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An Ice-Ocean Coupled Model 

GEORGE L. MELLOR AND LAKSHMI KANTHA l 

Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey 

An ice model, an ocean model, and a method of coupling the models are described. The ice model 
is a synthesis, with variations and extensions, of previous modeling ideas. Ice thickness, concentra- 
tion, velocity, and internal energy are prognostic variables. The ice thermodynamics are represented 
by temperatures at the snow surface, ice surface, the interior, and the bottom surface. Melting and 
freezing rates are calculated at the ice-atmosphere, ice-ocean, and atmosphere-ocean interfaces. A 
prescribed portion of summer meltwater can be stored on the surface and refrozen in the fall. The 
ocean model includes a second moment, turbulence closure submodel and enables one to solve for 
oceanic heat flux, the interfacial stress, and subsurface properties. In this paper the model is applied 
to one-dimensional simulations, but the equations are cited in a form for implementation by two- and 
three-dimensional models. In a companion paper (Kantha and Mellor, this issue) the model is used for 
two-dimensional (vertical plane) simulations in the Bering Sea. Several one-dimensional sensitivity 
studies are performed in the case where the ice model is decoupled from the ocean; here the oceanic 
heat flux and sea surface temperature are prescribed constants. The studies reveal the role and 
sensitivity of surface trapped meltwater, ice concentration, and ice divergence. With the coupled 
ice-ocean model, the seasonally varying oceanic heat flux and mixed layer properties are determined 
by the model. Some comparisons with observations in the central Arctic ocean are possible. The role 
of the molecular sublayer immediately adjacent to the ice is examined; frazi! ice production is related 
to the large disparity in the molecular diffusivities for temperature and salinity. The mixed layer model 
contains empirical constants which are known from turbulence data. The molecular sublayer 
parameterization requires one empirical parameter b, which is uncertain but, from this study, is 
assuredly greater than zero, the value implicit in previous models. The ice model requires the empirical 
parameters cI) F and cI)•u to quantitatively account for freezing or melting processes in open leads; their 
values are also uncertain, but we present reasoning and sensitivity studies to suggest specific values. 
Finally, an empirical parameter G is introduced; it is the ratio of the value of the ice thickness used to 
represent average ice volume in the dynamic and thermodynamic equations to the value of the 
thickness needed in the heat conduction equation. Estimates of G are made from observed thickness 
distribution functions; sensitivity studies show it to be an important parameter. 

1. INTRODUCTION 

There has been evolutionary progress toward completely 
coupled, ice-ocean, numerical models. At first, decoupled 
models were the general rule. Semtner [1976b] performed an 
ocean modeling study of the Arctic basin wherein ice prop- 
erties were prescribed, and the general circulation was 
calculated by his model. On the other hand, there have been 
many more modeling studies where ice is explicitly modeled 
and where oceanic parameters were prescribed. Maykut and 
Untersteiner [1971] (hereinafter MU) developed a one- 
dimensional thermodynamic ice model which was simplified 
and shown by Semtner [1976a] to perform well even if the ice 
is represented by a low-resolution vertical grid. Parkinson 
and Washington [1979] used Semtner's model and a simpli- 
fied ice dynamics model to simulate the yearly ice cycle in 
the Arctic and Antarctic. Hibler [1979] developed a horizon- 
tally two-dimensional, transport model of the Arctic basin 
which exhibited realistic properties; he used ice growth rates 
which were prescribed a priori as a function of ice thickness 
and time of the year; such a formulation is, of course, limited 
to specific geography and excludes processes such as 
oceanic feedback. 

Recently, the papers by Hibler and Bryan [1987] and 
Semtner [ 1987] brought forth simulation studies of the Arctic 
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basin using coupled ice-ocean models. It is apparent from 
these papers that the oceanic heat flux distribution does play 
an important role in determining the location of the marginal 
ice zone and the other ice cover properties such as mean ice 
thickness and concentration. However, these models did not 
incorporate mixed layer physics even though the mixed layer 
ought to be considered the essential coupling medium for a 
coupled model. A one-dimensional mixed layer model has 
very recently been developed by Lemke [1987] and coupled 
to Semtner's ice model. His mixed layer model is consider- 
ably more empirical than that used here. The model is a 
purely thermodynamic model; dynamic oceanic feedback is 
excluded. 

One early goal of this paper was to match the turbulence 
closure model of Mellor and Yamada [1982] which has 
already been imbedded in a ocean model [Blumberg and 
Mellor, 1983, 1987; Oey et al., 1985a, b, c], to an ice model. 
For the ice portion the starting point was the one- 
dimensional model of MU and the finding by Semtner 
[1976a, b] that a low-resolution model should provide suffi- 
cient accuracy to represent internal and surface ice temper- 
atures. However, we have added the effect of the concen- 
tration variable A, which is an ensemble-averaged fraction of 
ice-covered ocean area. This variable is included in the 

two-dimensional model of Hibler [1979] and the subsequent 
models of Hibler and Bryan [ 1987] and Semtner [ 1987]; there 
the model equation for A differs qualitatively from the 
present version and differs quantitatively in at least one 
important aspect concerning shortwave radiation absorption 
in open leads. The present model is not specific to geography 
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Fig. 1. The sea surface elevation s r and the local floe thickness/•. 

or climatology since ice growth is related to local atmo- 
spheric and oceanic forcing. Finally, the means of matching 
the ice model dynamically and thermodynamically to the 
ocean model, provided by Me!lot et al., [1986] and Steele et 
al., [1989] are incorporated here. 

The model is meant to be applied in a three-dimensional 
context. However, in this paper, sensitivity studies with 
forcing appropriate to the central Arctic are executed in a 
one-dimensional mode. We wish to learn as much about the 

model as possible before proceeding to three dimensions, 
where it is considerably more difficult to explore parameter 
space. In particular, we will determine how the model 
behaves when subject to a diverging ice field, since diver- 
gence is an important component of the overall ice budget. 
Other parameter sensitivities are studied as is the overall 
impact of oceanic feedback. 

2. THE ICE MODEL 

We describe an ice model which is similar to the lowest- 

resolution ice model of Semtner [1976a]; however, here we 
build in the effect of the concentration variable A, which is a 
statistical quantity denoting the fractional area covered by 
ice, whereas (1 - A) is the fractional open water so that 0 < 
A < 1. We define the sea surface elevation g and the local ice 
floe thickness/• according to Figure 1. The variable h• will be 
the average ice thickness, where the average is taken only 
over ice covered areas. Thus Ah• is the average thickness 
over the total area. This is a relatively simplistic description 
of an ice field, compared to studies by Thorndike et al. 
[1975], Hibler [1980], and Maykut [1982], wherein one at- 
tempts to model a thickness distribution function g(/•). 
Instead, we deal only with the concentration A and the 
moment 

= hg(h) ah (1) 

The Momentum Equation 

At a given horizontal point the ice velocity is character- 
ized by a velocity vector U•i(i = x, y). The dynamic equation 
applicable to open water (A = 0), an ensemble of ice floes 
(A < 1), or for solid ice (A = 1) is 

from a bulk drag relation in the stand-alone ice model but is 
calculated according to the mixed layer physics described in 
section 3 in the coupled ice-ocean model. 

The internal stresses %. are not required in the one- 
dimensional calculations exercised in this paper. Their con- 
sideration will therefore be postponed to a companion paper 
[Kantha and Melior, this issue] where they are needed in 
two-dimensional calculations. 

The Equations for Mass and Concentration 

The equation for the conservation of the mass of ice is 

0 0 

0-• (Ahi) + •xi (AhiU•i) 

= Po [A(Wio - WA•) + (1 -- A)WAo + WFR] (3) 
P• 

The various volumetric fluxes are illustrated in Figure 2; 
they are all positive upward and correspond to melting or 
freezing, depending on their location. Thus WA• is melt rate 
(positive) on the top of the ice; WA• is also a freeze rate 
(negative) when trapped surface water refreezes in late 
summer. W•o is the freeze rate (positive) of congelate ice at 
the ice-ocean interface. WAO is the melt (negative) or freeze 
rate (positive) in open water, a problematic term which will 
be discussed shortly. WFR is the rate of ice accretion at the 
surface due to frazil ice growth in the water column. This 
will also be discussed in detail later on. 

The equation for ice concentration A is 

hi • + • (A Uii) Oxi 

= Po [(I) (1 - A)WAo + (1 - A)WFR] 0 --< A --< 1 (4) 
PI 

Equation (3) is an exact conservation equation, whereas (4) 
is an empirical equation first introduced by Nikiferov [1957], 
although he omitted melting and fleezing terms. A version of 
(3) and (4) wherein net ice growth rate was prescribed a 
priori has been described by Hibler [1979]; we will comment 
on Hibler's model later. 

