory of gases, there is
no real limiting process I/A — 0 for a specific turbulence
problem.? Note, however, that we have already deter-
mined that /A=0.05-0.10 from neutral experimental
data and that this ratio apparently prevails for density
stratified flow (see paper A); similarly, we find that

8 As, for example in the limiting large Reynolds number process
(Yajnik, 1970; Mellor, 1972). On this point it should be mentioned
that all equations and quantities discussed here are considered
to be lowest order in inverse Reynolds number, ab initio,
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TasLE 1. Ordering of terms. The second rows of ordering parameters make use of Egs. (16a,b), (17a,b) and (18).

Dg¢ 9 5 aq? AU
B35 5 Sl 140@) | 2000l 2bugisge—2L (12)
Ug?/L Ug¥/L ag*Ue Bbgge  ¢*/A
¢/A /A ¢/A
D 3 qn 2.9 Ski 3 ) i
Do) =] BH{puelr S0, 2L 10t J= — o {%bou [ o0+ { %o } U
aUg/L qu/L PUL14+0(a)]
a7 '¢/A[1+0(a)]
au 9U:, aU
Sauaktaxk’ Ci (ax J)] Bye(gbitgd; —38i501) — a,, (13}
bBgeg aq’/l
@A a”g¢/A
Do 98] _ 90, g
Di axk[q)\%]— 2q<pbké—xk-—2A—202 (14)
U/ L Uet/L  qebO, get/A
gét/A qet/A
D of Oik @
m(quv) q7\a Fr (b:q<p)+—(bkq¢) =—¢\ 3tam )5~ q<Pbk — giB8— g2pb; /3l (15
bUge/L bUge/L 292[1-{—0(0)] qwaz g8¢* gieb/l

b'*e/AL1+0(a) ]

e/ bigtp/A big%e/A

a;2=0.15, a figure representing a sum of the squares of
all a;; terms whereas in each term of a given equation
only one component is generally operative. Thus,
although the parameters of this analysis are not as
small as one would wish (if they were, turbulence would
have been deemed simpler long ago), we assume that
meaningful approximations based on their smallness
can nevertheless be found. Furthermore, the procedure
lends consistency to model simplification which his-
torically has already been imposed by model builders
without benefit of guidelines—save intuition—and gen-
erally without regard to the relative ordering of all terms.

We now consider the first row of ordering terms and
temporarily let the flow be neutral (g=0). We first
assume that the first and third terms on the right side
of (12), i.e., production and dissipation, are dominant®
so that ag?U.=¢*/A and that the first and third terms
on the right side of (13) are also dominant so that
¢*U.= a¢*/l. Therefore,

a?=1/A, U,=a"g/A. (16a,b)

From (14) we have q¢b®,=q¢?/A and assuming the
first and last terms on the right of (15) are dominant
we obtain ¢?*@,=g2¢b/l. Therefore,

=1/A, O,=b"ly/A.
Obviously, a=b.

(17a,b)

¢ For near-neutral and stable flow, shear production and dis-
sipation are of equal order. However, if we consider the free
convection limit (3U;/dx;=0) and repeat the analysis, no change
in the final equations for Levels 4, 3, 2 is affected; a small correc-
tion to the final equations for Level 1 is required.

If we now allow buoyant energy production [the
second term on the right side of (12)] to be equal in
order to the other terms we finally obtain

gBe="b"1g?/A. (18)

Egs. (16a,b), (17a,b) and (18) may now be used to
established the second row of ordering terms in Table 1
which differ only by factors of @ or b or, equivalently,
factors of (I/A)%.

b. The Level 3 Model

We have postponed consideration of the advection
and diffusion terms. The advection terms are problem-
dependent. The diffusion terms are also uncertain
although from boundary layer experience’ we believe
that A/A=0(a?) and 9( )/dz=0(A") so that one
would guess that diffusion is of order a?¢®/A. Our ex-
perience is that the advection terms are also generally
small. Therefore, in Table 1 we have assumed the terms-
to be equal and O(Ug?/L) where L is temporarily unde-
fined. In Levels 3 and 2 we neglect O(a?) terms. How-
ever, to cover a range of possibilities we distinguish
between the two levels according to two assumptions
for advection and diffusion.

