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ABSTRACT

A second-moment, turbulence closure model is applied to the problem of the dynamic and thermodynamic
interaction of sea ice and the ocean surface mixed layer. In the case of ice moving over a warm, ocean surface
layer, melting is intrinsically a transient process; that is, melting is rapid when warm surface water initially
contacts the ice. Then the process slows when surface water is insulated from deeper water due to the stabilizing
effect of the melt water, and the thermal energy stored in the surface layer is depleted. Effectively, the same
process prevails when ocean surface water flows under stationary ice in which case, after an initial rapid increase,
the melting process decreases with downstream distance. Accompanying the stabilizing effect of the melt water
is a reduction in the ice-seawater interfacial shear stress. This process and model simulations are used to explain
field observations wherein ice near the marginal ice zone diverges from the main pack.

When the surface ice layer is made to grow by imposing heat conduction through the ice, the surface ocean
layer is destabilized by brine rejection and mixing in the water column is enhanced. The heat flux into the water
column is a small percentage of the heat conduction through the ice.

1. Introduction

In model simulations of the dynamics and ther-
modynamics of sea ice, interaction with the ocean has
virtually been ignored (Hibler, 1979) although, in the
important marginal ice zones, heat transfer from the
ocean is an important process in determining the lo-
cation and physical characteristics of these zones. Re-
cently, Hibler and Bryan (1984) coupled an ice model
with an ocean model; no attempt was made to resolve
or model the ocean surface layer, the region of direct
interaction between the ice and ocean, but they did
cite the need for more realistic boundary layer for-
mulations.

A simple dynamic and thermodynamic model of
the ocean surface layer under a melting ice pack has
been provided by McPhee (1981, 1982, 1983). He rec-

ognized the role of density stratification and incorpo-

rated known properties of turbulent boundary layers
as they are understood from laboratory data. The main
deficiency was that the model was a steady state model,
which probably provides good estimates of the solutions
of the Coriolis-dominated momentum equations but
which has difficulty estimating the thermodynamics.
In this paper we will show that, in the case of melting
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ice overlaying warm water, the thermodynamic process
is inherently a transient process.

Josberger (1983) also provided a thermodynamic
model of the melting ice problem wherein the eddy
heat diffusivity was parametrically related to wind
stress. Aside from the fact that the model was also a
steady state model, his assumed temperature distri-
bution was not realistic, and through analytical error
(in computing an Obukhoff length) he concluded that
density stratification was not important.

In this paper we introduce a model that is first con-
strained to horizontally homogeneous fields but which
is unsteady. The solutions are then shown to approx-
imate steady flows that are inhomogeneous in one space
coordinate. Solutions are obtained numerically and
depict the evolution of temperature, salinity and ve-
locity fields and the evolution of surface stress and melt
rate. We use a second-moment turbulence closure
model to provide mixing coefficients that respond to
vertical, velocity and density gradients.

Close attention is given to the interfacial ice-sea
boundary conditions wherein it is necessary to combine
conventional turbulent boundary layer methodology,
involving the law of the wall and roughness parameters,
with the proper energy and salinity balances associated
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with ice melting or freezing in response to the atmo-
spheric or oceanic environment.

2. The governing equations

We first consider the problem where all properties
are horizontally homogeneous. The equations for ve-
locity (U, V), temperature, T, and salinity, S, are

Swn o, U)——[KM W, V) (1a, b)
oT 8 oT]
o - [( g @
os s S]
v = az[(KH+ as) 3z 3

where ¢ is time and z the vertical coordinate; z = 0 will
be positioned at the ice-seawater interface and water
will occupy negative z-space. Here fis the Coriolis pa-
rameter, and K, and K are the turbulent mixing coef-
“ficients for momentum and any scalar variable, about
which more will be said later. Although we plan to
solve (1a, b), (2) and (3) for large enough negative z so
that Ky > a,and Ky > ag, we nevertheless include the
molecular diffusivities, a, and ag, in (2) and (3) as a
reminder that continuity with the interfacial flux must
ultimately involve molecular diffusion.
We let the boundary conditions for large negative z°

be
(U, 1) ~0, z->—co (4a, b)
I'~T,, z—>—- (5)
S~S8p, z—>—00. (6)

Note that (1a, b) and (4a, b) can be easily modified to
include a deep-water geostrophic velocity.

Near the interfacial surface, law-of-the-wall behavior
is assumed such that,

(o= U, Vo— V) =— (—-kfy—)l n 2, ~z=z (7a,b)
F, z
To—T=——In— —
0 ku, n Zo’ Z=>2y 6]
F -z
SO—S=—Eiln7m, —Z—> 2, 9)

where (Uo, Vo), To and S, are properties at z = 0—,
(rd, Ty %) is the kinematic surface-stress (dynamic stress
divided by density) vector, ©,*> = [r,? + 7,%]'%, and F,
and F; are the surface heat and salinity fluxes. The
application of (7a, b), (8) and (9) as —z = z, is a math-
ematical formalism since the profiles given by these
equations are only valid when —z » z;. Note that our
ignorance of the very-near-surface flow processes is
subsumed in the empirical roughness parameters, zg,
Zo. and zo,. It will be shown, however, that z,, < z, and
205 < Zgp.
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In appendix A, it is shown that (7a, b), (8) and (9)
are valid asymptotically for small | Wy/u,| where W is
melting (negative value) or freezing (positive value) rate
and is represented as a vertical velocity at z = 0 (see
Fig. 2). Also, for small | Wy/u,|, vertical advection terms
can be neglected in (1a, b), (2) and (3). Later, our cal-
culations will show that Wy/u, = O(1073).

a. Turbulence closure model

The turbulence closure model of Mellor and Ya-
mada (1974, 1982) is embedded in the numerical
model; we use the so-called level 2%z version of the
closure model. Although one must refer to the papers
cited for a complete account of model derivation, we
provide brief commentary here in response to reviewer
requests.