We next discuss certain properties of these equations. 
First, consider their purely dynamical properties, where we 
temporarily neglect the right sides of (3) and (4); that is, we 
neglect thermodynamic forcing. Equation (3) is an exact 
equation. On the other hand, equation (4) is such a simple- 
looking equation that it is necessary to keep in mind that it is 
empirical and is intimately associated with the (idealized) 

0 0 

07 (AhiUii) + •-• (AhiUijUIi) - Ahieo'•l•jUik 
O• 1 0% A 

= Ah•g • + -- + -- (TA1 i -- TiOi) (2) 
OXi PI OXj PI 

where fj = (0, 0, f) and f is the Coriolis parameter; & is the 
density of ice; %. is the internal ice stress tensor' rA•i is the 
atmospheric wind stress; r•o i is the ice-ocean interfacial 
stress; and g is the gravity constant. rA•i is calculated 
according to bulk drag relations, which are collected in 
Appendix A. The ice-ocean interface stress r•o i is obtained 

WFR 

W AI • 
i 

WRO 
W I0 

WAO 

Fig. 2. A sketch of water to ice, volume flux, or vice versa, 
across the ice-ocean interface Wto, the ice-atmosphere interface 
War, and the atmosphere-ocean interface Wao. The Wa• flux can be 
trapped and, subsequently, run off into the ocean as WRo or can be 
refrozen. Ww is the frazil ice flux. 
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constitutive properties of ice wherein one assumes that ice 
cannot be horizontally dilated without creating open water. 
Thus write (4) as DA/Dt = -A 0 U•i/Oxi. Now the divergence 
O U•JOxi is the rate of creation of new area following a 
Lagrangian or material surface. In Figure 3 we sketch a 
material surface where A = 1 at t = 0. After a small interval 

of time At, equation (4), for positive divergence, yields a 
decrease in A according to AA = -(OUii/Oxi) At. Further- 
more, according to a combination of (3) and (4), Dh•/Dt - O. 
Therefore open water is formed, but the average thickness of 
the ice is unchanged. On the other hand, if the divergence is 
negative, the constraint, A _< 1, overrides the differential 
equation, and A = 1 at t - At. Equation (3) now yields an 
increase in h• according to Dh•/Dt = -hi(OSli/Oxi). This 
simulates ridging. Thus equation (4) is a deceptively simple 
but, nevertheless, remarkable relation. 

Now reinstate the right side of equation (3), which con- 
tains source (freezing) or sink (melting) terms which are 
relatively straightforward. Also, reinstate the right side of 
(4), where the terms are not straightforward. In particular, 
the atmospheric ocean melt rate WAO requires explanation, 
as does the empirical factor cI) in equation (4). As discussed 
in section 3, we assume, so long as A > 0, that the sea 
surface temperature is at the freezing temperature corre- 
sponding to the surface salinity and is horizontally homoge- 
neous. Then the energy gain or loss rate to open leads is 
instantaneously converted to a melt or freeze rate WAO. We 
must decide what to do with this positive or negative energy 
rate under the simplifying terms of the present model. 
Toward this end we distinguish between freezing and melting 
such that 

Freezing 

(I) = (I) F W A O > 0 
Melting (5) 

op = op3• WAO < 0 

Consider the case where WA• = WFR = 0. Now subtract 
(4) from (3) to obtain AlOha/Or + U,,o(h,)/Ox,] = 
[AW•o + (1 - cI))(1 - A) WAO)]. Thus positive (negative) 
W•o increases (decreases) the thickness of the ice without 
changing the ice-covered area, since the term is absent in (4); 
this behavior is, of course, correct, since W•o was defined as 
the freezing or melting rate at the base of the ice. Now 
consider the term involving WAO and its coefficient (1 - cI)). 
If we were to set cI) = 1, WAO would not effect h• but would 
change A; the interpretation is that ice would be melted or 
frozen only at the edge of leads. On the other hand, if ß > 1, 
WAO contributes to the freezing or melting of open water. 
The latter process is, of course, impossible, but in the 
freezing case we do expect open water to form ice cover and 
therefore we expect that cI) F > 1 when WAO > O. 

Y 

Fig. 3. The creation of open water according to equation (3). In 
this illustrative example, at t = 0, A -- 1 the material area is 
completely ice covered. At t = At the material area increases by the 
fraction V. U• At, so that the fractional ice coverage A decreases 
according to AA = -V ß U• At. 

• x•x •QAIx T3-- 
•h T1 ......... ' 

•ce • Q IO T 0 F T 
Fig. 4. A sketch of the internal ice temperatures and the heat 

fluxes through the ice. 

For the melting case some of the melting can take place at 
the ice edge, but some of the excess heat represented by 
WAO < 0 can also be transported under the ice and therefore 
should decrease hr. In fact, WAO < 0 is mostly determined by 
summertime, shortwave radiation which can penetrate well 
into the mixed layer' the analysis by Maykut and Perovich 
[1987] suggests a value like •x• = 0.5. 

We should mention here that it is a fairly simple matter to 
allow shortwave penetration into the ocean surface in our 
model [Simpson and Dickey, 1981; Martin, 1985]. This 
would decrease heat absorbed at the surface and decrease 

WAO, thereby alleviating some of the empiricism associated 
with that variable. The penetrating radiation would be ab- 
sorbed in the ocean and then reappear as uniformly distrib- 
uted surface heat flux. However, in the interest of consis- 
tency, we will not invoke the penetration process in this 
paper since it cannot be invoked when we decouple the ice 
model from the ocean model. 

It is anticipated that more sophisticated models for cI) will 
be developed in the future on the basis of more detailed 
analyses such as those by Bauer and Martin [1983], where 
one learns that ice edge accumulation is wind dependent, 
and Maykut and Perovich [1987], which contains a short 
review of the problem and a relatively detailed analysis. In 
this paper we will later perform calculations to determine the 
sensitivity of cI) F and cI)x• to ice development in the central 
Arctic and then, finally, select the values cI) F - 4 and cI)x• - 
0.5. 

The formulation in (4) makes its empirical nature more 
transparent than the analogous formulation by Hibler [ 1979], 
and for this reason we prefer it. However, a comparison of 
the two formulations reveals that Hibler's equation for the 
freezing case may be recovered if we set cI) F = h/ho where, 
empirically, ho = 0.5 m. For thick ice we expect a behavior 
similar to our model but, for thin ice, open water would not 
freeze at all, since cI) F < 1. For the melting case, Hibler 
included a contribution due to W•o (using the present 
nomenclature) in his equation corresponding to (4). How- 
ever, if we ignore the W•o contribution in Hibler's equation 
and the WFR contribution in (4), his equation would corre- 
spond to (4), where cI) M: 0.5. This is an apparent coinci- 
dence, since he arrives at that number on entirely different 
physical reasoning than used here. Hibler's model for sum- 
mertime melt rate does not include the large amount of 
shortwave radiation captured by open leads because of the 
greatly reduced albedo of open ocean compared to ice cover. 
In our case this effect is important in the summer when 
A<I. 

The Thermodynamic Ice Equations 

The thermodynamic model is sketched in Figure 4. The 
numerical scheme will use three layers' the top layer is a 
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TABLE 1. Physical Constants 

Parameter Value 

Reference water density 
Reference air density 
Reference ice density 
Thermal ice conductivity* 

Thermal snow conductivity 
Specific heat of seawater 
Specific heat of air 
Specific heat of ice 
Seawater kinematic 

viscosity 
Seawater salinity diffusivity 
Seawater heat diffusivity 
Stefan Boltzmann constant? 
Albedo of open ocean 

surface 

Albedo of ice or snow 

Emissivity of ocean 
surfaces 

Emissivity of ice surface 
Emissivity of snow surface 
Latent heat of fusion 
Latent heat of sublimation 

Latent heat of evaporation 
Constants in (32) 

Ice roughness parameter 

Po = 1026 kg m-3 
p, = 1.27 kg m-3 
Pt = 900 k g m-3 
k• = ko•(1 - 1.2 r)' ko• = 

2.04 J m -• s -• K -• 

ks = 0.31 J m -• s -• K -l 
Cpo = 3990 J kg- l K- • 
Spa = 1005 J kg -• K -• 
Cpi: 2093 J kg- • K- • 
v = 1.8 10 -6 m 2 s -• 

a t = 6.8 10 -•ø m 2 S -1 
a s = 1.39 10-7 m 2 s- 1 
cr = 5.67 10 -8 W m -2 K -4 
ao = 0.1 

see equation (36) 
e o = 0.97 

e! = 0.97 
e s - 0.97 
LF = 3.347 105 J kg -l 
L s = 2.834 10 6 J kg -• 
L•, = 2.501 10 6 J kg -• 
m = 0.0543 K/ppt 

n - -0.000759 K m -• 

Zo• = 0.05 h•/3 

*Originally we had supposed that k• = ko•(l-r) + kbr where kb is 
the conductivity of brine, k•/ko• -• 0.28, and r is the brine fraction. 
However, the version cited in the table is more nearly in accord with 
Untersteiner [1961]. 

?For most of the calculations in this paper we use the value 5.78 
X 10 -6 W m -2 m -4, as explained in the text. 

SHowever, for comparison with the MU calculations, we have set 
e o = e I= e, = 1.0. 

snow layer whose roles are as an insulator and as an 
absorber of incoming radiation as it melts in the spring; the 
sensible heat capacity of the snow is neglected. 

An equation of state for both ice and seawater will be 
required; a good approximation is 

E(T, F) -- F(L F q- Spot ) q- (1 - F) Spit (6) 

where r is the brine fraction; thus E(T, O) =CptT is the 
enthalpy of pure ice, whereas E(T, 1) = Lr + Cpo T is the 
enthalpy of seawater. L,• is the latent heat of fusion. Physical 
constants are listed in Table 1. 

Since this is meant to be a low-vertical-resolution model, 
we set the average salinity of the ice as vertically constant 
and label it St. The salt content is contained in brine pockets 
wherein, locally, the salinity is T•/m. The ice temperature is 
evaluated at T•, and m is the slope of the freezing line; 
therefore the brine fraction is 
the specific heat capacity OE/OT, as obtained from (6), is a 
function of T• and St, and this, coupled with the dependence 
of ice conductivity (see Table 1) on brine fraction, renders 
the results dependent on 

The net heat flux QAt between atmosphere and snow or ice 
is given by 

QAI = Qsi + QLi- (1 - ai)SW- LW + •irr(T3 + 273) 4 (7) 

where Qst is the sensible heat transfer and Qz.t is the latent 
heat transfer. SW and L W are the incoming shortwave and 
longwave radiation, respectively; a t is the ice or snow 

albedo, the fraction of shortwave radiation reflected back 
into the atmosphere. The outgoing longwave, radiative em- 
mission from the surface of the ice is eirr(T3 + 273) 4. The 
coefficient •r is the Stefan-Boltzman constant, and ei is the 
emissivity. 