Here, for Level 3, we assume that

ug¢ ¢
—=g—.

L A

7 Accumulated from experimental laboratory boundary layer
measurements, and boundary layer models. See Mellor and
Herring (1968, 1973).

(19)
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Then after multiplying every ordering term in (13) and
(15) by @ and b, respectively, and after neglecting all
0O(a?) and O(#%) terms we obtain

Dg* 95 og __3U; ¢
—-————I:—q)\l——:l= — 2bsthi——— 2B gsurf—2—
Dt 0x,L3° 9w Ox Ay

(20)

by 3 AU;
wiy=-—q —-——I:(ukuz C 1q28h)—
3 q Xk

aU; _aUu,;
+(ua;—C U 5k1)“‘9__§5u“kul_—:l

Xk axk
L - _
—3-B(guib+giuf—3%5:;g0)
q

Ih 8 Tgh/ 9 A¢P 9¢”
+3- —4[———(51'1:—‘*'51%—"‘%61'7_—“)] (21)
q dxxl 3 ox; O 0

D 9 362 90 _
——————[qkz—]=~—2u;.6-— 225

(22)
Dt ox k axk ox % Aq
_9U;
U= —3— [u,uk———l-ﬁuk +ﬁgj02:l (23)
g dxx Oxg

Thus, Eqs. (4), (5) and (6), representing ten differ-
ential equations for all of the components, are reduced
to two differential equations and eight algebraic equa-
tions. Strangely enough, diffusion terms are retained in
(21), while not in (23); the diffusion terms in (21) are
known once (20) is solved. It should be noted that (21)
represents only five independent equations since #;
=¢% to which (21) reduces upon contraction.

¢. The Level 2 Model

The assumption here is that advection and diffusive
terms are higher order; that is, instead of (19), we
assume that

UqZ aaqa

L A

24)

Now the net effect of neglecting terms of O(a?) is to
neglect the left side of (20) and (22) and the last term
on the right of (21).

In order to easily identify this model we will repeat
the equations with the aforementioned simplifications.
Thus we have

q3 ___an
—= —uptti———Bgrui0,
A 0xx

(25)
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— by

hr —. U;
with;=-—q*—3— [(ukui—clq25ki)—
3 g d

77

- aU; - aU;
A (uru;—C 1q25kf)~———-5u%kuz—:|

Xk Axy

I - —
—3-B[ gub+giu0 —38,gmm87], (26)
q

q—0—2 00
—_——= —ukﬂ———, (27)
Az ax,.
_ a0 __aU;
0= —3— [ufuk——-i-ﬁur——-f-ﬂgﬂ’] (28)
g 0% dxx

When applied to boundary layers further simplifications
are possible in solving the now wholly algebraic equa-
tions (25), (26), (27) and (28).

d. The Level 1 Model

Discussion of this level is included mainly for his-
torical reasons. Referring back to (12), (13), (14) and
(15) we now neglect all terms of O(a), yielding

q3 —0U; —_—
—= —UrlU; —-nguk(?, (29)
A I,
8ij alU; aU;
;= —“q2 "_QZI( + ), (30)
3 axj 0x;
— Ay_00
f2= ——us6—, (31)
g Ox
S 90 36l __
U= —glo————g,0% (32)
o ¢

3. The boundary layer approximation

a. Level 4

The boundary layer or hydrostatic approximations to
(1), (2) and (3) are

AU oV oW

ox dy Oz
D U Uw dP/dx v

1
— |V |(+—| w [=—|3P/3y|+ | —fU|, (34ab,c)
Dt 9z
0 0 d0P/dz 260

DO owd

———=0. (35)

