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ABSTRACT

The thermally driven motion of a fluid contained in a rotating annulus is investigated by numerical
integration of the Navier-Stokes equations as an initial value problem. Four distinct regimes of hydro-
dynamical flow can exist in the annulus system. This paper will consider the nature and computational
requirements of the axisymmetric state for its own sake and partly as a prelude to a quantitative study
of the more complex irregular regime. Calculations were made for two flows whose parameters, with the
exception of the rotation rates, are identical, and whose upper surfaces are free. How the axisymmetric
state varies with the Rossby and Taylor parameters will be discussed in Part 2.

The solutions show that the flow forms a direct circulation with countercurrents on both side walls,
and with a strong flow from the base of the hot wall, across the interior, up toward the top of the cold
wall. The thermal boundary layers form in small and isolated regions near the top of the cold wall and base
of the hot wall. The fluid and container effect most of their heat exchange through these discrete regions.
The isotherms slope up toward the cold wall and a large region of constant temperature exists near the
fluid surface. The higher rotation rate makes the isotherms more vertical and, as a consequence, the Nusselt
number is inversely proportional to the first power of the rotation rate. The upper three-fourths of the fluid
flows in the same zonal direction as the rotation, while the remainder flows in the opposite
direction. Although the fluid interior is essentially geostrophic, the nonlinear terms do make a significant
contribution to the vorticity balance. The angular momentum has a single sink region; this
occurs at the top of the cold inner cylinder, and the fluid ignores the potential maximum source at the
(hot) outer cylinder. The contributions of the sidewall boundary layers to the energy transformation
oppose each other; this leaves the interior region of the fluid as a significant source of energy. Application
of Eady’s criterion for baroclinic instability when applied to the solutions, shows one flow to be stable, the
other unstable. This conclusion agrees with observation.

Contours of the transient fields show the predominately isothermal evolution of the flow towards a steady
state. The close association of the sidewall countercurrents to the sidewall boundary layers appears at all
stages of development.

Changing the number of grid points used and repeating the calculations demonstrated the accuracy of
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the solutions.

i. Introduction

The rotating annulus experiments described by Fultz
et al. (1959) and Hide (1958) exhibit many modes of
hydrodynamical behavior, ranging from flow patterns
in steady state through those that oscillate periodically
to others that vary in an apparently irregular manner.
In these experiments, two coaxial cylinders containing
water rotate about their axis. If the temperatures of
the cylinders are held fixed and if the rate of rotation is
sufficiently low, a symmetric steady state circulation
develops. If the rotation rate is increased, waves
develop which travel at a uniform rate without chang-
ing their form. Most of the motion is confined to a jet.
On further increasing the rotation rate, an irregular
wave pattern forms and moves and changes its shape in
an irregular aperiodic manner. Intermediate to the
steady wave and irregular wave regimes, ‘“vacillation”
occurs in which the waves undergo periodic changes in
patlern.

The flow in the irregular regime is regarded as a
possible analogue of the motion of a planetary atmos-

phere and so the annulus experiments guide such
studies as those of baroclinic instability, and atmos-
pheric periodicity and predictability. If this analogue
is correct, then a full explanation of the qualitative
features of the atmosphere requires quantitative
considerations, for the experiments suggest that under
different heating and rotation rates the motion of the
atmosphere might vary in a periodic manner.

The far-reaching consequences drawn from the
annulus experiments make it imperative that these
experiments be analyzed as thoroughly as possible. The
degree of accuracy behind this analogue concept has
lacked quantitative establishment mainly because of the
difficulty of observation in both the annulus and
atmosphere. However, the continuing acquisition of
atmospheric data and the creation of model-atmosphere
statistics by numerical integration provide an ever-
improving understanding of the present state of the
atmosphere and the way it functions. In the annulus,
on the other hand, the gathering of data has been
mainly for the purpose of examining the effect of various
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parameter values and physical characteristics upon the
formation of the different regimes, the transition of the
fluid from one regime to another, and upon the various
wave types. The few examinations of the internal
structure of the flow that have been made, have yielded
some data for the symmetric flows, but the data in
general is limited and no conclusions can be drawn about
the mechanisms operating. In spite of this lack of
detail about the flow, the experimental results on
transition phenomena are sufficiently accurate to
provide a basis for the theoretical examination of either
the transition phenomena alone, or the transition
phenomena and detailed structure. From the theoretical
viewpoint an accurate explanation of the transition
phenomena indicates a possibly accurate prediction of
flow details.