The equation for the direct transfer of atmospheric heat 
flux to the ocean through open ocean or leads is 

QAO = Qso + QLO- (1 - ao)SW- eoL W 

+ eo•To + 273) 4 (8) 

where Qso is the sensible heat transfer and QLo is the latent 
heat transfer. a o and eo are the albedo and emissivity of open 
water. Formulas for the atmospheric flux components in (7) 
and (8) are given in Appendix A. 

Since the model snow does not have heat capacity, the 
heat conduction through the snow is given by 

ks 

Qs = • (T2- T3) (9a) 
where h,. is the thickness of the snow and k,. is the heat 
conductivity of snow. The heat conduction at the top of the 
ice layer is 

QI2 = h--• (T1- T2) (9b) 
where hi is the thickness of the ice and ki is the heat 
conductivity. Since we neglect heat capacity in the snow 
layer, Q,. = Qi2. Together with (9a) and (9b), we use this 
equality to obtain a relation between T 3, T2, T•, and T O 
(which, of course, yields T2 = T3 when h,. = 0); then T 2 is 
eliminated from (9a). 

We next consider the relation between QAi and Qi2. When 
T 3 is below the freezing point, QAi and Qi2 are equated to 
obtain T 3 (see Appendix B); otherwise, T 3 equals the freez- 
ing temperature (273 K), and the resulting inbalance between 
QAI and Qi2 causes snow to melt or, if h• --- 0, then the ice 
melts. In the latter case the melt rate at the top, WAr, is 
obtained from an energy balance across an infinitesimally 
thin control volume which includes the atmosphere-ice in- 
terface. Thus 

WAI = (QAI - Qi2)/(poL3) (10a) 

L 3 = [E(T3,1 ) - E(Ti, ri)] (10b) 

Note that L 3 - (1 - r•)Lv plus a small sensible heat 
correction. 

At the bottom of the ice the heat conduction is 

= h75 (rø - ( 
The relationship between Qi2 and Qto involves the heat 

capacity of the ice such that 

t9IhI • E(T1, F1) q- Sli •x i E(T1, FI) = QIO - Qi2 (12) 
It should be noted that (12) would be exact ifE were taken as 
the vertically averaged internal energy of the ice; it is an 
approximation, albeit a minor approximation, to evaluate E 
at Tl, the temperature at the middle of the ice layer. 

Surface Water Accumulation 
Water due to melted snow or ice can be stored on the 

surface, thus simulating standing pools of water; the maxi- 
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mum depth of stored water will be denoted by h .... Excess 
meltwater runoff, denoted as WRo, is combined with the 
bottom freeze or melt rate Wio and enters the ocean surface 
layer. Note that if hsw = 0, then WRo = WAI. There is 
further discussion of this feature in section 5. 

3. SURFACE BOUNDARY CONDITIONS FOR THE OCEAN 

In the paper by Mellor et al. [1986] the ice velocity or the 
ice-ocean stress was prescribed as an external parameter in 
order to focus on thermodynamic boundary conditions and 
the melting or freezing process. Here we repeat some of that 
material, with the additional complexity of the concentration 
variable A. 

The boundary condition for stress is 

(OU OV) A (l-A) po + (AOJ, AOy) 0 Po 

(13) 

where (r•ox, r•oy) is the ice-ocean interfacial stress given by 

1 ku• 
-- ('rio x, 'l'IOy ) = ( U I - U, V• - V) z --> 0 (14) Po In (Z/Zo) 

The mixing coefficient K;u will be discussed later. The 
T2 )1/4 _-- 1/2 friction velocity is u,-= (r•2o• + •o• Po . The von 

Karman's constant is k = 0.4, and Zo is the roughness 
parameter. (rAOx, rAOy) is the wind stress applied directly to 
open water. The combination of (13) and (14) is a mixed 
Neuman-Dirichlet boundary condition for velocity (U, V) 
which, numerically, is applied to the first grid point nearest 
the surface layer of the ocean model described in section 4. 
The ice velocity (U•, V•) is obtained from (2). 

Recall that the freezing rates (positive value) or melting 
rates (negative value) are denoted by W•o for ice covered 
water and WAO for open water, as illustrated in Figure 2. The 
energy balance across an infinitesimally thin control volume 
which, first, includes the ice-ocean interface and, second, 
the atmosphere-ocean interface are 

Fr = Q•o- W•oPoLo (15a) 

Fr = QAO - WAoPoLo (156) 

where 

Lo = [E(T0, 1) - E(Ti, rl)] (15c) 

The product of density and melt or freeze rate is continuous 
across the interface. In this paper, melt or freeze rates are 
consistantly referred to the water side so that the product of 
seawater density and melt rate is the melt mass rate. 
Equations (15a) and (156) may be conveniently combined 
such that 

Fr = (AQ•o + (1 -A)QAo) -- WoLo (16a) 

Wo = AW•o + (1 - A)WAo (166) 

Then the heat flux boundary condition is 

FT/(PoCpo) = -- CTz(To- T) z--> O (17) 

where we define 

CTz = (Prt k- 1 In ( -- Z/ZO) + Br) (18a) 

B T = b Pr 2/3 (186) 

This formulation is similar to that of Melior et al. [1986]. 
However, as discussed by McPhee et al. [1987] and Steele et 
al. [1989], we are now more appreciative of the importance 
of the molecular sublayer correction of (18a) and (186), 
contained in the factor B r, which has been researched by 
Owen and Thompson [1963] and others using data from 
laboratory flows over rough surfaces. Equation (186) is a 
more recent but similar formula obtained by Yaglom and 
Kader [1974]. Here Pr is the molecular Prandtl number, 
which we take to be 12.9, and the turbulent Prandtl number 
Prt is 0.85. The factor b in equation (186) has been deter- 
mined to be 3.14 by Yaglom and Kader. The actual equation 
is 

B r = b(zour/v)l/2(pr 2/3 -0.2) + 2.3 

However, the additional constants are unimportant in the 
present context. Also, we have simplified their symbol, B• 
to the present B r. Although the above forms are convenient 
analytically and numerically, another form has more physi- 
cal appeal. Thus combine (17), (18a), and (186) so that 
(r- To) = Fr/(PoCp)[Prt(kliO -1 In (-Z/Zo) + •St/a,]. The first 
and second terms represent the temperature changes across 
the turbulent and molecular portions of layer, respectively. 
The effective thickness of the molecular sublayer is given by 
•5 t = b Zo(a,/u, Zo)l/2(at/P) 1/6. This scaling is appropriate to an 
embedded, steady laminar layer [Schlichting, 1978]. 

A value of b appropriate to ice-ocean interaction will later 
be the subject of discussion and analysis. For b > 1, B T is 
considerably larger than the logarithmic term in (18a). 

Note that we take the ocean immediately below the 
surface to be horizontally homogeneous so that the left sides 
of (15a) and (156) are equal to the oceanic heat flux F T, 
which is related to the near subsurface properties of the 
ocean according to equation (17). Also, note that, in princi- 
ple, Zo or Crz and, accordingly, T O could be different at the 
surfaces of open and ice-covered water even though Fr and 
T are not. However, at present we will bypass this complex- 
ity and assume that they are the same. However, we 
determine Zo according to 

In z0 = A In z0• + (1 - A) In Zoo (19) 

which Taylor [1987] argues is the best way to average two 
regions with different roughness parameters. Here Zo• is a 
best guess of the ice roughness parameter. For the calcula- 
tions of this paper we have chosen a value of 0.05 m when 
h• = 3 m and have linearly decreased Zo to zero when h• is 
zero. For the ocean roughness parameter we use Charnock's 
wave roughness relation, Zoo = 0.016 (po/pa)u2,/g; it is 
assumed that the waterside roughness equals the airside 
roughness. 

The salt balance across the ocean interface is 

Fs = (Wo - AWRo)(S•- So) + (1 - A)So(P- •) (20) 

where P - • represents the volume surface flux due to 
precipitation and evaporation, and W•o is the runoff from 
surface melting 
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The corresponding salt flux equations are 

Fs = - Csz(So - S) z -• 0 (21) 

where 

Csz = (Prt k - 1 In ( -- Z/Zo) + Bs) (22a) 

B s = b S½ 2/3 (22b) 

The above formulae are identical to (18a) and (18b) except 
that Pr is replaced by the Schmidt number, $c = ffa s = 2432, 
for salt diffusion. 

The above equations are subject to the constraints 

Wo = 0 A = 0 (23a) 

or 

To = mSo A > 0 (23b) 

The later equation states that, if ice is present, the ocean 
surface properties are on the freezing transition interface. 
We let m be constant, as listed in Table 1. 

Numerically, T and S at z, the first grid point nearest the 
oceanic surface, is obtained from the oceanic solution at the 
previous time level; CTz and Csz are also known. Then (16a), 
(17), (20), (23a), and (23b) can be solved for W o, T o, S o, FT, 
and Fs (see Appendix B). 

The temperature and salinity boundary conditions applied 
to the ocean are F T = -Kri OT/Oz and F s = -KrlOS/Oz as 
z --> 0. However, we find it numerically more robust to use 
(17) and (21) so that 

OT 

- K• •zz = CTz(To - T) z -• 0 (24) 

OS 

- K. = Csz(So- S) 0 (25) 
which are mixed Neuman-Dirichlet surface boundary condi- 
tions for T(z) and S(z). 