Dt 0z
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If we define the diffusion operators

a a
2 )= ) ] (36)
0z 0z
and the production components
—9U;
Pi=—wu—, (36b)
dz
the diagonal components of (4) may be written
ut u? P..
D — —
—| 9 | —=D1| v |=2| Pyy
Dt| — —
w? 3w? Bgwb
w—q?/3 1
q |- 2¢
——| 9*—¢*/3 |——]| 1 (37a,b,c)
3 3
wr—q*/3 1

Note that here it is easy to see that, if A, is fixed and
l1— 0, the flow becomes isotropic. The off-diagonal
components of (4) are

uy uY P,y+P,y.
m wu | =Dy | 2wn | =—| (@W—Cig?)oU/dz—PBgud
] — —_ - —
wy 2w (w?—C1g?) 9V /dz—Pgub
w
q | —
—— wu (38a,h,0)
3| —
wy
Eq. (5) may be written
De? — _90 q¢°
—— D= — 2wh——2—, (39)
Dt 0z A
whereas (6) becomes
uf uf ww
D| __ — __ |90
— v | —De| W0 |=—] w |—
Dt ___ . — | 0z
wl w6 J w?
qu'eaU/aq ud
_ g —
— | whdV/3z | ——| 0 (40a,b,c)
— 3|
L —Bgs? ) wb

BOUNDARY CONDITIONS

In this paper we restrict attention to horizontally
homogeneous flow so that D( )/Di=a( )/d¢ and the
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pressure gradients

AP/ dx Vy aru,
Do) o Al o
dP/dy —-U,d oLV,

Therefore, the outer boundary conditions are (U,V)
~(U,,V,) as z—w» and coincides with the condition
(wn,wv)~0. It will furthermore be stipulated that all
other turbulent moments vanish as z— .

In setting surface boundary conditions we wish to
be certain that they are compatible with the differential
equations.

We now assert that any viable model for the length
scale / must have I~%z as z— O, where & is a constant
(and where we have, in fact, contrived our definitions
of 41, By, etc., so that & will emerge as von Kdrman’s
constant). We view this as governing the inner asymp-
totic behavior of our model which itself is an outer
functional representation of the complete layer.?

In the absence of a full asymptotic analysis (a fully
rough inner layer is hard to represent) we augment the
assumption, I~kz as 2— 0 by assuming temporarily
that all turbulent moment functions are regular as
z— 0 so that, after multiplying all terms by 2z, the left
sides of (37a,b,c), (38a,b,c), (39) and (40a,b,c) vanish
as 2— 0. If we define u,* and « such that

—wu Cos a
— =ur’ )
—wp Jieo sin &

(_—ZE@) 2=0= H7

(42a,b)

(43c)

these statements seem sufficient to establish that

U ur 3z cosa
l: :l~—— ln<—)[ :l as z—0, (44a,b)
14 k % /L. sina

H 2
0—-00)~—P>P, In— as z—0,

(45)
kur 20t

where % is the von K4rméin constant; P.=A1(y1—c1)
<+ (Ayy1) is the turbulent Prandtl number where 71

=%3—2A4,/By; and 2, %o, are empirically determined
surface roughness parameters. Furthermore, we obtain

¢*(0)=Bud, (46)
u 1 4 cos?a—2 sin’u
”? g%(0) |1 Ay |4 sin?a—2 cos?
J— = +q2 (0)_— )
w? 3 1 Bi|—2
w0 ) oo 0 —6 sina cosa
(47ab,c,d)