The closure model begins with the prognostic equa-
tions for all six components of the Réynolds stress ten-
sor and for the three components of the heat and sa-
linity (when applied to the ocean) flux vectors. Closure
hypotheses for the pressure, velocity gradient correla-
tion tensor (following Rotta, 1951a,b) and the dissi-
pation tensor (following Kolmogorov, 1941) are
adopted and extended to similar terms involving den-
sity fluctuations. Terms such as those for all stress and
flux components and for shear and buoyancy produc-
tion appear quite naturally and do not require mod-
eling. Turbulent diffusion terms are also modeled but
are not of primary importance. Model constants are
determined from neutral laboratory data. An early ap-
plication of the model (Mellor, 1973) yielded Monin—
Obkhov similarity relations in close agreement with
near-surface, atmospheric boundary layer data. The
complete model calling for the solutions of prognostic
equations for all stress and flux components was labeled
the level 4 model. Mellor and Yamada (1974) then
developed a procedure to approximate the full prog-
nostic equation set in order to reduce their number
and reduce complexity and computational cost. As
summarized by Mellor and Yamada (1982), level 3, 2
and 1 models now exist, but somewhat as an after-
thought, a level 2Y, was defined and is used here. This
requires prognostic equations for g2, twice the turbu-
lence kinetic energy and g*/ where [ is a turbulence
macroscale; it is approximately proportional to the in-
tegral of the velocity correlation function and is delib-
erately scaled so that, adjacent to a surface, it is asymp-
totically equal to Prandtl’s mixing length as the surface
is approached. Vertical mixing coefficients for velocity
and temperature (or any scalar) are provided by the
relation (Kys, Ky) = Ig(Sys, Sk). The values Syrand Sy
are stability coefficients and are functions of /2[0U/dz)*
+ (8V/92)*)/9* and I*py~'[8p/9z]/q>. Here, p is density,
defined by an equation of state, p(7, S), and pg is a
reference density. It is assumed that the Reynolds and
Peclet numbers are very large; a result is that K is also
the vertical mixing coefficient for salinity and, in fact,
for any other scalar property.
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b. Surface boundary conditions

In this paper we will provide the option of specifying
surface boundary conditions for either ice velocity or
interfacial shear stress. The latter option is simplest
and we consider it last. We will also need to specify T
and S, as surface boundary conditions. Note, however,
that the model requires boundary information at some
arbitrarily small distance away from the surface where
the model-generated mixing coeflicients and equations
(7a, b), (8) and (9) are valid. Therefore, since, (7,
1) = Ky oU/oz, 0V/dz), F,= —Ki{(3T/dz) and F;
= —Ky(8S5/8z), the surface boundary conditions for (1a,
b), (2) and (3) may be obtained from (7a, b), (8) and
(9). Thus,

w-uvi-v) . (8U v\
e, In(—2z/zp) 9z’ 82) » TET R
(10a, b)
(To—T) ., T
ku, _ln(—z/zo,) H 3z’ Z=> 2y (1 1)
Go=S) _ 4, 95 2. (12)

"In(~z/z0) 0z’

For Eq. (10a, b) we immediately assume that velocity
is continuous across the ice-seawater interface so that
(Uo, Vo) = (U,', t/,) Thus, with (Ui, I/,), To and S() as
input information, Eqgs. (10a, b), (11) and (12) provide
mixed Neuman-Dirichlet boundary conditions relating
U(z), V(z), T(z) and S(z) and their derivatives. Nu-
merically, these boundary conditions are applied to
the first grid point, z, nearest the interface where —z
> 2. The variables K, Ky, To and Sy are evaluated
from the previous time step. Furthermore, z; ~ (height
of roughness elements)/30. The remaining unknowns
in the surface boundary conditions are Ty, Sy, ¥,, zo
and zp; and will be discussed in the following sections.

We will also show results of calculations where, in-
stead of (U;, V;), surface stress is the dynamical bound-
ary condition, in which case the surface stress com-
ponents replace the left sides of (10a, b).

¢. Interfacial thermal and salt balance

Figure 1 is a schematic of the equilibrium seawater,
ice-phase diagram for a material volume, which is a
volume enclosed by a material surface through which
mass flux is everywhere null. Ice supports negligible
quantities of salt in its crystalline structure (Weeks and
Ackley, 1982), and therefore, the freezing process must
be accompanied by salinity flux through the material
surface. However, in a not-so-slow, nonequilibrium
process, the sea ice can trap brine pockets, and there-
fore, the average salinity can be nonzero.

We write a heat balance for a vanishingly thin control
volume—rather than a material volume—surrounding
the sea ice—seawater interface. This is illustrated in Fig.
2. Thus,
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FI1G. 1. Equilibrium phase diagram for ice-seawater, delineating
regions of seawater, seawater-ice mixture (shaded region) and ice.
The areal extent of the latter region is exaggerated; ice crystal structure
accommodates only negligibly small concentrations of salt. The solid
line is the freezing transition interface whereas the dashed line is the
melting transition interface. The horizontal arrow illustrates a constant
temperature freezing process for a material volume (enclosed by a
material surface through which the mass flux is everywhere zero) that
requires heat flux and salt flux out of the material volume.

poWoho + poCpFy = pi Wihi+ poCpQ;

where the subscript O refers to the seawater side of the
interface (z = 0—) and i to the sea ice side (z = 0+), p
is density, W the vertical velocity of water crossing the
interface, and 4 the enthalpy. We define poC0Q; as the
heat conduction through the ice and therefore define
Q; in a way that will simplify notation. We now note
that po Wy = p; W, so that

WoL+ F,= Q;. (13)