4. THE OCEAN MODEL 

The Three-Dimensional Ocean Model 

Although, in the present paper, we cite only one- 
dimensional calculations, we include here a description of 
the three-dimensional model we use in order to set the stage 
for future two- and three-dimensional simulations. In a 

companion paper [Kantha and Mellor, this issue] the model 
is applied to two-dimensional simulations of the Bering Sea. 
The ocean model we use has been previously described in 
the literature [Blumberg and Mellor, 1983; Oey et al, 1985a, 
b, c; Blumberg and Mellor, 1987]. We briefly note here that 
it is a sigma coordinate model; it has a free surface and a split 
mode time step and an imbedded turbulence closure sub- 
model. It solves the following equations for the ocean 
velocity (U, V), potential temperature T, and salinity S: 

OU i 

Ox i 
(26) 

0 0 

0• (U, V) + •xi [Ui(U, V)] + f(- V, U) = 

0 

Oxi 

OT 

Ot 

+-- KM (U,V) oz 

os o 
m+ 

Ot OX i 

(SIT) -- 

The hydrostatic approximation yields 

(27) 

(28) 

(29) 

P = + fo p(z') Po Po 
• g dz' (30) 

where p = p(T, S, p). The equations, after transformation to 
a sigma coordinate system, can be found in the papers cited 
above. 

The Turbulence Closure Model 

To obtain the vertical mixing coefficients K:u and Kr•, the 
turbulence closure model of Mellor and Yamada [1974, 1982] 
is embedded in the numerical model; we use the so-called 
level 2 1/2 version of the closure model. Although one must 
refer to the cited papers for a complete account of model 
derivation, we provide brief commentary here. 

The closure model begins with the prognostic equations 
for all six components of the Reynolds stress tensor and 
three components of the heat and salinity (when applied to 
the ocean) flux vectors. Closure hypotheses for the pressure- 
velocity gradient correlation tensor, following Rotta [1951a, 
b], and the dissipation tensor, following Kolmogorov [1941], 
are adopted and extended to similar terms involving density 
fluctuations. Terms for all stress and flux components and 
for shear and buoyancy production appear quite naturally 
and do not require modeling. Turbulent diffusion terms are 
also modeled but are not of primary importance. Nondimen- 
sional model constants are determined from neutral labora- 

tory data. An early application of the model [Mellor, 1973] 
yielded Monin-Obkhov similarity relations in close agree- 
ment with near-surface, atmospheric boundary layer data. 

The complete model calling for the solutions of prognostic 
equations for all stress and flux components was labeled the 
level 4 model. Mellor and Yamada [1974] then developed a 
procedure to approximate the full prognostic equation set in 
order to reduce their number and reduce complexity and 
computational cost. As summarized by Mellor and Yamada 
[1982], there now exist level 1, 2, 3, and 4 models, and 
somewhat as an afterthought, a level 272 model was defined 
and is used here. This requires prognostic equations for q2, 
twice the turbulence kinetic energy, and q2l where l is a 
turbulence macroscale; it is approximately proportional to 
the integral of the velocity correlation function and is delib- 
erately scaled so that, adjacent to a surface, it is asymptot- 
ically equal to Prandtl's mixing length as the surface is 
approached. These prognostic equations are similar in form 
to (28) or (29) except that turbulence production and dissi- 
pation terms are included. Vertical mixing coefficients for 
velocity and temperature (or any scalar) are provided by the 
relation (KM, Kr•) = lq (S:u, Sr•). SM and Sr• are stability 
coefficients and are functions of 12[OS/Oz) 2 + (OV/Oz)2]/q 2 and 
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Fig. 5. Equilibrium phase diagram for ice-seawater, delineating 
regions of seawater, seawater-ice mixture, and ice. The areal extent 
of the latter region is exaggerated; ice crystal structure accomodates 
only negligibly small concentrations of salt. The arrows represent 
changes, starting from states on the freezing line. As explained in 
the text, the condition Crz > Csz results in frazil ice production. 

12gp• l[Op/Oz]/q 2. Here p is density, defined by an equation of 
state p(T, S), and Po is a reference density. It is assumed that 
the Reynolds and Peclet numbers are very large; a result is 
that KH is also the vertical mixing coefficient for salinity and, 
in fact, for any other scalar property. 

Frazil Ice 

Because Crz > Csz in equations (17) and (21), our model 
will produce frazil ice in the water column. To see how this 
works, consider equations (28) and (29) in the absence of 
advection. Then let O(KH OT/Oz)/Oz = (Ft/aBL) ft(z/aBL) and 
O(K• OS/Oz)/Oz = (Fs/aa•)fs(Z/aa•), where aa• is the surface 
boundary layer thickness. Now approximate fr = rs. Con- 
sider a time interval at wherein changes in temperature and 
salinity are aT and aS, respectively. Thus (28) and (29) 
combine to yield 

aT FT 

aS -Fs 

From (17) and (21) 

aT Crz(To- T) 
aS Csz(So- S) 

Now, referring to Figure 5, further assume that, initially, T 
and S are on the freezing line so that, in addition to To = 
mSo, we also have T = mS. To simplify this discussion we 
neglect the dependence of the freezing temperature on 
pressure or, effectively, depth. Therefore 

aT CTz 
--= m • (31) 
aS Csz 

Now, if Crz = Csz, aT/aS = m so that the water properties 
remain on the freezing line. However, if Crz > Csz, which, 
according to (18a), (18b), (22a), and (22b) is the case since 
Sc >> Pr, then aT/aS is more negative than previously, and 
the water becomes supercooled, as illustrated in Figure 5. 

If the water becomes supercooled in our calculation, we 
create frazil ice in the water column and return the T, S 

properties to the freezing condition. It is easiest to concep- 
tualize the process in terms of discrete states 1 and 2 where 
state 1 is supercooled according to the process described 
above and state 2 is after frazil ice has been created and the 

remaining water has been returned to the freezing state. To 
accurately treat ice production it is necessary to include the 
dependence of the freezing temperature on pressure or 
depth. Thus 

Tf= mS + nz (32) 

where, according to Fujino [1974], n can be approximated as 
the constant listed in Table 1. We refer to Steele et al. [1989] 
for a more detailed discussion of frazil ice production and the 
role of equation (32). 

If we let y = (incremental mass of frazil ice)/(total mass), 
then the heat and salt balance equations are 

C•oT 1 + L o = (1 - 3,)(C•oT 2 + Lo) + TCplT2 

S• = (1 - 3,)S2 + 3, St 

from which, for small y, we obtain 

T2 = rl + yL/Cpo (33) 

S2 = Si + y(S1- Si) (34) 

where L = L F + (Cpo - Cp•)rl. After combining (33), (34), 
and the relation, T2 = mS2 + nz, we obtain 

C.o(mS1 + nz- ri) 
3' = L - Cpom(Si - St) mSi + nz - Ti > 0 

3, = 0 mS l + nz- Ti < 0 

(35) 

In the numerical model we now interpret aT = T2 - T1 and 
aS = S2 - S1 as the changes occurring in the time step at. 
After 3, is obtained from (35), aT and aS are obtained from 
(33) and (34), respectively. The frazil ice is immediately 
removed from the water column and added to the surface ice 

sheet. The rate of frazil ice accumulation at the surface is 
then 

WFR a t - • f H • = ydz 

where H is the depth of the water column. 
Equations (33), (34), and (35) are in lieu of a more detailed 

model where one would solve for frazil ice formation, a frazil 
ice concentration profile, and subsequent vertical buoyant 
drift to the surface. 

5. DECOUPLED, ONE-DIMENSIONAL, ICE 
MODEL CALCULATIONS 

Comparison With the Calculated Results 
of Maykut and Untersteiner 

In this section we wish to compare the present model 
results with the results of the high-resolution ice model of 
MU. The ice model is decoupled from the ocean model by 
externally specifying the oceanic heat flux and temperature, 
Fr and T o. Furthermore, we set A = 1. Note that ice dynamics 
are irrelevent to the thermodynamics in the decoupled mode; 
furthermore, all of the results in sections 3 and 4 are not used 
at all here. 
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TABLE 2. Prescribed Standard Forcing 

Symbol Variable Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec. Year 

SW incoming 0 0 1.9 
shortwave 

radiation, kcal 

LW incoming 10.4 10.3 10.3 
longwave 
radiation, kcal 

Qs• flux of sensible 1.8 0.76 0.72 
heat, kcal cm -• 

Q•.• flux of latent heat, 0 -0.02 -0.03 
kcal cm- • 

as* snow albedo ...... 0.83 

9.9 17.7 19.2 13.6 9.0 3.7 0.4 0 0 75.4 

11.6 15.1 18.0 19.1 18.7 16.5 13.9 11.2 10.9 166.0 

0.29 -0.45 -0.39 -0.30 -0.40 -0.17 0.10 0.56 0.79 2.71 

-0.09 -0.46 -0.70 -0.64 -0.66 -0.39 -0.19 -0.01 

0.81 0.82 0.78 0.64 0.69 0.84 0.85 -'- 

-0.01 -3.20 

Compiled by Fletcher [1965] and used by Maykut and Untersteiner [1971]. To convert kcal cm-2/month to W m -2 for a 30-day month, 
multiply the tabulated values by 1.346. 

*MU used values interpolated from this row except when snow began to melt after which the albedo varied linearly from the last 
interpolated, dry snow value to the value 0.64 when the snow had completely melted. We followed the same procedure for our first 
calculation after which equation (36) was used instead. 