8 Asymptotically in the limit as 20/6 — 0 where 2 is the charac-
teristic length scale of the inner (surface) flow [z, will later be
specifically designated as the roughness height. For a smooth

surface z9=v/ur; see Mellor (1972)] and & is the outer boundary
length scale.
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sob <= -
4o}
30}~ ~Zo~
S =9.0450R¢)%2
S =1-5.57 R} N\ -
1 A1 ! 1 L L H‘L 1 1 1 1 | 1 L 1 !
16 214 -12 -10 -8 -6 -4 -2 [} R‘
M08 970 .83 693 .555 -416 278 140 0 R
Fi16. 1. The stability functions Sy and Sy as functions of Ry or Ri as defined (67a, b).
The inset is a detail near Ry=Ri=0,
uh 34, cosa D(¢*/2) 5 ¢ — ¢
2] = ] s D= Purt Pytfged——,  (50)
0 d.—0 BI% sina Dt 3 2 Aq
. B, D(6%/2) o 6? B _068 g6* 51)
2(0)=— —P,,. (49) ot YA
u2 B 1§ 3 2
290 ®S
Another way of stating what has happened here is that 286
the differential equation for the turbulent moments is ¥ 282
a second-order equation in 2z with a regular singular 78
point at 2=0. One solution is regular; the other is not. 2741 ot SN
We have rejected the singular solution in prescribing vy
(46)—(49). Having understood the situation on this 2 (Wols
simple basis we now note, using (44a,b) in (34a,b) for z a A
example, that all of the moments are not regular but s SS———
behave like a;-+aqz Inz+asz . . . as z2— 0. Nevertheless, L (b)
further analysis shows that the above results prevail. e S
In the sample computations discussed in Section 5 the 0 2 4 6 8 0 12040608 2021
frictional velocity #, and o were obtained from (44) "
utilizing U, and V at 3=2,(=2.5 m). Then the heat flux g sl - —
at the surface H was computed from (45) utilizing © S uf e ©

at 2=z, and u, obtained above. The boundary values
for the turbulence moments are obtained from (46),
(47), (48) and (49). Boundary values for U, V, ® are
then obtained at z=2(=0.32 m) from (44) and (45).

b. Level 3

Egs. (33), (34a,b,c) and (35) apply at this level.
However, the boundary layer approximations to (20)~
(22) are

{DEGREE)

@

L . L L I 1 L '
8 10 12 14 16 18 20 22 24
HOUR

10L

I U N |
0 2 4 6

Fic. 2. Surface variables: (a) surface potential temperature,
(b) heat flux, (c¢) friction velocity, and (d) angle included be-
tween geostrophic velocity vector and surface stress vector.
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LEVEL 4U

T

T
U=18 m/sec

18

0 4 8 12 16 20 24

TTT T TT T U %

L
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F1G. 3. Mean wind component parallel to the geostrophic velocity vector.

The diagonal terms of (21) may be written

ut 4P, —2P,,—28gwh

1

q2 ll —_—

o =3 1| 4—|—2P,.44P,,—28gwd
1

w? N —2p,,—~2P,,+4Bgwd
2
3
L
__®1q2 %
q 4
—3

b

(52a,b,c)

where it is noteworthy that diffusion terms survive,

but may be determined diagnostically once (50) is

solved.

The off-diagonal terms are

uv Pyz+qu

~ | wu =3—i (@E—Clqz)dU/é)z—-ﬁg;E . (53a,b,c)
— q| — _
Wy (w?—Cg®) 8V /oz—Lgvl

Finally (23) may be written
ud wwd O/ dz-+whadU/ oz
— 21— —_—

20 | =3~ {vwdO®/dz+whdV /32

— q)— —_
wo %290/ 3z —pBgf*



OcrToBER 1974 GEORGE L. MELLOR AND TETSUJI YAMADA 1799

T T T T

= T T ¥ = TIYyypTvTT T U T
LEVEL 4:V V=0 m/sec

1238

P

60]2\
1

\%_L
T

4 0 4 8
TTTTTTT

2500

i 1
2000 ﬂ
1500
1000 l
12
500 g 18
0 11 i i
0 6 12 18 0] 6 12 18 0 4 0 4 8

(m/sec 1)
F1c. 4. Mean wind component normal to the geostrophic velocity vector.