Although theory has been in good qualitative agree-
ment with experimental observation of the transition
of the fluid from the symmetric regime to the steady
wave regime, the quantitative discrepancy has been
large. For most theories the inherent simplifications,
such as neglect of boundary layers, imply that the
physical system being examined resembles a prior: the
atmospheric system, and as such, these theories cannot
be regarded as an explanation of annulus mechanics;
in some cases the equations are simplified to the extent
that their solutions can be regarded as (approximately)
describing either the atmosphere or the laboratory
experiments. Attempts by Barcilon (1964) and Lorenz
(1962) to make theory more realistic by including the
boundary layer on the base in parametric form did not
provide the quantitative agreement required. The large
quantitative disagreement between theory and observa-
tion suggests that the neglected sidewall boundary
layers must be playing a definite réle in the annulus
flow and that their inclusion in a theoretical treatment
is not only essential for quantitative agreement but
that it is also necessary in order to make the model
represent a true annulus system.

To understand the annulus system and compare it
with the atmosphere, its theory must be quantitatively
accurate. For this to be so, the important nonlinear
processes such as boundary layer phenomena must be
accounted for. As in the atmospheric case, the most
detailed and comprehensive treatment of all contribut-
ing physical entities can be most easily made by a
numerical treatment of the problem. The study of the
various modes of fluid behavior in the annulus is in a
situation comparable to atmospheric studies in that
numerical experiments are essential for progress in both
fields.

While numerical solutions of annulus flow should
show the similarity to the atmospheric system, the
results should also provide the necessary quantitative
details for further analytical examinations and give a
better understanding of the observed features. Further-
more, the equations describing the annulus flow and
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their numerical treatment exhibit great similarity to
those used in atmospheric studies, and for this reason
there is interest in the behavior of these analogous
equations and their capability to describe a definitive,
accessible, analogous physical system. On the physical
side, the flow in a rotating annulus offers the simplest
available example of quasi-geostrophic baroclinic flow,
and if it can be shown that the sidewall boundary
layers do play an essentially passive mechanical role,
then we have at our disposal an excellent system for
studying possible atmospheric mechanical forms in
pure, isolated form. Although models are becoming
more complex, the most significant advances in mete-
orology have come from studies which have isolated
essential mechanisms.

The flows in the wave regime provide a simple
example of a nonlinear wave motion. The nonlinear
interaction of modes in the vacillating and irregular
wave motions could provide reasons for the existence
(or non-existence) of periodicities and transition
hysteresis in baroclinic flows. Furthermore, simple
relationships could possibly be deduced from the
numerical solutions, relationships which cannot be de-
duced from the differential equations, but which would
provide a turbulence theory to describe the mean
structure of irregular regime flows. These relationships
could provide the needed link in the formulation of
such a turbulence theory for the atmosphere.

To commence the evaluation of annulus motions by
numerical methods, this paper will present the results
of computations made for two flows under the assump-
tion that the flow is symmetric about the axis of
rotation. Lorenz’s (1962) work indicates that steady
symmetric flow is mathematically possible under all
combinations of rotation and symmetric heating. Like-
wise, we have obtained a symmetric solution for a
parameter combination under which observations would
indicate the existence of a wave regime. The present
solution also leads to the conclusion that even under
parameter conditions for which a wave motion would
be expected, a steady state symmetric circulation exists
in the mathematical sense, although such a flow cannot
be observed experimentally because of its instability.
The main aim of the present paper is to study the
symmetric types of flow in their own right and from the
numerical point of view to investigate the problems of
resolution involved in dealing with boundary layers
explicitly. The encouraging outcome of these calcula-
tions indicates the practicality of considering the more
complex and interesting modes of annulus behavior and
these will be the subject of a subsequent paper.