We follow MU, who used the monthly averaged heat 
budget of Fletcher [1965], which they spread over twelve 
months where a month is taken as 30 days. The values are 
tabulated in Table 2. The Stefan-Boltzmann constant was 

taken as 5.78 x 10 -8 W m -2 K -4 instead of the commonly 
accepted value of 5.67 x 10 -8 W m -2 K-4; most of the 
difference can be attributed to the fact that the calculation is 

based on a 360-day year. Thus in this paper, much of the 
bulk formulas in Appendix A are bypassed except for the 
fact that we will later use them to correct Fletcher's values 

for open water fluxes when A < 1. 
We also follow MU in prescribing a snow accumulation of 

30 cm between August 20 and October 30, then a further 
increase of 5 cm to April 30 and additional 5 cm during May; 
however, snow accumulation is terminated if the surface 
temperature reaches the melting point. 

The ocean heat flux at the base of the ice was fixed at 1.5 

kcal cm -2 year-• = 2.02 W m -2, a number which is justified 
in MU but has been disputed by Morrison and Smith [1981] 
(they also cite G. A. Maykut (unpublished work, 1981) in 
corroboration of a lower heat flux). Nevertheless, we use 
this value to facillitate the comparison of results. For com- 
parison with Table 2 this is equivalent to 0.125 kcal cm -2 
month-•; variations in such a relatively small number have 
been shown by MU and by Semtner [1976a] (see also Table 
3 and Figure 8) to have a significant effect on ice thickness. 

We note that instead of using the latent heats defined in 
(10b) and (15c), MU fixed L 3 and L o at values corresponding 
to brine fractions r = 0 and 0.2, respectively. Semtner 
alludes to the fact, and we agree, that MU do not globally 
conserve energy by this procedure. Nevertheless, we will 
incorporate this as a temporary change only for the calcula- 
tion cited next. 

The model was run for thirty years; the time step was 1 
hour, and the ocean vertical grid spacing was 5 m except for 
the upper four grid points which decreased logarithmically to 
0.5 m. After attainment of equilibrium the model yielded an 
annual mean thickness about 15% higher than the MU result. 
We have not been able to identify the reason for the 
difference in the two calculations; it could be due to differ- 
ences in the model formulation, the numerical algorithm, or 
to undiscovered differences in interpolating the thermody- 
namic forcing. From Semtner's results it would not seem 

that resolution is responsible. We have also checked exten- 
sively for code errors in our model. The difference is 
corrected by either a 2% decrease in albedo or by an 8% 
decrease in snow and ice heat conductivity and yields results 
almost identical to those shown in Figure 6. 

Albedo Model 

We now restore the model, as represented by sections 1-4 
and by Table 1. In addition, we depart from the use of the 
albedos listed in Table 2 since, in future application, the 
model itself should determine these values. Therefore we 

substitute the following relations: 

h I (m) 

3.0- 

ß ow •'e•ve.•, -30 
T (øC) 

-20 

-10 

0 0 
J F M A M J J A S 0 N D 

Fig. 6. The monthly averaged, equilibrium values of snow 
thickness and the ice thickness and the temperature of the snow and 
ice surfaces. The crosses are the monthly averaged values calcu- 
lated by Maykut and Untersteiner [1971]. Ice ablates at the top at the 
rate of about 0.5 m year -1, which is balanced by accretion of an 
equal amount at the bottom. 
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TABLE 3. The Effect of Albedo Variations, Ice Salinity, Ocean Heat Flux, and Trapped Surface Water on the Annual Mean Ice 
Thickness 

at Fr, W m -2 St, ppt hs. m (Ah•), m Remarks 

0.8215/0.73/0.64 2.02 3. 0 2.42 Figure 6 
0.82/0.73/0.64 2.0 3. 0 2.38 standard for this table 
0.84/0.73/0.64 2.0 3. 0 3.16 

0.82/0.75/0.64 2.0 3. 0 2.78 a t sensitivity 
0.82/0.73/0.66 2.0 3. 0 2.79 

0.82/0.73/0.64 0.0 3. 0 4.16 Fr sensitivity 
0.82/0.73/0.64 2.0 0 0 2.26 St sensitivity 
0.82/0.73/0.64 2.0 3. 0.10 3.27 hs,, sensitivity 

Column heads are ai, dry snow albedo/wet snow albedo/bare ice albedo; Fr, oceanic heat flux; S•, ice salinity; h .... maximum standing 
meltwater; (Ahi), annual mean, area-averaged ice thickness. 

For snow-covered ice with no melting (dry snow) 

0.82 (36a) 

For melting snow (wet snow) 

0.73 (36b) 

For bare ice 

0.64 (36c) 

Using (36), the annual mean ice thickness was about 2% too 
low compared to the MU results; an adjustment of the value 
0.82 to 0.8215 effected nearly exact correspondence with the 
MU result, as shown in Figure 6. From these results and 
from the more deliberate sensitivity studies in the next 
section it is apparent that our knowledge of many of the 
physical parameters are not precise enough to preclude the 
fact that any model will have to be tuned so that calculated 
results agree with observation. 

Aside from the information displayed in Figure 6, one 
finds here, as in MU, that congelate ice is accreted on the 
underside of the ice sheet at a relatively uniform rate, with 
some reduction in the summer. On the other hand, ice is 
melted on the top surface entirely during June, July, and the 
first part of August. During a single annual cycle the total 
bottom accretion of ice and the equal amount of surface 
melting is about 50 cm. Thus a particle frozen at the bottom 
will migrate to the top over a period of 4-5 years. 

Sensitivity Studies 

Continuing with the decoupled ice model, we wish to 
determine the sensitivity of the model to some of the model 
parameters. The results are somewhat cryptically reported 
in Table 3, where we measure sensitivity only by the annual 
average of the area-averaged depth (Aht). In Table 3 the first 
row is identical to the parameters used in Figure 6, where the 
dry snow albedo is tuned (with four-place precision!) to 
compare with the MU calculations. The second is the same, 
with the dry snow albedo and oceanic heat flux rounded to 
two-place precision; this case will, hereinafter, represent the 
"standard" case. 

Following the standard case in Table 3 are cases where the 
dry snow albedo, the wet snow albedo, and the bare ice 
albedo are increased successively by the amount 0.02; this 
amount increases the annual near-ice depth by about 30% in 
the case of the dry snow albedo increase and 15% in the 
other cases. 

The next case shows the effect of specifying zero ocean 
heat flux, which yields an 80% increase in annual ice depth; 
this result is in accordance with the similar sensitivity 
studies by MU and Semtner [1976a] to which the reader is 
referred for a more extensive range of ocean heat flux 
variation. As previously discussed, the actual annual mean 
heat flux in the central Arctic may, in fact, be much smaller 
than the standard chosen by MU. 

The next case shows the effect of decreasing ice salinity 
from 3 ppt to 0. This results in only a 5% decrease in mean 
ice depth. However, the lag effect of increasing the effective 
heat capacity of ice when St = 3 ppt does change the 
detailed, late summer and fall distribution of the snow and 
ice surface temperatures in Figure 6 such that they are more 
closely in agreement with the MU results, as compared to 
the calculations (not shown) when St = 0. 

The next case in Table 3 shows the result of increasing the 
maximum depth of standing water to a value of hs, = O. 10 m, 
resulting in a 40% increase in the mean ice depth. Instead of 
summer meltwater being lost from the system it is retained 
and readily available near the surface for refreezing in the 
fall. At this point we note that MU include the possibility of 
shortwave radiative penetration into the near-surface por- 
tion of bare ice. This shortwave energy converts ice into 
brine pockets; this water is also retained and readily avail- 
able near the surface for refreezing in the fall. This process 
is not dissimilar to simply retaining water on the surface. In 
fact, we obtain very similar results to the MU case of 17% 
shortwave penetration by setting hs, = 0.06 m in our model. 
Note, however, that the direct effect of standing water pools, 
although it is a simplification to spread the water uniformly, 
might be as important or more important than shortwave 
penetration. 

We next study the thermodynamic effects of the compact- 
ness A. We also wish to assess the effects of • and •a• in 
equation (4), which are rather uncertain parameters. To be 
consistent with the previous results we continue to use the 
heat flux values of Table 2 and the albedoes from (36), 
together with the value, a o = 0.10, for open water. How- 
ever, we do use equations (A7)-(A10) to correct the sensible 
and latent heat fluxes of Table 2 to obtain the corresponding 
open water fluxes. 

In order to create A < 1 in a one-dimensional context we 

replace the advection term in (3) and (4) by Aht div V (= A 
ht OUi/Oxi). In Figure 7, for the standard values cI)a• = 0.5 
and •F = 4 and for the ice divergence, div V = 0.0, 1.0, 2.0, 
3.0, and 4.0 x 10 -9 S -1, we show the annual march of the 
area-averaged ice thickness Aht, the concentration A, the 
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Fig. 8a. Annual and area-averaged ice thickness (Ah) for a 
range of values of div V and of tP v. tP2u is fixed at the value 0.5; see 
equations (4) and (5). The dashed curve is a calculation where (4) is 
numerically overwritten so that A = 1; this curve represents only the 
effects of ice being transported out of the region. Annual periodicity 
prevails for values denoted by solid curves. See text for discussion 
of values denoted by hashed marks. 

= 0.10), so that melting and open water creation is en- 
hanced. For div V -< 2.0 x 10 -9 S -1 an annual cycle is 
established. When div V = 2.5 x 10 -9, periodicity is not 
obtained throughout the 30-year run, and summer ice-free 
conditions are obtained every 3 to 5 years. When div V = 3.0 
X 10 -9 s -1, a 3-year cycle is established, with ice-free 
conditions appearing every 3 years. For div V = 3.5 and 4.0 
X 10 -9 s-1 a 2-year cycle is obtained, with ice-free summers 

d every other year. For larger values of div ¾ an annual cycle 
is reestablished, and the summers are all free of ice. 