All but ww, mw, w6, ¢% and 6 may be eliminated (but —wh=A[{(¢?+3D)) —641(PsstPyy)}
obtained later diagnostically); the following compli- —
cated but prognostically useful expressions are obtained : X(00©/032)—3Bgg6* ]+ (¢°+12414,18430/3z)  (56)
— (wu,wo)= AL (1—3C) 5+3¢2D,;—98gA21*{44,Cg*  where
+A45(¢*+3D,)}00/32-+9(8g)*qA o1*(44 1434 5)6%]
+[g*+64.2%*| dV/9z|?
34, A52{Tgt—184,4,02| 3V /35|? [0V/32]2=(aU/32)*+-(aV /02)%.  (58)

ol 9V . .
4364 14 102(82)00 /92 90/0z (_ _) 55a,b Surface boundary conditions given by (44a,b), (45),
14:1*(5) 30/ 92} (8) 96/ 9z 9z 9z ( ) (46) and (49) are now all that are required.

9 dg*
iD/E%A 1l——[>\1q———:|, (57)
a9z 0z
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this is identically a region of zero turbulence intensity.

¢. Level 2

Level 2 equations correspond to (52a,b,c) with the
diffusion terms neglected and (53a,b,c), (54a,b,c);
instead of (50), (51), however, we have more simply

¢ U 93V __
—= —yw——uw—-+Bgwh, (59)
Ay 9z 9z
g0> 90
= —wl—. (60)
Az d2

It is possible to solve (52), (53), (54), (59) and (60)
and present results in a number of forms. We define
the flux Richardson number

R;= —Bgwl/(PaztPu); (61a)

it is also convenient to define
I'=R;/(1-R), (61b)

which is the ratio of negative buoyant production to
total energy production. Then we obtain

- _ [oU oV
—(uw,vw>=lqu(—,—), (62a0)

dz 0z

— _ 00
—wl=1gS—, (63)
where
- 71—C1—(6A1+3A2>F/Bl

Su=341 (’Yr—’YzF), (64a)

71—72I‘+3A 1I‘/B]_
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Su=2343(y1—7.T),
v1=3%—(241/By), v2= (Bs/By)+(641/By).

In this formulation ¢ is obtained from (59) and Ig then
has the form of an eddy viscosity modified by the
stability functions S3r and Sy which are functions of R;.

The critical flux Richardson number is determined by
the condition

(64b)

y1—y:I'=0, (65a)
or using (61a,b,c) we obtain
Y1 B1—64,
Rye= = (65b)

vity: Bi+3By+124;

For (44,B1,Bz)= (0.78, 15.0, 8.0) we have R;,=0.21 as
the Richardson number above which turbulence and
mixing cease to exist.

Alternatively, in a more traditional format, we may
write

3000F L
LEVEL 4:9°
2500 p
2000
1500

1000

500,

25001~ '4
1

2000
1500/

1000

25001 .

2000 .

1500

1000

500

o

F16. 6. Turbulent kinetic energy.
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Fic. 7. Temperature variance.

R AUNE  /aV\* 7} U oV
—(wu,wv) =l2|:<~—) -I-(—) :I SM(——,‘) (662)
0z 9z dz dz

- AUN? [OVN\*T} 00
—w0=l2[<—) +<~> :' So—, (66b)
9z 0z 9z
where now _
Su=B}(1-R,)iS,3 (67a)
Su=Bi}(1—R )15, (67b)

It should be noted that Sy, Sx or Su, Sy may also
be determined as functions of the gradient Richardson
number, Ri=[Bgd0®/3z]X[(dU/3z)2+ (3V/3z)2],
since Ri= (S3/S#)R.% Since the turbulent Prandtl
number, Sy/Sp=~1.04 as R;—0.21, we also have
Ri— 0.22.