We will refer to W as the freeze rate (positive (quantity)
or melt rate (negative quantity) although the quantity,
poWolp: = 1.09W, is often assigned this definition in
the literature. In (13) sensible heat has been neglected
so that sy — h; is the heat of fusion, which we approx-
imate as L = (hy — h;)/co = 80°C (1 — S/So), where S;
is the average salinity of the ice; the factor (1 — S;/Sp)
approximately accounts for brine pockets in the ice,
assuming that the pockets were trapped at the salin-
ity, So.
Again referring to Fig. 2, we write a salt balance
according to
F; = Wy(S;— So). (14)

If F, and F; are eliminated from (8) and (9) using (13)
and (14), we obtain

Wl—0, -z

To—T= 15

0 7 . (15)

So—S= Wog—q_—SDIn —_z (16)
kur Zos

The final equation is the freezing transition interface
To=mSy; m=—0.06°C/(%o). (17)
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RG. 2. Schematic of the properties (upper panels), fluxes (middle panel) and interfacial advection and

flux balance (lower panel) for (a) temperature and (b) salinity. The subscript i denotes values on the ice side
at z = 0+ whereas the subscript 0 denotes values on the water side at z = 0—. The shaded portion represents
an indefinitely thin control volume surrounding the seawater, sea-ice interface.

Thus, given T, S at z (numerically taken as the nearest
grid to the surface where —z > z;) and also Q; and S;,
then (15), (16) and (17) can be solved for T, Sp and
Ws. An equation for Ty or S is obtained by combining
the three equations; the result is

To = mSo

LR+mS;+ T—[LR+mS;+ T)
—4m(TS;+ LRS)]'"?

= > (18a)
where
~ . Qi (-zZ
T=T K ln( Zo,) (18b)
pr=10(=2/70) (18¢)

In(—2z/zqy) )

Equation (18a, b, ¢) may be used in conjunction
with (10a, b), (11) and (12) to provide the interfacial
boundary conditions and (4a, b), (5) and (6), the free-
stream boundary conditions, as (1a, b), (2), (3) are in-
tegrated forward in time. The melting or freezing rate
is found diagnostically from either (15) or (16).

d. The roughness parameters

For sufficiently rough surfaces, z, is related to the
actual height of roughness elements and is not a func-
tion of molecular viscosity. This is due to the fact that
Reynolds stresses away from the surfaces are equal to
surface integrals of the component of pressure acting
normal to the rough surface in the mean flow direction.
Since this form drag has no counterpart in scalar equa-
tions, the flux of temperature or salinity must reduce
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to molecular diffusion at solid surfaces where the nor-
mal component of turbulence velocity is null. Note
that the representation, Fr = —a(87/9z),- in Fig. 1 is
simplistic. The right side should more accurately be
written as a surface integral of —a,87/dn over the rough
surface divided by the area projected on a z-plane; here
dT/dn is the temperature gradient normal to the rough
surface. In view of this, one supposes that zy, = fen(a,,
U,, Zop) or zoud,/a, = fon(zou,/a). A similar form can
be written for zg,. Sverdrup (1951) and Sheppard (1958)
suggested the simplest possible forms for scalar prop-
erties, which in the present application are

=% :
Z= o (19)
Qs
Zos = T (20)

and may be obtained by assuming that the molecular
-and turbulence diffusivities are additive so that, for ex-
ample, Fy; = —(Ky + «,)87/3z where Ky = ku,z and
then integrating from z = 0 to an arbitrary depth while
holding Fj constant. This seems overly simplistic, but
Garrett and Hicks (1973) after examination of consid-
erable data find (19) acceptable.

Since o, = 1.31 X 107" m?s™' and ag = 7.40 X 1071©
m?s™! and for, say, u, = 0.01 m s/, typical values are

o =327 X 103 mand zp, = 1.85 X 107" m

e. Steady, inhomogeneous boundary layers

For steady, two-dimensional boundary-layer devel-
opment, wherein properties are invariant in the y-di-
rection, the governing equations are

oU 0W
6x+ dz (21)
Ua—U-I- W——fV —fV,+ ( %—L-I) (22a)
UZ—V+ W——+fU JUg+ ( Z—V) (22b)
oT oT o
U—+ E—g;(K 6—:) (23)
8S i)
U'—" &—5;(1( af) 24)

where (U,, V) is the (constant) geostrophic velocity.
Flow under fast ice is considered so that the ice velocity
is zero. As z = —oo we have U ~ Uy, V ~ V,. Figure
3 is a sketch of the flow.

A good approximation to the above equation set is

oU Ie) 0
U S~ V= —ng+a—Z(KMa—‘z’) (252)
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FIG. 3. Schematic of steady boundary layer growth under stationary
ice. Solutions for this case may be obtained from the unsteady hor-
izontally homogeneous solutions via the transformation cited at the
end of section 2. (a) Hodograph of the layer profile. (b) Projection
of the profile on a vertical plane normal to the ice leading edge. The
dotted-dashed curve signifies growth of the layer thickness.

v i) a
Ugg);+fU=ng+5;(KMa—‘z/> (25b)
T 9 d
U"&—&(K”a_:) (26)
as 9 ;)
Ug&—a—z(KH:,g). 27

The physical reason why these equations are a good
approximation to (22a, b), (23) and (24) is that tur-
bulent profiles do not vary greatly except very close to
surfaces. [It turns out that the approximation is quite
good even for laminar boundary layers; for example,
compare the Raleigh solution and the Blasius solution
(Schlicting, 1975): the profiles are quite similar and the
growth rates differ by about 25%.] For turbulent
boundary layers Mellor (1972) shows that the approx-
imation is exact in the limit of infinite Reynolds num-
ber. The point of this is that all of the solutions obtained
according to (1a, b), (2), (3), (4a, b), (5), (6), (10a, b),
(11) and (12) apply to the above equations such that,
if we assign asterisks to the variables in (25a, b), (26)
and (27), x* = Ugt, U,d( )/dx* = &( )/dt and (U,*
VY =(U+ U, V+ V).