In Figures 8a and 8b the annual average values of Ah/, 
denoted (Ah/), are plotted as functions of div V for cI) M = 0.5 
and cI)M - 1.0, respectively, and for various values of cI)F. 
The portions of the curves denoted by solid lines indicates 
that a repeating, annual cycle has been established; multi- 
year cycles occur where the curves are dotted or where there 
are hashed marks. We also show the result (dashed curve) 
where we overwrite (4) and set A = 1; the variation of (Ah•) 
is then due entirely to the transport of ice out of the region. 

Fig. 7. The final year of a 30-year integration: (a) the area- 
averaged ice thickness; (b) the concentration; (c) the net atmo- 
spheric heat flux; (d) the net ice-ocean freeze/melt rate; (e) the 
ice-atmospheric melt rate. The calculations include the effects of 
divergence, div V; contours of constant div V are labeled in units of 
10 -9 S -1. The values tP2u and tP v in equation (5) were set at 0.5 and 
4.0, respectively. Annual periodicity prevails for div V -< 2.1 x 10 -9 
s -1. See text for discussion of larger values. 

net surface heat flux AQA/+ (1 - A)QAo, the net ice-ocean 
plus atmosphere-ocean freeze rate AW•o + (1 - A) WAO, 
and the atmosphere-ice melt rate AWAy. The results are for 
the last year of a 30-year integration. 

Note that positive ice divergence creates a negative ten- 
dency for Ah/ in (3) and A in (4). In all but the summer 
months this negative tendency is counterbalanced by re- 
freezing, so that A is maintained very close to unity. How- 
ever, in the summer months, shortwave radiation is ab- 
sorbed more efficiently by open leads (where the albedo, ao 

1 
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div V (]0-9S -1) 

Fig. 8b. The same as Figure 8a except that (I)2u = 1.0. Note 
change of abscissa scale relative to Figure 8a. Annual periodicity 
prevails for values denoted by solid curves. See text for discussion 
of values denoted by dotted lines or by hashed marks. 



MELLOR AND KANTHA: AN IcE-OCEAN COUPLED MODEL 10,947 

TABLE 4. Seasonal and Annual Mean Profiles North of 83øN 

Winter (FMA) Spring (MJJ) Summer (ASO) Fall (NDJ) Annual Mean 

Depth, S, 
m T, øC ppt T, øC S, ppt T, øC S, ppt T, øC S, ppt T, øC S, ppt 

0. - 1.71 31.41 - 1.67 31.24 - 1.64 30.86 - 1.70 31.32 - 1.680 31.208 
10. - 1.71 31.41 - 1.67 31.24 - 1.64 30.86 - 1.70 31.32 - 1.680 31.208 
20. -1.72 31.42 -1.68 31.25 -1.65 30.91 -1.70 31.32 -1.688 31.225 
30. - 1.72 31.44 - 1.69 31.26 - 1.66 30.95 - 1.70 31.33 - 1.693 31.245 
50. -1.72 31.59 -1.64 31.48 -1.60 31.40 -1.69 31.71 -1.663 31.545 
75. - 1.56 32.51 - 1.52 32.40 - 1.48 32.37 - 1.59 32.83 - 1.538 32.528 

100. -1.48 33.11 -1.49 32.86 -1.45 32.86 -1.51 33.35 -1.483 33.045 
125. - 1.34 33.52 - 1.48 33.12 - 1.37 33.12 - 1.35 33.55 - 1.385 33.327 
150. -1.17 33.86 -1.23 33.46 -1.20 33.53 -1.01 33.95 -1.153 33.700 
200. -0.46 34.42 -0.53 34.20 -0.57 34.28 -0.29 34.43 -0.463 34.333 
250. 0.07 34.65 0.06 34.52 0.04 34.57 0.22 34.63 0.098 34.593 
300. 0.53 34.79 0.64 34.74 0.52 34.73 0.50 34.75 0.548 34.753 
500. 0.54 34.90 0.57 34.87 0.51 34.87 0.47 34.87 0.522 34.878 

1000. -0.188 34.735 
1500. -0.400 34.950 
2000. -0.428 34.958 
OBS 11-8 26-20 30-20 10-23 

Numbers shown in the OBS row are the number of salinity observations at depths of 0 and 500 m. The annual mean profile includes values 
at 1000-2000 m, where the total number of salinity observations were 72 and 19, respectively. The number of temperature observations in 
the top 500 m are larger by a factor of 5 or more. T, temperature; S, salinity; OBS, observations; FMA, Feb., March, April; MJJ, May, June, 
July; ASO, Aug., Sept., Oct.; NDJ, Nov., Dec., Jan. 

Note the scale of the abscissa of Figure 8b relative to Figure 
8a. The point where ice-free water is formed occurs at 
smaller values of div V when •M = 1.0 than when •M = 0.5. 

The overall result is that, for •F > 2, the results are fairly 
insensitive to this otherwise uncertain parameter. Future 
attention should be directed at a more rational determination 

of • to which the calculations are sensitive. 

6. THE ICE-OCEAN COUPLED MODEL 

We now couple the ice model with our ocean model, and 
we will continue to use the same atmospheric forcing as in 
the previous section; however, the constraint on sea surface 
temperature and heat flux will be relaxed. 

In this coupled model it is the wind and resulting ice 
motion that forces the oceanic mixed layer and enables the 
ice to interact with the mixed layer via heat and salinity 
fluxes. A choice of wind speed of 6 m s -• is based on the 
monthly climatology of Gorshkov [1983]. Variability of the 
wind is of some importance to the mixing process [Klein, 
1980], so we have allowed the wind to vary sinusoidally with 
an amplitude of (•r/2) 6 m s -•, a period of 4 days, and a 
constant wind direction, a rather crude representation of a 
wind time series. 

Some inventivehess is required to overcome ignorance of 
horizontal advection of temperature and salinity in a one- 
dimensional representation of the model. In Table 4 are 
values obtained from the Master Oceanographic Observa- 
tional Data Set in the region north of 83øN. The data are 
sparse and subject to spatial and temporal sampling errors. 
In the absence of advective processes one can only hope to 
model thermodynamic details in the mixed layer. We there- 
fore plot the annual mean temperature and salinity data 
points in Figure 9. Our strategy will be to approximate these 
mean values while at the same time calculating the time- 
varying values with the model. As a lower boundary condi- 
tion at z -- -78 m, we set T - -1.54øC and S - 32.7 ppt. At 
this lower boundary point, calculations reveal that the mod- 

el-generated mixing coefficients are effectively null. How- 
ever, we do use a "background" coefficient, which is 
discussed below. This will result in a salinity flux at the base 
of the mixed layer. However, the salinity flux at the surface 
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Fig. 9. The annual mean temperature and salinity data, the open 
circles, taken from Table 4. The solid curves are the annual mean 
values calculated by the model. The minimum, summer and maxi- 
mum, winter mixed layer depth (MLD) calculated by the model are 
indicated. 
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is very small; brine rejection due to freezing is balanced by 4 , , , 1.0 
meltwater runoff in the summer months, but there is some 
residual flux due to the removal of ice through the div V 

term. Therefore the combined fluxes at the surface and base of the mixed layer result in a slow salinity increase which, it 2 5 .9 turns out, does not significantly affect the thermal results. 

Nevertheless, in the results to be presented we have simply <•hz> • removed salt uniformly throughout the water column so that 
equilibrium is attained and the calculated, annual mean salt 0 
storage is as shown in Figure 9. In the central Arctic it is 

quite likely that this would be supplied by horizontal advec- 1 x10 -7 ' 'A J '/ _.: 
tion, whose source is freshwater runoff from land. -= 

There is no need to tamper with the temperature field, 
since the surface value is locked in at the freezing value. 

Furthermore, one suspects that mixed layer advection of temperature is small in the central Arctic, since surface 
temperature variations are small. 

For ice-free oceans, thermocline vertical mixing coeffi- 0 
cients are thought to be in the range of 0.1 to 0.3 cm 2 s-1 
[White and Bernstein, 1981; Martin, 1985]. For comparison, 
the mixing coefficients produced by the closure model are of 
the order of 100 cm 2 s-1 in the mixed layer but are essen- 
tially null below the mixed layer. We therefore choose a 
"background" mixing coefficient of 0.2 cm 2 s-l; this results 
in an annual mean heat flux of 0.33 W m -2 at the base of the 

mixed layer. The annual mean temperature profile is plotted 
in Figure 9. Variations in the background mixing coefficient 
do not change the profile significantly but do reveal a nearly 
linear relation between the prescribed thermocline mixing 
coefficient and heat flux at the base of the mixed layer. 

The annual mean temperature and salinity profiles indicate 
that the calculated mixed layer depth is about right; the 
summer and winter extremes of mixed layer depth are 
denoted in Figure 9. 

Figures 10-15 contain plots of key variables as functions 
of time. The empirical factors cI)M and cI)v were to set to the 
values 0.5 and 4.0, respectively. Figures 10a-15a contain the 
area-averaged ice thickness and concentration; Figures 10b- 
15b show various components of freezing and melting rates 
at the surface and at the base of the mixed layer; Figures 
10c-15c are the oceanic heat flux at the surface and at the 

base of the mixed layer. Finally, Figures 10d-15d and 
Figures 10e-15e are time depth plots of the temperature and 
salinity. The ratio of frazil ice to congelate ice production is 
denoted by F/C. 