2. Equations of axisymmetric transfer and method
of integration

We consider a fluid contained between two coaxial
cylinders of inner and outer radii a, b, respectively, and
two parallel horizontal planes. Let the container
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rotate with respect to an inertial system at a constant
rate Q, where the rotation vector, anti-parallel to
gravity g, coincides with the axis of the cylinders.
Motion is considered relative to the solid rotation, and
is measured in cylindrical coordinates 7, z based on the
axis, 7 being radial and z vertical, with %, v, w as the
velocity components in the zonal, radial and vertical
directions. The fluid is thermally driven away from the
state of solid rotation by an imposed horizontal tem-
perature gradient AT, i.e., the inner and outer cylin-
drical walls are held at different constant temperatures,
T, and T The base is thermally insulating and the
surface (at height z=d) behaves in the same way owing
to the presence of a lid (not in contact) inhibiting
interaction with the overlying air.

The explicit assumptions defining the mathematical
model applied to the annulus system are:

a) The kinematic viscosity », the thermometric
conductivity «, and the coefficient of thermal ex-
pansion 8 are constant. This assumption is made
for convenience only.

b) A linear dependence of density p on tem-
perature 7" alone is taken as the equation of state,
p=po[1—B(T—T,)], and the coefficient of thermal
expansion is taken to be zero except when coupled
with the gravitational constant. With the assump-
tion of local incompressibility, this system forms the
Boussinesq approximation.

¢) Frictional dissipation is negligible in the
energy equation.

d) The centrifugal acceleration is much smaller
than the gravitational acceleration, i.e., @*(a+5)/
2g<1. As a consequence we take the upper surface
as being of constant height at every instant. This
is absolutely so with a rigid contact lid but for a
non-contact lid it implies the assumption that the
free surface behaves in the same way as a free slip
rigid contact lid. _

€) The flow is symmetric about the axis.

While the above assumptions only slightly modify
the physical problem, they do offer convenient math-
ematical simplification without reducing the essential
nature of the Navier-Stokes equations. These equations
upon writing the hydrostatic pressure deviation as

w=p/p, are:

u+ <2S2+z—:>v= V[uzz_l_ G(W%)J, (1)
— <29+l—:)u= —m+ u[vu+ G(rv),)r], ()

1
b= mt T Tt k), |, )
7
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77=K[Tzz+_(rTr)riI, (4')
7
(rv) 4+ (rw),=0. S)
In the above(')=( )i+o( )rt+w( ). is the total

derivative (the subscripts denote partial derivatives and
¢ the time variable).

It is convenient to eliminate the p, v and w variables
by introducing a stream function ¢ and vorticity ¢ to
describe the flow in the vertical », z plane. These are
defined as

rv= -1,&2, §'= Ve Wy (6)
and give the basic set of equations with which the

computations are performed. With a non-dimensional
temperature 6= (I'—T,)/(T+—T,), these are:

rw=yy,

Uy
§t+J(§/7)=-5gAT0r+2uz<9+7)
+»[;M+G<r§>,>r], (7)
et+%f<o)=x[on+;(ror>,} ®)

1 1 u 1
w+-J (u)=—¢/z<29+—>+ V[uzz+ (—(fu)r) :', )
r 7 7 7 ,
1 1
~§:_¢25+(—¢r> ) (10)
7 r /s
where J( )=v¢.( ).—¢.( ), is a Jacobian form of the
convective terms.

We wish to obtain solutions for the flow set up by
heating the vertical walls, both in the presence and
absence of rotation. Both free and rigid upper surfaces
will be considered, the latter in Part 2. The variables
computed are ¥, 6, # and ¢; the eliminated variables
(v, w, p) performed only a secondary and diagnostic
function with the vorticity being the central element of
flow study in the manner discussed by Lighthill (1963).