3. Model calculations

For all of the cases discussed in this section the initial
salinity is set at the constant value, 34%0 above 50 m;
below 50 m a halocline is established. This is below
the depth of significant stress penetration (~0.51,/f)
for any of the surface stress values that we will en-
counter in this paper. In fact, when melting is enabled,
wind-stress penetration will be further inhibited, as we
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see shortly. The calculation is actually carried down to
a depth of 80 m. We use a vertical grid with 100 grid
points with closer spacing near the surface. The inte-
grating time step is 15 min. This resolution is much
more than necessary; halving the number of grid points
or doubling the time step produced negligible change.
However, so long as the calculations are one-dimen-
sional, the computational costs of fine resolution are
not of consequence.

The surface will be forced by both surface (ice) ve-
locity and stress, where, in both cases, only the x-com-
ponent will be nonzero. Rigorously, it is only in the
former case that the transformation, discussed in sec-
tion 2, can be applied without approximation; in the
latter case, one must be willing to approximate the re-
sultant ice velocity as a constant to effect the transfor-
mation.

The ice velocity or interfacial stress will be ramped
up from zero over one inertial period and held constant
thereafter; it can be shown that this results in minimal
inertial oscillations due to the start-up process.
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a. The case of zero melt/freeze rate

The case of zero melt rate can be obtained by setting
Q:; = 0 and by setting the initial temperature at
—2.04°C. This thermodynamic state is located on the
freezing transition interface in Fig. 1. With vertical ho-
mogeneity and no melting or freezing, vertical density
gradients will be null and boundary-level turbulence
will not be influenced by gravity.

We first force the flow with ice velocity which, after
the first inertial period, is (0.20, 0.0) m s™'. Figure 4
depicts the evolution of velocity, twice the turbulence
kinetic energy and the vertical eddy viscosity. ‘

We have also calculated the case where the flow is
forced by an imposed surface stress. Since the surface
velocity is, after the start-up period, very nearly con-
stant in time, the velocity-forced case and the stress-
forced case are nearly equivalent for the same stress
modulus except for details near time = 0. Figure 5
shows plots of drag coefficient defined as the surface

stress vector modulus divided by the square of the ice

U \'4
oT = © S
H 77N —
LU '
.04 \ \ / o/
5 F5] \ 4 -.04
\ A
v s
i\
\
€ 1o . - 101 \
— \\
= \
a 0: \
A s N T —— 1 5] \ . :
\ /’ \\ —
N AN ——
\ N
201 L 20 5 //
Cl=.02m/s Cl=.02m/s
25 T T T T T T T T T T 25 T T T T T T T
0 1.0 20 3.0 40 50 o 10 20 3.0 40 5.0
TIME (L.P.) TIME (1P
q? Km
° \ \/—\_/—w ¢
. .01
5 0005————T 5 -
E 107 L 104
xr
N
8 151 151
204 '0002\./\/\/—\__,. 204
C.1=.0001m?/s2 CL=.002m%/s_]
25 T T T T T T T - 25 T Al T T T T
0 1.0 20 3.0 4.0 50 0 1.0 2.0 3.0 4.0 50
"TIME {I.P.)

TIME (1.P.)

FIG. 4. Boundary layer development for zero melt/freeze rate where the initial temperature is constant at —2.04°C. Above 50 m the

salinity is constant at 34%; below 50 m a stable halocline is established. The flow is forced by an imposed ice velocity, which is ramped up
from zero through one inertial period and then held constant at the value, (U;, ¥)) = (0.20, 0.0) m s™. The top panels are the velocity

components. The bottom panels are twice the turbulence kinetic energy and the vertical eddy viscosity. The temperature and salinity fields
are unchanged from their initial values.



NOVEMBER 1986

MELLOR, McPHEE AND STEELE

6.0 T T T T T T T T T 90 T T T T T T T T T
50 - 75 —
. 4.0 -1 ~ 60 -1
g S ¥
x 30H| - e 4 « 45 —
S || e - 5
20 -4 < 30 -
10K - ~
0 | | ! ! ] ] ] ] L1 I ] 1 1] 1
0 1.0 2.0 3.0 40 5.0 1.0 2.0 3.0 4.0 5.0
TIME (IP) TIME (IP)
6.0 T T T T T T T T T 90 T T T T T T T | T
50 - 75 -
a0} 4 ~ 60 —
& &
= =
x 30 < 45 =
o =4
3 =
< 20} = 3 A
1.0} — 15 ~
0 | 1 1 1 1 § { | | | 0 1 1 | 1 | t 1 i | [
0 1.0 20 3.0 4.0 5.0 1.0 20 3.0 4.0 5.0
TIME (IP) TIME (1P)

FIG. 5. The drag coefficient and the angle between the surface stress and the ice velocity vectors when the initial temperature is —2.04°C.
The top panels correspond to Fig. 4 (long dashed lines), where we also include surface velocities of 0.10 (short dashed lines) and 0.40 (solid
lines) m s~'. The bottom panels correspond to cases forced by surface stresses of 1.0 (short dashed lines), 2.0 (long dashed lines) and 4.0

(solid dashed lines) cm? s~2.

velocity vector modulus and the angle between the
stress and the ice velocity vector, the so-called veering
angle. The top panel are results for the surface velocity-
forced calculations whereas the bottom panels are the
surface stress-forced calculations. The differences are
small, unlike the corresponding, stratified cases dis-
cussed below. For steady, neutral flow, the drag coef-
ficient and veering angle may be reduced to