® From which one can determine that
R;=0.725[Ri-0.186— (Ri2—0.316 Ri+4-0.0346)%],
using the previously cited values of 41, By, 43, Be, C).
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Fic. 8. Reynold stress component parallel to
geostrophic velocity vector.

The functions Sy and Sy are plotted in Fig. 1 and are
compared with simple linear relations obtained asymp-
totically from (67a,b) for Ry— 0 and Ry — — .

The result, neatly summarized in (67a,b) when
specialized to the constant flux layer, has been shown
by Mellor (1973) to predict the Kansas surface layer
data of Businger e/ al. (1971) with considerable
accuracy.0

d. Level 1

Effectively, Level 1 does not yield further substantive
simplification but is included here for completeness.

If (29), (30), (31) and (32) are reduced to the bound-
ary layer approximation, we obtain (59) and (60) again,

10 Tn the constant flux layer, we let I =kz, —wu=u,2,—wv=0and
—wg=H. We define opu=rksu,~aU/3s), on=rksu.H1(00/0s)
and {=z/L where L=u,3(kgBH)™" is the Monin-Obukhov length
scale. It is then easy to show that om=Su"t, ou=SuxSk™! and
¢ =ouR;. The data were presented in the form ¢ (¢) and ¢x (£).
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whereas (30) and (32) yield
aU aVv
( wu” —m) = qll<— _>; (683':b)
9z 9z
_ 90 Bg—
—wh=qly——3l,—62, (69)

dz q

Egs. (59), (60), (68a,b) and (69) also reduce to the form
(66a,b), except that we now have
= 4,(4:B1)Y(1-R))}, (70a)

Ry

B,

SH=A2(A131)1’(1—RI)*I:1_3—— :I (70b)
B 1-R;

Using the aforementioned values of A., A,, Bi, B

we find the coefficient A1(41By)t=A2(41B;)¥=2.66,

whereas Bi/B1=0.53. Sy limits to zero at R;=1.0

3000- T T T T T T T |
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2000+ R
15001

1000+

5001

3000F T
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10001

5001
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F 16. 9. Reynold stress component normal to
geostrophic velocity vector.
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whereas Sy limits to zero (due to the term in brackets)
at R;=0.38. Thus, the result expressed by (70a,b)
differs significantly from that given by (67a,b) as
plotted in Fig. 1. We expect the latter to be correct as
detailed by Mellor (1973).

4. Length scale stipulation

All of our results thus far are independent of a pre-
scription for I(z) except for the fact that I~kzasz— 0
which was used in conjunction with our discussion of
boundary conditions. Note also that the critical
Richardson number is not dependent on /, but only on
the constants of proportionality of the various length
scales or, more precisely, on the ratios A1/l;=B1/4; and
A2/11= Bz/A 1, &S see€n in (65b)

However, to proceed toward concrete calculations
we must now stipulate the entire function I(z).

There have been a number of proposals for equations
to provide [, as reviewed in paper B, all of which are on
considerably shakier ground (in our opinion) than is

3000 T T T T T T T -

LEVEL 4:wg
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10001~ B
500} .‘
/ \% -
ol °3; ,é?w i 1 Le- 03 03 0% X
0 6 0
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Fic. 10, Heat flux.
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the basic model given by (4), (5) and (6). Hopefully a
more persuasive prescription for / will be determined in
the future.

In the following calculations we have adopted Black-
adar’s (1962) interpolation formula

ks
1kl

which interpolates between two limits I~kz as z— 0
and I~l, as z—o. Various propositions for /, have
appeared in the literature; they range from stipulating
a fixed number characteristic of an atmospheric surface
layer to stipulating proportionality to U,/f where U,
is the geostrophic velocity. The latter would not yield
proper turbulent Ekman similarity, a fact which could
be corrected by using u./f instead. However, in either
case, the scaling would be unique to the fact of the
problem being a low-Rossby-number, stationary,
neutral boundary layer problem.