Solutions of the equations must satisfy boundary
conditions on the planes 2=0, d and walls r=g,b. The
vanishing of the normal velocity components along
these surfaces necessitates putting the stream function
equal to a constant, the value of which will be taken to
be zero following a discussion on computational
conditions. The boundaries are rigid ones for the walls,
base and surface when the latter is in contact with its
lid so that the tangential velocity component also
vanishes, i.e., the normal derivative ¥, is zero. For the
case of a free upper surface, i.e., the lid not in contact,
the tangential stresses on the free surface must vanish,
which requires ¥.. to be zero, i.e., the vorticity {=0.
For the thermal conditions we shall consider only the
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case of insulated base and surface, ,=0 on 2=0,d, and
constant wall temperatures §=0,1 on r=a,b.

a. Energy and steady state balance requirements. In
discussing the results, it will prove useful to refer to the
balance requirements for energy, vorticity, temperature
variance and total heat transfer. Although the per-
formance of a comprehensive dynamic diagnosis of these
balances requires greater calculation, it is considered
necessary because an apparent simulation of the
physically observed characteristics does not in itself
form an understanding. Diagnostic integral techniques
provide a very sensitive measure of the mechanical
similarity of model to physical entity and may provide
the type of insight from numerical studies that is
normally derived from analytical studies. For, some-
what in spite of themselves, numerical methods although
capable of accounting for nonlinearity and other com-
plexities do not yield an understanding of the mecha-
nisms involved. However, in the integrated form of the
equations, the nonlinear effects vanish or are simplified,
and make the task of interpretation easier.

In studying the balance requirements we seek to
conserve those quantities which are actually conserved
in the physical process. It is useful, therefore, to ensure
that energy, momentum and mass are strictly conserved
by the numerical scheme of solution. When the equa-
tions are written in perfectly conserving form, we have
available a useful and powerful check on the accuracy
of the computation. Furthermore, the degree of balance
reached by the energy components indicates the prog-
ress made by the computation towards achieving a
steady state and provides some confirmation of a proper
execution of the computation.

The equation for the kinetic energy prediction is
given by multiplying Eq. (7) for the vorticity by ¢
and the zonal velocity equation (9) by # and adding
the two. Particular use is made of the integrated forms
of the energy equations. Thus, denoting the volume
integral over the 7,z cross section by (), we can define
the kinetic energy total Ej, as the sum of the meridional
kinetic energy Ex(¢) and the zonal kinetic energy, i.e.,

EKE§<M2+¢/§>, EK(¢)E';'<‘I’§>- 1)

A potential energy integral £, may be defined as
E,=pgAT(—z6), (12)

in view of the simplified equation of state, and a
temperature variance integral, ort=3(6%), may also be
formed.

The prediction equations (7)-(9) yield the following
system of equations for the time variation of the
energy integrals:

(Ek)t=EkZEp— €r, (13)
(Ep)t= —Ei:Ep—ep, (14)
(o7%) = —er, (15)
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where Ey: E,=BgAT{6y./r)= —BgAT{{0,/r) represents
the gain in kinetic energy by the conversion of potential
energy. The diffusive terms are:

ex=— <‘é[r+ G(ﬁ) >]+u[u+ G () )]}
=v<r2+uz+(;<m>,)2>, (16)

ep =BgATK<Z[0u+;(70r) r:|>,

er= ~K<6[022+;}(7’01) r]>

Another important integral quantity is the Nusselt
number. Two such quantities are considered, one to
represent the total outflow of heat through the inner
wall (T, will always be taken as less than T in this
paper) and one for the inflow of heat through the outer
(hot) wall. The Nusselt number measures the effective-
ness of the flow as a heat transferring mechanism and
is defined relative to the amount of heat transfered by

solid conduction under the same temperature difference
AT. Then

¢ b\ r?
Nu(c)=| - log- 0.(c)dz; c=a,b (19)
(d a)j;

(17)

(18)

denotes the inner and outer values, respectively.
A steady state may be defined as occuring when the
following conditions are achieved:

Ey, Ep, 072 are constant, Ex: Ep=ex= —¢,, =0, and
Nu(e)=Nu(b)=2a constant value, Ni.

b. The numerical method. To yield solutions, the
continuous equations are replaced by a finite difference
analogue. The variables ¢, ¢, 8 and # are located at the
same uniformly spaced mesh points in the vertical cross
section of the fluid such that there are L spaces of
length A7 and M spaces of length Az at times #A¢, where
n is the time indexing integer. To exhibit the finite
difference equations and their multidimensional proper-
ties in compact form, we define the following difference
and averaging operators in the notation of Richardson
(1922) and Lilly (1964)

o)A e
= [¢<x+—%f)+¢(x—é—x>] / 2,

where ¢ represents a function of the variable x(=7,2)
and Ax is the discrete grid interval of . The bar and
delta operators form a linear commutative and dis-

(1)
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tributive algebra for which various operator rules and
identities exist, e.g., Fox (1957).