Ca= k*{[In(u,/fz0) — A + B*}™! (28)
a=tan™'{B/[In(u./fz) — A1} . (29)

The present model produces neutral profiles where 4
= 1.8 and B = 2.3. Thus, the variations in C, seen in
Fig. 5 are due to variations in the parameter, u,/fz,.

b. Cases of nonzero melt rate

Figure 6 depicts a case where the initial conditions
are the same as before except that the initial temper-
ature is 0.0°C and therefore warmer than the freezing
transition temperature. We again drive the flow by set-

ting the ice velocity (U;, V) at the value, (0.20, 0.0) m
s~!, after the previously described ramping process. We
contrast these results with the case in Fig. 7 where the
kinematic, surface stress, (7, 7,°), is ramped and then
set to the final value, (2.0, 0.0) cm? s2. In all cases
melting was delayed for two inertial periods to allow
for the establishment of a very nearly steady flow. We
envision that this procedure will approximate a sharp
front of warm water moving under an ice edge or ice
moving over a stationary warm front. In either case
the procedure will have established an initial wind-
driven mean velocity and turbulence field in the water
column in a simple way. This is idealized input to the
problem but, nevertheless, input resulting in a response
that is easily comprehended.

Drag coefficients, veering angles and melt rates, nor-
malized on u,, corresponding to Figs. 6 and 7, are
shown in Figs. 8 and 9, respectively. We also include
in the latter figures a range of surface forcing values
and cases for an initial temperature of 2.0°C.

Prior to the initiation of melting, the turbulence en-
ergy and mixing coefficients are relatively large. Then,
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FIG. 6. Boundary layer development with melting ice where the initial temperature is 0.0°C. The flow is forced by an imposed surface
(ice) velocity, ramped up from zero through one inertial period and then held constant at the value (U;, ¥}) = (0.20, 0.0) m s™'. Melting is
enabled after two inertial periods. The top panels are the velocity components. The middle panels are twice the turbulence kinetic energy
and the vertical eddy viscosity. The bottom panels are temperature and salinity.

melting creates a surface buoyancy flux and a new,
much shallower mixed layer. The differences in mixed-
layer depth in Figs. 6 and 7 are primarily due to the
fact that, in the former case, #,> = 1.1 cm? s7? and
‘decreases after melting begins (see C, in Fig. 8), whereas
u,> = 2.0 cm? 572 in the latter case. In both cases the
mixing coefficients are reduced from the neutral values

due to decreases in the turbulence energy, the turbu-
lence length scale and the stability factor, S, Melt
rates are similarly reduced.

A striking feature of both Figs. 6 and 7 is the creation
of inertial oscillations; however, in Fig. 6, the oscilla-
tions occur only below the newly created, stable pyc-
nocline whereas, in Fig. 7, they occur above and below.
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To explain these behaviors we refer to the equations
of motion in complex form, 81/t — ifii = 7/9z, where
d=U+iVand 7 = 1, + ir,.

' Below the newly established pycnocline, the mixing
coefficient, and therefore 37/3z, decreases to zero in a
time interval much shorter than an inertial period. As-
suming an instantaneous decrease, the solution is i,
exp[if(t — t,)] where @, and ¢, are the initial velocity

and time at the time of the decrease in shear-stress
gradient.

Above the new pycnocline, in the case of Fig. 7, the
surface stress is unchanged but the stress at the new
pycnocline has very nearly vanished; therefore, the
shear-stress gradient increases. The same analytical so-
lution prevails here with the addition of a complex
constant and with an appropriate .
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Above the pynocline, in the case of Fig. 6, the surface
velocity is held constant; the subsurface velocities are
also approximately constant so that inertial oscillations
are precluded. This requires that the surface stress de-
crease to maintain a nearly constant shear-stress gra-
dient.

This single-frequency, inertial motion is idealized,
of course, due to impulsive initiation of melting and
the assumption of horizontal homogeneity. Neverthe-
less, the basic mechanism is likely to prevail in nature;

it is a process related to the nocturnal jet in the at-
mospheric boundary layer.

¢. The freezing process

To examine a freezing case, the model was initialized
as it was in the case of no melting or freezing; i.e., the
initial thermodynamic state is located on the freezing
line and the flow is dynamically forced by ice velocity
= (0.20, 0.0) m s~'. To produce freezing, heat con-
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duction through the ice is specified as poCpQ; = 60 W
m~2. This rate is typical of that found due to atmo-
spheric and radiational, wintertime cooling but is very
much smaller in absolute magnitude than the heat
fluxes obtained from the melting ice calculations.
Results of the calculations are shown in Fig. 10. Here
we show greater depths to emphasize that the flow is
weakly unstable and the turbulence penetrates to the
top of the pynocline, which is slowly eroded. On the
time scale of this calculation the mean velocity does
not differ greatly from the neutral case of no melting
or freezing even though the mixing coefficient is sig-

nificantly increased in the middle of the layer; there,
the velocity profiles are fairly flat.

In the previous melting cases we had set Q; equal to
zero so that the heat flux, F;, and salt flux, F,, were
linearly related to the melt rate as described by (13)
and (14). In the present freezing simulation, F, is a
negligible fraction of Q; since the ice temperature and
the temperature of the water column are very close.
Theref;ore, the freeze rate, W, is constant at 1.46
cmd .