The first three figures, 10, 11, and 12, are calculations 
where div V = 2 x 10 -9 S -1 , hs, = 0, and S• = 3 ppt and 
where the parameter b is set to 0, 1.5, and 3.0, respectively. 
The motivation for this evaluation of the effects of b is the 

following: The value b = 0 corresponds to the assumption 
which generally prevails in the literature on ice models [e.g., 
Josberger, 1983; Ikeda, 1986], whereas the value b - 3.0 is 
essentially the value recommended by Yaglom and Kader 
[1974]. However, McPhee et al. [1987] found a match with 
marginal ice zone measurements when he used a value close 
to b = 1.5. A possible justification for a value lower than that 
obtained by Yaglom and Kadet is simply that the statistics of 
ice roughness are unlike the roughness distributions created 
in laboratory flows. In any event we wish to understand the 
consequences of variations in b and, hopefully, to see if we 
can discriminate an independent choice of this variable. 

Now, in Figures 10c, 1 l c, and 12c we note that the heat 
flux at the base of the mixed layer varies slightly around the 
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Fig. 10. Coupled ice-ocean calculation where b = 0 in equations 
(18b) and (2lb), div V = 2 x 10 -9 s -1, and h,,,, = 0. (a) Ah• (left 
scale) and A (right scale). (b) Ice surface melt rate, ice bottom 
accretion rate (dot-dashed curve), and frazil ice production rate. (c) 
Ocean heat flux at the surface and at the base of the mixed layer. (d) 
Contours of temperature; contour interval = 0.25øC. (e) Contours of 
salinity; contour interval = 0.1 ppm. The annual average value of 
Ah• is given in Figure 10a, and the ratio of frazil to congelate average 
freeze rate is given in Figure 10b. 

annual mean value of 0.33 W m -2. However, the surface 
values vary greatly as a function of time and as function of b. 
For b = 0 the annual mean surface heat flux equals the base 
value. For b equal to 1.5 and 3.0 the annual mean surface 
heat fluxes are 2.14 and 2.40 W m -2, respectively; the 
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difference between these values and the base value of 0.34 W 

m -2 is due to frazil ice production in the water column, with 
consequent release of latent heat. The discussion relative to 
equation (31) in section 4 provides the reason why the value 
b = 0 does not produce frazil ice whereas the values b > 0 do 
produce frazil ice. Furthermore, examination of (18a), (18b), 
(22a), and (22b) will reveal that Crz/Csz = (Sc/Pr) 2/3 = 
(a/a/2/3 and therefore the rate of frazil ice production ! s! , 

should not be overly sensitive to b except when b is quite 
close to zero; this is more or less the case, as seen in of 
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Fig. 12. The same as Figure 10 except that b = 3.0. 
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Fig. 11. The same as Figure 10 except that b = 1.5. Frazil ice is 
now created and plotted in Figure l lb. Because of the depth 
dependent, freezing temperature relation, equation (30), frazil ice 
production is confined to the upper 3 to 4 m. 

Figures 1 lb and 12b. We now note that frazil ice production 
is confined to the top 3-4 m, with the maximum at the 
topmost layer. This is largely governed by equation (32), 
wherein n is a negative number and T./-is lower in deeper 
water. A run where n = 0 produced nearly the same total 
amount of frazil ice, but production was distributed through 
most of the mixed layer. 

In Figure 13 we show results where the frazil ice produc- 
tion is not enabled at all, and the water column is super- 
cooled. At the surface in winter the water is supercooled by 
about 0.01øC. The annual area-averaged ice thickness is 
increased by 18% over that in Figure 11. 
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4 , , ,• ,•••.---, 1.0 T O = - 1.69, -1.62, and - 1.56. This then forces the water column to be at a higher temperature as b increases; the 
^ process is enhanced by the fact that the molecular sublayer 

•' resistance to heat flux is much less than the resistance to 
•'• 2 •-- • .9 salinity flux, since Pr << Sc. 

• t k 1 anTable 5wecompare the seasonally averaged model o surface temperatures and salinities to the similarly averaged <AhI> =:2.18 
observed values from Table 4. From these results one 

0 / • } • • • I /• • • • • I concludes that, certainly, b > 0 and, in fact, the comparison would seem to favor values in excess of the value 1.5 

l x10-71 .... ' I /' , ' ' ' I obtained by McPhee et al. [1987] to match data for rapidly 
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Fig. 13. The same as Figure 11 (b = 1.5) except that frazil ice 
creation has not been enabled so that, except for summer months, 
near-surface water is supercooled. 

A prominent difference in the three cases, b = 0, 1.5, and 
3.0, is the summertime mixed layer temperature signal; as b 
increases, the summertime temperature increases. The sum- 
mertime salinity flux is approximately the same in all three 
cases, as is the near-surface salinity. However, because of 
the increased resistance to salinity flux for larger b (see (21), 
(22a) and (22b)), the salinity So on the ice side of the 
molecular sublayer is significantly decreased. For example, 
the average July values are So = 31.08, 29.80, and 28.68 
when b = 0, 1.5, and 3.0, respectively, and according to (33), 
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Fig. 14. The same as Figure 11 except that div V = 0 and, 
consequently, A = 1. 
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melting ice in the marginal ice zone. Note, however, that 
these results are dependent on the choice of Zo and possibly 
on details of the statistics of the roughness distribution. 

TABLE 5. A Comparison of Seasonally Averaged Model 
Surface Temperatures, and Salinities, and the Data of Table 4 

7. INCREASED ICE DIVERGENCE 

Ice divergence was included in the model as a means of 
creating leads and as a means of testing the formulation for 
ice concentration. It does create open water. However, a 
primary role of ice divergence is simply to export ice out of 
the model domain. Now that the model is more or less 
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Fig. 15. The same as Figure 11 except that h,,, = 0.1. Note that 
the surface melt rate (solid curve in Figure 15b) has a negative 
portion, indicating melt pool freezing. 

Season 0 1.5 3.0 Data 

Temperatures 
FMA -1.70 -1.70 -1.71 -1.71 
MJJ - 1.70 - 1.68 - 1.66 - 1.67 
ASO - 1.69 - 1.67 - 1.66 - 1.64 
NDJ - 1.69 - 1.69 - 1.69 - 1.68 

Salinities 

FMA 31.48 31.38 31.38 31.41 
MJJ 31.32 31.31 31.33 31.24 
ASO 30.91 30.83 30.85 30.86 
NDJ 31.12 31.13 31.13 31.32 

The seasonal definitions follow Levitus [1982], see Table 4. 

complete we ask the question: What are reasonable values of 
div V ? 

From the ice drift measurements analyzed by Colony and 
Thorndike [1984] we approximate div V -• 4.5 x 10 -9 s -1 for 
the central Arctic and 3.0 x 10 -9 for the entire Arctic basin. 

Vinje and Finnekasa [1986] estimated the ice transport 
through the Fram Straits at 0.16 x 10 6 m 3 s -1, a number 
close to other estimates that are cited in their paper. Assum- 
ing an average ice thickness of 3 m, we obtain div V - 6.5 x 
10 -9 s -•. (This is equivalent to ice production of 0.64 m 
a number which is somewhat larger than the bottom ice 
accretions rate, ---0.55 m y-l, according to the MU model 
and the present model.) 

We have surveyed the effect of div V for the decoupled ice 
model. In the coupled model we have used the value, 
div V = 2 x 10 -9 s-•. Our results yield an annual mean ice 
thickness of around 2 m. Now if we repeat the run of, say, 
Figure 11 with a larger div V - 4 x 10 -9 s -1, we obtain 
(Ahz) = 0.89 m instead of 1.85 and instead of the observed 
3.0 m [Bourke, 1987]! 

The answer to this apparent dilemma resides in the paper 
by Maykut [1982], where it is shown that, if one takes into 
account the thickness distribution g(/•), the thinner ice will 
grow much faster in the winter, since it offers less resistance 
to heat transfer than does thicker ice. We have used hz = 
f /• g(/•) d/• to represent ice thickness. However, for the 
thickness used in the heat conduction equation we should 
instead use f/•-i g(/•) d/•. This idea requires a little devel- 
opment, however, since heat conduction is not uniquely 
dependent on thickness. For this purpose we neglect the 
heat capacity of the ice and snow so that, referring to Figure 
4, we have 

0-= Os = 0,o = = k(3 - ro)/ 

where we use the tildes to represent local values. Here k and 
/• represent composite snow and ice values. Thus the actual 
heat flux is 

Q = • (T3(]•)- To)g(]•) d]• 

where we note that T3 is a function of /• for a given 
atmospheric forcing. We now define a conduction correction 
factor G such that 

k 

Q = G • (T3(hi) - To) (37) 
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Fig. 16. The ratio of the temperature drop across the ice, based 
on local thickness, to the temperature drop based on the average 
thickness. 

Combining the above two equations yields 

G = T3(i)- To g½) 
We now run a simplified model, valid for winter conditions, 
which is a balance between incoming and outgoing long- 
range radiation, sensible heat flux (see Appendix A), and 
Q•2. The atmospheric temperature T A was allowed to vary 
from -30 ø to - 10 ø, and/• varied in the range 0 </• < 6 m and 
T O = -1.8øC. The ratio (T3(/•) - To)/(T3(h I) - T o) is plotted 
in Figure 16, where we take hi - 3 m, although the result is 
hardly sensitive to this value. The curve in Figure 16 is 
essentially independent of T A. It is also weakly dependent on 
/• except near/• = 0. As a consequence of this result 

fe • hi G = • g(/•) d/• (39) 

where, if g(/•) is finite for/• --> 0, then the cutoff, e = 0.1 m, 
accounts for the sharp decrease in the temperature ratio in 
Figure 16. 