The velocities are defined at points intermediate to
those of the general grid by the relations rv=—é.4 and
rw= 2§,y ; they satisfy the finite difference analogue of the
continuity equation

9. (rv)+8,(rw)=0

and are evaluated diagnostically from the stream
function.

The governing equations are written in the finite
difference forms:

(22)

1 1
at9‘+—J4(a)=K[auo+—ar(r6re)] ’ (23)
7 r lag
1 1 u\_ _,
' 4—J o (u) =—<29+—>6z¢
7 r 4

+v[6zzu+6r<;ér(m)>lag, (24)

T2

8§ +J 4(¢/r)=—BgATS,8

+V[azzc+ar(%ar<r;>>]lag, (25)

(26)

|
+ 2084 +-8. (12)
r

1 1
_azz\[/_""&r(_‘sr\b) = g‘r
4 14

where central time differencing is used to ensure
stability and where the subscript “lag” on the diffusion
terms indicates that they are evaluated non-centrally
at time (m—1)At. The multiple averaging of the
buoyancy term is necessary to make the energy con-
version term Ej:E, the same when given by kinetic
energy and potential energy equations. The particular
forms of the convective terms,

Tu(p)=06.(8"84 ) —8,(6 3.97), 27
To(p)=5.00.6) —5.(48,87) , (28)
J4(@)=274(0)+37:(), (29)

are so chosen because of their stability characteristics.

¢. Stability considerations. In the numerical integra-
tion of the difference equations, consideration of the
stability of numerical system is essential. The method
being used is an acknowledged stable one when subject
to the usual (linear) advection and diffusion time step
requirements. The approximated equations allow the
existence of only internal gravity waves because the
Boussinesq approximation filters out sound waves and
the enforced constant surface height filters out surface
gravity waves. In practice, the diffusive requirement
that the time step Al be less than A,,*/8» was used as

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoLuME 24

frequently as the internal gravity wave requirement
that At<A, ./ (28gdAl)!2, as given by the Brunt-Viisild
irequency.

The instability associated with the aliasing of non-
linear terms and fictitious build-up of energy when
integrations over an extended period are involved [see
Phillips (1959)] is avoided by the choice of advective
forms Ji(¢), Ja(¢). The Jacobian J4(¢) conserves
temperature variance, zonal velocity and zonal kinetic
energy, whereas the form J,({/7) conserves vorticity
squared and the meridional kinetic energy (Lilly, 1964).
By conservation, we mean that the difference summa-
tion and the corresponding continuous volume integral
of the Jacobian reduce to the same value, usually zero.
Thus, it appears that the difference technique and
corresponding quadrature technique must consistently
satisfy Stokes’s theorem in the same manner as the
continuous system.

The tendency for central time differencing to lead to
a slow splitting of variables at adjacent time steps was
removed by periodically averaging the variables of two
adjacent time steps. This is an instability in the time
variable compared with the space mode instability
removed in the Jacobian situation.

d. Balance requirements in difference form. Although
the core of the conserving problem lies with the advec-
tion Jacobian terms, to be consistent, the finite differ-
ence energy equations must be derived from the finite
difference prediction equations. Proceeding as for the
continuous case, we obtain for kinetic energy the
expression

- ¢ 1 ~ ¢t 1" ~2_7 1" —~C_7
EK=—[W +—(64) +— (oD ] (30)
2 7~ 7

; Al At
un Eu(t—l—-——, 7, z) -u(t———, 7, z>,
2 2

and the square parentheses [ 7 represents the quada-
ture over all grid points. The energy conversion term,
as derived from the potential energy difference equation,
takes the form

where

z glz
EKZEP=-,3gAT<—]4(0)>=ﬁgAT '—571[—/T>, (31)
4 7

so that the buoyancy term which gives rise to this term
via the kinetic energy equation must be multiply-
averaged.