Throughout the mixed layer the calculations pro-
duced a small amount of supercooling, implying the
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creation of frazil ice. The process may be understood
as follows. Over the domain of the model the average
change in salinity is the time integral of the surface
salinity flux, since there is no flux at the bottom. Sim-
ilarly, the average change in temperature is the time
integral of kinematic heat flux. If the entire water col-
umn started at its (surface) freezing point, it will remain
on the freezing line if the ratio of surface fluxes,
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{W'T" Y/(W'S" )0, is equal to m. This will be true only
if the eddy diffusivities and surface roughnesses for heat
and salt, zy, and zyg, are equal. In the model, the tem-
perature surface roughness is larger than the salinity
roughness, which means that across the surface layer
heat is transported faster than salt, supercooling the
water column. The effect is small. In these calculations,
if the supercooled water were restored to equilibrium,
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the amount of frazil production amounts to only a half
percent of the total. We tried several simulations in
which we also varied the ratio of salinity diffusivity to
heat diffusivity in the range 0.25 to 1.0, obtaining a
maximum supercooling between 0.003° and 0.004°C.
Nevertheless, the question may be more than purely
academic. Lewis and Perkin (1983) document a num-
ber of cases in which the upper boundary layer of the
Arctic Ocean was supercooled (relative to surface
freezing temperature) by as much as 0.006°C. They
attributed the phenomenon to melting of pressure ridge
keels at depths where the actual freezing point is de-
pressed relative to the surface by about the observed
amount. While that explanation seems plausible, our
work indicates that, if turbulence is slightly more ef-
ficient at transporting heat than salt, an additional su-
percooling tendency will occur even under flat ice.

There is considerable interest in frazil ice formation,
since it appears that a large percentage of Antarctic sea
ice is consolidated frazil (Gow et al., 1982; Clarke and
Ackley, 1984). At this time, we do not understand this
finding. It is possible that the ice formation at the ice—
sea boundary of our model, which we conceive of as
being congelated ice, is, in reality, frazil ice.

Omstedt and Svennson (1984) model frazil produc-
tion in brackish water with a direct air-sea interface
and carry their calculations to the point where a solid
cover begins to form, which is about where we start.
Another important distinction between the problems
is that because the salinity in their case is small, their
regime is stabilized by freezing rather than destabilized
by salt flux. In appendix B, we show how the model
may be generalized to include dynamic formation of
ice concentration.

4. Ice drift observations and model calculations

In this section we apply the one-dimensional, ocean
boundary layer, ice model to the interpretation of a
remarkable set of measurements made in the Bering
Sea marginal ice zone during March 1981 by Martin
et al. (1983; henceforth referred to as MKP). We briefly
recap the observations here. Two buoys equipped with
radar transponders were initially positioned near the
ice edge (which was reasonably well defined at the time)
and then tracked by ship’s radar for about a day and
a half. During this time a limited band of ice, on which
the buoys lay, diverged from the edge and eventually
melted some distance seaward of the main pack in wa-
ter well above its freezing point. During most of the
time of the monitored drift, winds were north-north-
easterly with fairly steady speed.

By comparing positions with another buoy deployed
about 80 km farther into the pack, and by considering
wind/ice drift characteristics reported by McPhee
(1982) for the central Arctic, MKP showed that the ice
carrying the buoys drifted faster than ice in the interior
would normally drift under the same wind conditions.
They hypothesized that wave radiation pressure acting
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on the upwind (iceward) edge of the band caused its
acceleration. Wadhams (1983) proffered essentially the
same explanation for this commonly observed ice-edge
divergence under the action of off-ice winds. Alterna-
tively, McPhee (1983) suggested that ice-edge diver-
gence in water above its freezing point was mainly due
to stabilization of the ocean boundary layer caused by
rapid melting, and he formulated a steady state, analytic
similarity model for the ice-ocean boundary layer to
show that conditions in the Bering could lead to the
observed divergence. Josberger (1983), to the contrary,
argued that boundary layer stability was unaffected by
ice melting even when extreme turbulent heat flux at
the navifacial interface caused rapid ice melt. However,
we have already seen that melting does induce stabi-
lization.

Specifically, we now show that the time-dependent,
numerical model described in this paper corroborates
McPhee’s hypothesis in that PBL stabilization from
ice melt can account for much of the divergence in the
MKP data. Although the one-dimensional model ap-
plied to an inherently two- or three-dimensional system
like the marginal ice zone obviously fails to address a
number of important questions, it is, we believe, pos-
sible to show that the buoyancy mechanism is impor-
tant in determining stress (in addition to its importance
in determining melt rate).

The problem is best posed by considering the actual
drift monitored by MKP (see their Fig. 6 for the buoy
trajectories) and the wind measured at the nearby re-
search vessel. Using the complex demodulation pro-
cedure described by McPhee (1984), we fitted radar
position fixes for buoy velocity, then removed the
semidiurnal clockwise and counterclockwise tidal mo-
tions. Total and filtered fitted velocity for buoy KURT
are shown in Fig. 11, for the period 67.0 to 68.75 (i.e.,
0000 GMT on 8 March 1981 to 1800 GMT on 9 March
1981). The drift of buoy JERAL was essentially similar.
The complex demodulation requires end segments of
approximately 6 hours each, so in what follows we
consider the 30-hour period from 67.25 to 68.5.

Ice-edge divergence is shown in Fig. 12a. The vector
marked “I” is the displacement of buoy KURT (with
tidal effects removed) from day 67.25 to 68.5. The vec-
tor “W? is the average wind during the period, shown
as an accumulated displacement divided by 50; a com-
mon rule of thumb, corroborated by numerous obser-
vations, is that pack ice drifting freely (with no internal
stress gradients) in the central Arctic Basin drifts at
about 2% of the surface wind speed. If this were the
case in Fig. 12, “I” and “W” would be of equal length.
Finally, the vector marked “fd” is the integrated dis-
placement from hourly calculations of the “freedrift”
force balance,

pihfU;, = V) = PaCIOIUaI( U, Vo) — pol7x, Ty) (30a)
(7%, 7y) = C4U;|(U; cosa + V; sina, V; cosa — U, sina).
(30b)
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FIG. 11. Buoy KURT velocity components (in cm s™') for the
period, day 67 to 69. Solid lines are fitted velocity assuming clockwise
and counterclockwise semidiurnal tides; dashed lines are velocity with
tidal components removed.