(71)
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At this stage, our thinking is to adopt the simplest—
but hopefully general—length scale, characteristic of
the extent of the turbulence field. We therefore form
the ratio of the first to the zeroth moment of the profile

g(z). Thus
/ 2qdz
0

ly=o——,

/ qdz
0

where « is an empirical constant (and is the only im-
portant constant which we feel is not well known at
this stage). We have set «=0.10. This value yields a
steady, neutral Ekman layer whose height is slightly
greater than 0.30 #./f (see Fig. 14), a value which is
uncertain from observations since the conditions neces-
sary for a steady, neutral layer are rare in nature. A
goal of future comparisons of prediction and data will

(72)
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be to use one of the model levels to evaluate a which,
presuming the distribution (71) is valid [and it is known
that calculated profiles are fairly insensitive to variants
of (71) so long as its z— 0 behavior is maintained ], gov-
erns the velocity profile distribution of a neutral layer.

5. A comparative calculation

We will not show comparisons between data and ex-
periments in this paper; rather, we will compare the
calculated results of the various model level using simple
boundary conditions. One can then enter into a data
comparison program with some feeling of model sensi-
tivity to internal sophistication and complexity.

However, the case we have chosen to investigate is
drawn from Clarke ef al. (1971) but has been simplified.
Here the geostrophic wind velocity aligned in the x
direction is set at a constant value of 18 m sec™; the
Coriolis parameter is f=0.88X10~* sec™, and the
roughness parameter zo=35 cm. Initially, the potential
temperature is given by 0 (2,0)= 285K for 0<z< 1000 m
and 0 (z,0)= 285K+ (0.0035K m~1)(z—1000 m) for
1000 m < z. The initial velocity field is computed accord-
ing to the steady-state equations for the neutral con-
ditions. Thereafter the gound temperature is allowed
to vary according to Fig. 2a. Note that the ground tem-
perature is the only unsteady boundary condition.

We allow the calculations' to proceed for 10 days
with the ground temperature repeating cyclically every
24 hr. The computed field properties require about 3
days before one could say that they are approximately
cyclical. For example, during this time the imposed
inversion layer has eroded from a base of 1000 to
2000 m (approximately equal to the neutral Ekman
layer height) after which no significant change is
observed.

In Figs. 2b-d we have plotted the resultant surface
heat flux, shear stress magnitude, and the angle formed
by the (constant) geostrophic velocity vector and the
surface stress vector for the tenth day.

Generally speaking model Levels 4, 3 and 2 (we did
not think it worthwhile to make use of Level 1) yield
very much the same result with, as inferred by the fore-
going ordering analyses, the difference between the
Level 4 and 3 results being less than the difference
between the Level 3 and 2 results. This fact is also
apparent in the detailed comparison of Figs. 3-13.

Figs. 3, 4 and 5 show the computed mean horizontal
velocity components and potential temperature; all of
these quantities approach the surface values logarith-
mically. Also shown plotted in Fig. 5 is a shaded region
where Ri2>0.21. For the simpler Level 2 model this
is a region where all turbulence moments are iden-

11 The calculation scheme was basically implicit; 60 vertical
grid points were in the region 5200 m >z> 1000 m whereas 20
points were spaced logarithmically in the first 1000 m. Generally
the time increment was 1 min, although 10 min was tried success-
fully for Levels 2 and 3.
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tically zero; for the higher level models this is not the
case.