The quadrature equations which correspond to the
energy integrals of the continuous system are:

0 Ex=Ex:Ep— ez, (32)
5;E;t>= —Eg:Ep—ep, (33)
5;0’7’9= - €7, (34)
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where
Ep=—BgAT[20], (35)
opr=1[667, (36)
v 1
e fuanin)]
1
27 r\ 0,7 ; 37
+u[6 n+5 (75 ( u))]lag} 37
1
ep=ﬁgATK|:z<5"0+—B,(7570)> ] (38)
¥ lag
1
er= —K[0(5,20+;3,(r5,0)>lag]. (39)

Quantities analogous to kinetic energy and variance
are formed which involve cross products at adjacent
time steps, defined above by the tilde operator. These
quadratures are relevant to the continuous integrals
only if the solution behaves smoothly in time and the
splitting instability is avoided.

Boundary placement and conditions must be consid-
ered in forming the quadratures as some computational
conditions are required for the definition of certain
integrals at the boundary points. In a grid system, the
boundary can be placed either at a grid point or
between two points. Although there is no explicit reason
for placing the boundary at a grid point in this problem,
such a choice made the solution of the Poisson equation
more convenient and gave greater overall consistency.

Computational conditions arise because one-sided
difference forms of the prediction equations are required
at the boundary points to ensure conservation of the
integrals. However, this form of the prediction equation
is not used as boundary conditions are available. To
overcome the problem caused by this discrete quantiza-
tion of the fluid into cells, the definition of the quadra-
ture requires extra conditions to conserve the integrals.
In the annulus problem, the presence of strong dif-
fusive boundary layers necessitates the mutual con-
servation of both the diffusive and advective terms,
not just the advective terms, as is normally the case.

To see how the computational conditions are derived,
consider for convenience a transfer equation in one
dimension z, i.e.,

Bt-l— (0’1))_,,,= Xo;m.

Applying this equation to the grid points of #, say
i1=1,2, .. L+1, we obtain at =1 the necessary equa-
tion conserving the quadrature namely,

1 K
L@ ) y— (60)1]=

(40)

8,01+

L@.01—01"], (41)

Ax/2 Ax/2
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where the derivative on the boundary 6, has yet to be
defined. As the boundary condition 6;=constant is
supplied, this equation must be satisfied identically.
This requirement provides a definition of

Ax
01’ = (5.9) 1%—5—[(9%’”) u— @) (42)

In two dimensions, a direct extension of this idea yields
definitions of gradients at the boundaries for use in the
Nusselt and ep, er integrals. As a corollary, the boundary
condition 6,'=constant requires that the prediction
equation be used to predict 6;; the assumption some-
times made that 6;=0, is inconsistent with this ap-
proach. The need for the above type of condition on the
boundary vorticity in the integral E; can be avoided
simply by taking ¢ =0 as the boundary condition.

e. Numerical procedure. In executing the calculation,
u# and 6 can be directly evaluated from values at the
previous time step. Similarly, we can predict the
interior vorticity values from which the stream function
can be updated on solving the Poisson equation. It then
remains to evaluate new vorticity values for the
boundary. These boundary values are required for
calculating the adjacent interior frictional terms. They
are obtained by reversing the rdle of the Poisson equa-
tion. To solve the Poisson equation at the boundary
with the same degree of accuracy as it is solved in the
interior region, a higher order formula must be used.
The derivation of such a higher order formula has been
given by Pearson (1965). For the base, this takes a form

1
——2{3.5\051+ 0. 5¢¢3— 4¢12+ 3Az (‘PZ) il]

rA

1
§i1= “—_1//2,2:
4

+0(42)?

which allows the non-slip boundary condition ¥,=0 to
be introduced into the system. The non-slip velocity
condition does not enter the stream function solution
directly but enters via the concurrent vorticity field,
Eq. (43). This form of calculation reflects the physical
behavior of how a boundary determines the flow in the
fluid interior ; for a discussion of this see Lighthill (1963).