In the above equations p;, p, and pg are ice, air and
water densities; (U;, V) is the ice velocity vector relative
to underlying geostrophic flow and |U;| its modulus;
(U,, V) is the 10 m wind vector and |U,| its modulus;
h is ice thickness and fthe Coriolis parameter; Cy, is
the surface wind drag coefficient. The drag coefficient,
Cy4, and veering angle, «, are obtained from Egs. (28)
and (29) wherein z; is the under-ice roughness length;
for this calculation the values 4 = B = 2.0 were used
based on summertime drift observations from the cen-
tral Arctic during AIDJEX. We have also used the em-
pirical combination of C,y = 0.0027 and z, = 10 cm,
which was found to be appropriate to the AIDJEX
study.

To this point, the analysis of MKP parallels the de-
velopment here; however, they extrapolated from the
Rossby similarity stress—velocity relation to reason that,
since the ice was moving rapidly, the stress at the ice—
ocean interface must be large relative to the wind stress,
requiring a residual term in the balance of forces acting
on the ice. They attributed this residual to surface wave
radiation stress.

30.0 Km

fd

(a) ) (b)

FI1G. 12. Ice displacement (I) and integrated wind displacement
divided by 50 (W) for the period 67.25 to 68.5, along with integrated
free-drift displacement for (a) zo = 10 cm, and (b) zo = 1 cm.
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F1G. 13. Wind, ice and free-drift displacements as in Fig. 12a,
along with calculated model surface (ice) displacements. M1 is with
zo constant (10 cm); M2 is with zo = 10 cm at day 67.75, decreasing
to 1 cm at day 68.25 and thereafter maintained constant.

Suppose, instead, that the characteristics of the tur-
bulent boundary layer change at the ice edge so as to
reduce oceanic drag. In that case, the ice will drift more
rapidly. A plausible candidate for reduction in oceanic
boundary layer drag is smoothing of the under-ice sur-
face by melting. Figure 12b is like Fig. 12a except that
the under-ice surface roughness, zy, is equal to 1 cm
instead of 10. This produces the right magnitude of
drift, without some of the objections of the wave ra-
diation stress argument (e.g., failure to account for form
drag force on the leading edge as a floe moves relative
to the underlying boundary layer). However, it over-
looks two important observational facts: 1) the ice not
only moves faster than interior ice, it also deflects
farther to the right of the surface wind; and 2) it melts
rapidly.

The first observation is difficult to reconcile with
reducing drag merely by reducing the size of roughness
elements. Rossby scaling of the boundary layer shows

2e T
— V (Nerth)

-]
Observed (dashed) and Model (M2) Components (cm/s)

FI1G. 14. Smoothed model (M2) surface velocity components
compared with smoothed observed velocity (in cm s™').
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that as the surface roughness scale decreases relative
to the natural boundary layer scale, both drag and
veering decrease. This is evident in Fig. 12 (see also
Figs. 8 and 9) where the turning angle for the free drift
displacement is less in case b. The increased deflection
angle is also hard to explain if one invokes enhanced
forcing from wave radiation stress, or from higher wind
stress. Either force would align with the surface wind
and would tend to reduce the drift angle. _

The importance of rapid ice ablation is that surface
buoyancy flux is proportional to melt rate and, by
analogy with other planetary boundary layers, buoy-
ancy will have a major impact on PBL dynamics
(McPhee, 1981, 1983).

Using wind measured during the Bering Sea exper-
iment, we simulated the ocean boundary layer with the
one-dimensional model described in section 2. For
consistency with the previous free-drift calculations,
we specified the 10 m wind drag coeflicient as 0.0027.
Equation (30a) again represents the ice dynamics.
However, in this calculation the drag relation between
the interfacial stress and the ice velocity is obtained
from the model and not from (30b).

For surface roughness, we considered two cases. In
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the first case, we held z, constant at 10 cm, again to
be consistent with the previous free-drift treatment. In
the second case, we decreased z, linearly from 10 to 1
cm during the same interval of time period when the
water column was warmed; our reasoning is that rapid
melting would significantly smooth jagged pack ice
edges and reduce its large apparent roughness.

The model was initialized as follows. Ice thickness
was set at 1.5 m. Water column salinity was set to 32%
in a 40-m deep mixed layer, below which a constant
salinity gradient was specified so that the Brunt-Viisild
frequency was 0.02 s™!. Temperature was set uniformly
to the mixed-layer freezing point. To simulate with the
one-dimensional model the effect of ice drifting over
water that is above the freezing temperature, we uni-
formly heated the water column so that the deeper wa-
ter, unaffected by turbulent heat exchange at the in-
terface, rose from freezing to 1°C over a 12-hour period
beginning at day 67.75. This approximates the ship’s
surface temperature record as shown in Fig. 12 of MKP.
The ship drifted slightly ahead (downwind) of the ice
band. The model was started from rest by imposing a
wind stress that ramped linearly over 12 hours from
zero to its value at day 66.5 in order to avoid inertial

m n aN @ [\
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o [} o @® [ -]
("] ® w L w
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FIG. 15. Model (M2) temperature and salinity profiles every Y% inertial period from 67.60 to 68.92. Note that
temperature at 50 m increases from initial mixed-layer freezing point at 67.75 to 1°C at 68.25. Salinity at 50 m remains
unchanged. Numbers beneath each profile indicate time in Julian days of 1981.
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oscillations caused by impulsive forcing. The model
was run with 15-min timesteps to day 69.0.