To develop some feel for the magnitude of G, let g(/•) = 0 
where/• < 1 m and g(/•) = 0.25 where 1 m </• < 5 m. We 
then obtain the value G = 1.21 from (39). Now provide some 
young ice so that g(/•) -- a when/• < 1 m and g(/•) - 0.25 
(1 - a) where 1 m </• < 5 m. For small a, G = 1.21 + 4.6a 
(the error in G - 1.0 is less than or equal to 5% when 
compared to results obtained from a numerical integration of 
(38)). Now a is approximately the areal percentage of young 
ice. From the discussion by Maykut [ 1982], a is uncertain but 
is probably in the range 5 to 10%, so that 1.44 < G < 1.67. 
However, from submarine measurements in the central 
Arctic, [Bourke (1987] indicates a much higher value of 
about 20% (with some seasonal variability); our simple 
formula yields a value of G = 1.9, whereas a numerical 
integration of (39) using Bourke's measured ice distribution 
yields 2.1. 

We again ran the model for div V = 4 x 10 -9 s -1, but this 
time G = 1.5, instead of unity, which effectively means that 
we increase the conductivity k by 50%. (For want of a more 

enlightened strategy we apply this increase to both the ice 
and snow values, ki and ks.) This calculation yielded a value 
(Ahi) = 2.49. Finally, we specified hs = 0.10 m and obtained 
(Ahi) = 2.93. (The result is quite similar to Figure 15 except 
that Ahi is higher, A has a minimum value of 0.91, and the 
amplitude of the curve in Figure 15c is about 30% larger. The 
T and S contours are nearly identical.) 

8. SUMMARY AND CONCLUSIONS 

The main goal of this paper was to produce an ice model 
which can be matched and is otherwise compatible with a 
turbulence closure, mixed layer model and which, subse- 
quently, can be wedded to a three-dimensional model within 
which the mixed layer model is embedded. This goal, we 
believe, has been reached. 

Some specific findings are as follows: Ocean coupling does 
introduce considerable variability in the ocean surface heat 
flux. A net result is to lower the annual and area-averaged ice 
thickness, but only by 0 to 15%, depending on the value of 
the molecular sublayer constant b. (We obtained the decou- 
pled ice result by interpolating Figure 8a for a mean ocean 
heat flux of 0.33 W m -2, generated by the coupled model.) It 
should be noted that the mean oceanic surface heat flux had 

been thought to be about 2 W m -2, although the number has 
been challenged. However, the data (and the model) yield 
the value 0.33 W m -2 for a pycnocline mixing coefficient of 
0.2 cm 2 s-i, which is probably an overly large estimate for 
the central Arctic; thus this study is supportive of a oceanic 
heat flux of 0.3 W m -2 or less. An estimate of upwelling heat 
flux using div V = 4 x 10 -9 s -• and some Ekman layer 
velocity structure information does not seem to alter this 
conclusion. 

The effect of allowing for melt pools increases the annual 
mean ice thickness through the use of the parameter hsw > O. 
The same parameter can roughly account for the penetration 
of shortwave penetration into the ice. 

The ice model contains the empirical lead parameters cI)2u 
and cI)F. Results, such as the annual mean ice thickness, are 
quite insensitive to cI)2u so long as cI)F _> 2, which does 
include the physically probable range. On the other hand, 
annual mean thickness is sensitive to cI)•u in the physically 
reasonable range 1.0 > cI)2u > 0.5. 

The parameter b determines the level of resistance for heat 
and salinity flux in the molecular layer between the ice and 
the oceanic mixed layer. We consider the range 0 -< b -< 3.0 
(for b - 0, there is no molecular layer). In the marginal ice 
zone the effect of b is pronounced [McPhee et al., 1987; 
Steele et al., 1989] in that increasing b significantly decreases 
melt rate at the ice edge. In these central Arctic simulations 
the ice thickness response to b is not large. However, b > 0 
does produce the observed seasonal temperature signal, and 
frazil ice is created. The calculated frazil ice production is 
apparently too large. Tucker et al. [1987] report that the 
percentage of frazil ice to congelate ice in forty floes emerg- 
ing through the Fram Straits is about 20%, as compared to 
our calculated 31 to 37%. Of course, we have converted all 
supercooled water to equilibrium, whereas the water column 
must retain a degree of supercooling to provide the driving 
potential for frazil ice freezing. More detailed research and 
modeling is required on this aspect of the overall frazil ice 
problem. 

We have surveyed the effect of div V for the coupled ice 
model and found it to be a major factor. First, it can be an 
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important part of the ice budget. Second it can produce 
summertime concentrations less than unity. In the coupled 
ocean-ice model we first fixed div V = 2 x 10 -9 s -•. 

However, observations indicate actual values of 4 x 10 -9 
s -1 or greater. Using this value, the model yielded ice 
thicknesses which were far below those observed. This led 

to the invention of an empirical factor G to account for the 
fact that the average thickness h•, which correctly describes 
ice volume, is not the thickness that should be used in the ice 
conduction equation. Although its value is uncertain, we feel 
that G is a factor required by the class of ice models whose 
independent variables are A and h• and which do not deal 
directly with the distribution function g(fi). 

In general, we believe that the ice model, the ocean mixed 
layer model, and the means of matching the models de- 
scribed in this paper provide a good basis for three- 
dimensional simulations of the polar oceans and the marginal 
ice zones. 

APPENDIX A' ATMOSPHERIC BULK FORMULAS 

Equations for heat fluxes are provided here for conve- 
nience. They are not used in this paper, except to provide 
open water corrections to Table 2, but they are used in the 
companion paper by Kantha and Mellor [this issue], and it is 
expected that they will be used in most future applications of 
the model. 

The shortwave radiation SW is a function of astronomical 

parameters and is given by [Parkinson and Washington, 
1979] 

Sc cos 2 0z (1 -0.6 C•) 
SW= 10-5 (cos 0 z + 2.7)eA + 1.085 COS 0 z + 0.10 (A1) 

where Sc = 1353 W m -2 is the solar constant, C1 is the 
fractional cloud cover, and 0 z is the solar zenith angle. The 
atmospheric vapor pressure eA (in Pascals) is related to the 
specific humidity qA and the atmospheric pressure p by 

eA qA 
-- = (A2) 
p 0.622 + 0.378qA 

The cosine of the zenith angle cos 0z is given by 

cos 0 z- sin & sin 8 + cos & cos 8 cos ½ (A3a) 

where 4> is the latitude; 8, the declination, and ½, the hour 
angle, are given approximately by 

• = 23.44 ø cos [360ø(172 - Dy)/365] (A3b) 

0 = 15ø(12 - TH) (A3c) 

where Dy is the day of the year and TH is the solar time in 
hours. 

The longwave flux LW is taken as (following Maykut and 
Perovich [ 1987]) 

L W = o•T A + 273) 4 (0.7855 + 0.2232 C• '75) (A4) 

where TA is the temperature in degrees Celsius of the surface 
layer of air. 

The direct atmospheric stresses imposed on ice and open 
water are given by 

(tAIx, tAIy)= CDAIt9alUloI(UIo, V10) (A5) 

(TAOx, TAOy ) = CDAOQalUlol(Ulo, V10 ) (A6) 

where Ulo = (Ulo , Vlo ) is the 10-m anemometer wind vector. 
The sensible and latent heat fluxes between the ice and the 

atmosphere are 

Qsi = QaCpaCHAIIUloI(T3- TA) (A7) 

QL! = PamsCHAIIUlol(q3 -- qA) (m8) 

Ls is the latent of sublimation and q3 is the saturation specific 
humidity based on T 3 [Gill, 1982, p. 606]. The sensible and 
latent heat fluxes between the atmosphere and open water 
are 

Qso = paCpaCHolUlol(ro- TA) (A9) 

QLO = paLvCHolUloI(qo- qA) (A10) 

qo is the saturated specific humidity based on the open ocean 
surface temperature T O [Gill, 1982, p. 606]. Lv is the latent 
heat of vaporization. The bulk coefficients used in this paper 
are 

CDA I --3.0 x 10-3 CDA 0 = 1.5 X 10-3 

CHA t -- 1.5 x 10-3 CHA 0 = 1.5 X 10-3 

APPENDIX B: SOME COMPUTATIONAL DETAILS 

During the course of numerical integration, let Tsp be the 
value of the ice surface temperature at the previous time 
step. Expand the current value according to T• = T•p + 4T33p 
(T 3 - T3p ). Then the combination of (8), (9a), and (9b) can be 
written T 3 = T3p - [trT•p + QAI- Q,2][4trT33p + (h,/(2k•) + 
hs/k•,.)]-l; this is the equation used to update the ice or snow 
surface temperature so long as T 3 is less than the freezing 
temperature. 

Equations (16a), (17), (20), (21), and (23b) may be com- 
bined to yield 

b 1 

Wo = 2 2 [b2 - 4c]1/2 (B1) 
where, if we set Or• = poCpoCr•, then 

b = - Csz + •oo (T- mSi) - •oo [(1 - A)QAo + AQio] 
(•Tz Csz 

m o 

Csz 
(T- mS) + •oo [(1 - A)QAo + AQIo] 

Thus Wo is obtained from (B 1) if A = 0, Wo = 0. (Note again 
that T and S refer to near-surface values determined by 
solutions to the ocean model.) Then Fr and To are obtained 
from (16a) and (17) and Fs and So are obtained from (20) and 
(21). Finally, W•o and WAoare obtained from (15a) and (15b) 
for use in equations (3) and (4). 

While equation (B 1) has been useful to the development of 
the model and is useful in explicitly relating Wo to relevant 
variables, we have finally found it possible and numerically 
simpler to use the original equations in a quasi-iterative 
sense where, using Wo and WRo from the previous time 
level, (20) and (21) are solved for So; then (23b) yields To; 
(17) yields Fr, and finally, W•o and WAO are obtained from 
(15a) and (15b). 

- rn -•o [(1 - A)So(P - t•) + A(So - St)WRo] 
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