In Fig. 3 the velocity component in the direction of
the geostrophic velocity indicates minima and maxima.
The maxima correspond to the so-called “nocturnal
jet.” The height of the jet is seen to decrease toward
morning. It is about 800 m at 2200 and decreases to
about 300 m at 0700. According to Bonner (1968) our
result may be classified as a Criterion 1 jet, whose
maximum wind must be greater than 12 m sec™ and
maximum-minimum difference should exceed 6 m sec™
All three results in Fig. 3 resemble each other, but the
one from Level 2 gives a slightly more intense jet than
do the other two. The difference can be explained by
considering the diurnal variation of the friction term
in the equation of motion as discussed by Blackadar
(1957). According to Blackadar’s argument, a nocturnal
jet is produced by the inertial oscillation of the wind
vector decoupled from the surface layer. Decoupling
of the layer is the result of the disappearance of turbu-
lent Reynolds stress. Indeed as we will see later the
turbulence diminishes above 500 m at 2100 and the
boundary of zero stress decreases with time until noon.
The sharp cutoff of turbulence in Level 2 permits a
completely free inertial oscillation of wind wherever
Ri>0.21 and this is very nearly true with the Level 3
and 4 models.

Fig. 5 reveals the large mid-altitude homogeneous
regions (constant potential temperature) above which
is the stationary inversion above 2000 m. A surface
inversion is created between the surface and 600 m by
cooling between 1800 and 0800; this inversion is sub-
sequently destroyed from the surface upward by heat-
ing between 0800 and 1800. Between 1500 and 1800
the entire layer is essentially neutral allowing turbulent
production up to 2000 m as seen in Fig. 6. This may
also be seen in Figs. 7-10 where some of the turbulent
moments are presented (no! shown are the 1nd1v1dual

%2, 1 and ?, the off- -diagonal cormponents, uv, and the

heat flux components, %6 and v6).
Fig. 11 shows the behavior of I(z,f). The value , from
(72) may be readily discerned as the large 2 asymptote.

Values of Kuy.=—uw/(0U/d2) and Kp=—wb/
(9©/82) were computed diagnostically and the results
are shown in Figs. 12 and 13. In the case of Levels 2
and 3, Kuy,=Kuy, is, @ priori, a scaler. For Level 4
Kz and Ky, were not equal but the difference was
insignificant.

Discussion of one feature of the model has been
postponed to this point. In Levels 2 and 3, we have in-
sisted that K be positive definite; for Level 2, this is
simply accomplished by setting Sy=Sg=0 when
R;=Ri>0.21; for Level 3, whenever a negative value
of K, was calculated, it was reset to zero. In the Level 4
calculations, no special conditions were imposed and
diagnostically computed Kjs values were negative in
local regions as shown in Fig. 12a, Note that negative
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values of eddy viscosities have been reported by
Eskinazi and Erian (1969) in locally inbedded regions
where the stress and velocity gradients are small.

In Levels 3 and 4, Ky may, in principal be negative
and is so, as seen in local reglons in Fig. 13.

The components, #2, ¢* and %? should, of course, be
positive definite. This turns out to be true in practice
everywhere in the Level 2 calculation and very nearly
so for Levels 3 and 4 where, however, small negative
values appeared between 0700-0800 (after a discon-
tinuity in the tendency of wall temperature) at a couple
of grid points.

6. Conclusion

A hierarchy of turbulent models has systematically
been derived from the same empirical base. Although
we have not presented all of the numerical results or
diagnostic numbers, an examination of these numbers
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indicates that the ordering system used in discriminat-
ing among the various model levels is in fact valid.

For the numbers that have been presented and the
particular problem we have solved, it may readily be
concluded that the very simple Level 2 model is quite
adequate although there is some advantage in going to
Level 3. There appears to be very little incentive to add
the eight additional differential equations required by
Level 4.

All models display the remarkable property whereby
turbulence is nearly extinguished (and precisely so for
Level 2) at a gradient Richardson number of 0.21.

Velocity profiles in similarity form are shown in Fig.
14 along with a stationary neutral profile. This plot,
in particular, indicates sources of difficulty in interpret-
ing experimental data; for example, the identification
of “pure” neutral stationary Ekman layer data has
proven difficult. Furthermore, the determination of the
height of the layer and the geostrophic velocity might
be deceptive if data up to say 1500 m were all that were
available. Comparison of data and calculations will be
forthcoming in the future where the calculations them-
selves should provide guidelines for the proper location
of boundary conditions.
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