Surface velocity output was smoothed to remove in-
ertial oscillation using an algorithm similar to that used
to remove tidal motion from the position data, but
modified to work directly on the velocity time series.
Integrated displacement of the smoothed velocity for
the period from 67.25 to 68.5 is shown for two model
runs in Fig. 13, with the same format as Fig. 12. M1
refers to the model with constant z,, M2 is the case
where z, decreases over the heating period as described
above, and W, fd, and I are as previously noted. Note
the increase in both magnitude and deflection angle
for each of the model runs. The surface velocity com-
parison over time is shown in Fig. 14 for M2.

Figure 15 shows model (M2) temperature and salin-
ity profiles every one-quarter inertial period from just
before the heating event to the end of the calculation.
Recall that the temperature in the pycnocline rises from
freezing to 1°C in the time period 67.75 to 68.25. As
melting ensues, the upper ocean freshens and cools

‘and a weak pycnocline is formed between 20 and 30
m depth.

Figure 16 shows model velocity profiles. Over the
course of the numerical experiment the wind was rel-
atively steady (see Fig. 16 of MKS), so the change in
velocity structure results from the introduction of sur-
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face buoyancy. Of course, the observed ice divergence
is only one facet of this pattern. It is likely that the
complicated pattern of depth-dependent divergence
implicit in these profiles would introduce important
vertical velocities and local pressure gradients. The next
step is to add at least another spatial dimension to the
model, and we are progressing in that direction.

5. Conclusions

A model has been created that can describe the evo-
lution of the vertical structure of the ocean surface layer
under a melting or freezing ice layer. Interfacial
boundary conditions are developed that are consistent
with conventional near-surface, turbulent boundary
layer methodology. In this paper the boundary con-
ditions are used in conjunction with a second-moment
turbulence closure model that provides vertical mixing
coefficients along with turbulence kinetic energy. So-
lutions applicable to unsteady, horizontally homoge-
neous, melting or freezing problems can also be trans-
formed—to good approximation—to steady, horizon-
tally inhomogeneous problems.

In the case where ice melts due to underlying warm
water, the problem is intrinsically unsteady and im-
portantly governed by the stabilizing effect of the sur-
face flux of fresh water. Thus, if ice impulsively overlays
warm water, the melt rate is initially large—and de-
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FIG. 16. As in Fig. 16, but eastward (U) and northward (V) velocity profiles are plotted.
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pendent on the initial conditions and ice velocity or
interfacial stress—but subsequently decreases as the
surface-layer storage of thermal energy is depleted.
Stabilization also reduces the interfacial drag coefficient
and this appears to account for the observed divergence
of ice packs in the marginal ice zone.

Other than the specific cases reported in this paper,
the model has been run for multi-month periods and
with transition from melting to freezing with no ap-
parent problems. The model as described in this paper
is suitable for insertion into two- and three-dimensional
numerical models,

APPENDIX A
Effect of Vertical Advection

As an example we consider the temperature variable,
the full equation for which is

aT 0
s T p9T_ 8 KH*’__ (A1)
dz 09z

at dx dy
For small z, W ~ constant = W,. Then (A1) can be
integrated to yield
oT
(. + Kp) F Wo(T~-Ty)=F+0(z). (A2)
The O(z) term is negligible in the law of the wall region
and will hereafter be neglected.

Near the surface Ky = ku,z. For large enough z,
where Ky > a4, an integral of (A2) is

T-To= —%[1 —exp(Z:E)]

where we here define £ = In(z/zp). If Wy/u, = O(1),
then (A3) provides an important modification to the
conventional law of the wall. However, for small Wy/

(A3)

u,, as is the case in this paper, the conventional law of

the wall is recovered. Thus, while W, plays an impor-
tant role in the interfacial energy and salinity balance,
it can be neglected in the advection terms.

APPENDIX B

Extension of the Model to Include Frazil
Ice Formation

To account for the creation of frazil ice requires
modification of (2) and (3) such that

oaT 4
6_t__[(KH o) T]+0't

| 9§——";[(Kﬁ+as> ’]w,(s S)

(B1)

B2
% (B2)
where o; is the volumetric fractional rate of ice creation.
In addition, an ice concentration equation can be writ-
ten according to
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BC d d

( W)= —[KH'I' ac]+a, (B3)
where C'is the (nondimensional) volumetric ice fraction
and W; is the drift velocity of the ice particles relative
to the mean fluid veloc1ty An appropriate expression
for the source term, o;, is

_1(mS—T)H(mS—T)
g;=—
T L

where H(mS — T) is the Heaviside function so that o;
= 0 when mS > T. In Eq. B4 1 has dimensions of time
and is related to the heat transfer rate between seawater
and the ice particles; specifically, 7 = [3.0a, NuC/
(R,D)]™" where Nu is the Nusselt number and R, is the
radius of the ice particles. For spherical particles at low
Péclet number, Nu = 1. Similarly, W, can be related
to Stokes drag at low Reynolds number. At higher
Reynolds numbers there is considerable uncertainty in
the choice of 7 and W,.

Omstedt and Svenson (1984) have solved equations
very similar but somewhat less general than the above
using a different closure model. They did not include
an ice-sea interface, and the total flux [turbulent flux
plus gravitational drift flux, (W, (C),-¢-] was effectively
null (Svenson, personal communication, 1985). The
paper, however, implies that only the turbulent flux
was effectively null. Thus, on cooling, the ice concen-
tration increased only near the surface (within the top
2 to 3 m) with the maximum concentration at the sur-
face. The calculations were terminated when the surface
concentration reached 5%; thereafter, flocculation
would presumably occur and this would be followed
by formation of an ice cover. Thus it would appear
that their model represents the early stages of the freez-
ing process. If one finds that this early stage is important
then the present model can be enhanced (and made
more complicated) by replacing (2) and (3) by (B1) and
(B2) and adding (B3). The surface boundary conditions
would have to be modified.

(B4)
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