The actual integration of the Poisson equation to
give the stream function at each time step was made
by a trigonometric interpolation method. This method
is more time consuming than the standard Liebmann
accelerated relaxation method, but has the advantage of
being more accurate than the Liebmann method with its
associated spurious truncation errors. It is also exact
for the finite difference scheme. The method is based
on writing the function in terms of a trigonometric
series whose coefficients become the new unknowns, i.e.,

(43)

M—1 wk
Y= Au sin[ﬂ(]'— 1):| (44)

k=1
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This expression automatically satisfies the boundary
conditions at the base and surface. We express the
vorticity in a similar series of known coefficients as

M-1

k
§u"= 2 Ba Sin[‘f—(i—l)]-
M

k=1

(45)

Upon substituting Egs. (44) and (45) into the Poisson

equation, we obtain a difference equation,
Ainai— AibitA;_16c.=— B, (46)

where

ai=1/<Ar>2<r+§2f), c,-=1/<Ar>2<r——§)

2 k
bi=a;tci+ (l—cos——)
r(Az)? M

which can be solved by Richtmyer’s (1957) iteration
‘method.
3. Discussion of numerical solutions

In the problem being considered, there exist

small but important boundary layers, the correct
10! T T TTTTy T T T7TTT T T U
: o i
F AT=6°C ]
- UPPER A2 R
- SYMMETRICAL .
L (A) i
| B =
F MID i
[ SYMMETRICAL j
() ]
[ »
- STEADY ﬂ
w,(avss
107 B g
- LOWER .
s SYMMETRICAL %
L (0)
|0'2£-
10-3 oo cvpnt e v el o1y
104 10° s 10° 107

Fic. 1. The domains of the upper symmetrical (A), steady
waves (B), mid-symmetrical (C) and lower symmetrical (D)
flow regimes in a typical regime diagram. The trapsition curve
separating the symmetric and steady waves regime was obtained
by Fowlis and Hide (1965) for experiments under physical system
FH, (see Table 1) at the points marked by a cross. The lettered
circles denote positions for which numerical solutions were ob-
tained. m4= (8gATd)/[2*(b—)*] and ms=[422(b~0)*]/ (+%d).
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description of which is important for an understand-
ing of the overall properties of the flow. The bound-
ary layers, therefore, must be sufficiently resolved
for the heat and momentum transfers to be accurately
given.

The two parameters, the Rossby and Taylor numbers

ma=(BgdAT)/[Q*(b—0a)*], ms=42*(b—a)’/(+*d), (48)

have been found by Fowlis and Hide (1965) to be the
most useful parameters for describing annulus flow.
Although flows with boundary layers can be dealt with,
the resolution limit set by the machine capacity
restricts the range of w4, m; values over which computa-
tion can be meaningfully made. In this paper, calcula-
tions were made with the condition that at least 3
grid points should be located within each boundary
layer and the accuracy of the results was checked by
varying the resolution. The accuracy of those solutions
which utilized the entire machine could only be esti-
mated by re-performing part of the calculation with a
coarser grid. The use of high resolution grids and the
requirement of 3 points to the boundary layer seemed
to be adequate for producing reliable solutions. Veronis
(1966) found that to obtain reliable results in a similar
system, it was sufficient to have only one grid point
within the boundary layer.

Calculations were made with a uniformly spaced grid.
It may be advantageous in future calculations to take
additional points near the boundaries, but in the
present computations, the aim was one of achieving
fairly high resolution throughout the whole fluid in
order to investigate the extent of the penetration of
boundary layer effects into the interior regions of the
fluid. The secondary cell systems associated with the
sidewall layers and the separation of the boundary
layer from the outer wall are examples of such interior
region phenomena requiring high resolution. Now that
the types and extent of the internal structures are
known, a graded mesh would be useful in further
studies, provided that the higher resolution did not
bias the boundary layer flow in any way.

a. Computational range. Fowlis and Hide (1965) have
examined experimentally the effect of various physical
parameters such as viscosity or geometry upon the
transition criteria. The results show that the principal
properties of the flow depend largely on the dimension-
less parameters w4, 75, mo=d/(b—a) the aspect ratio,
and the Prandtl! number m¢=v/x. The position of the
transition between the upper symmetric region and
the steady waves regime can be plotted in a 74 versus
w5 diagram and a transition curve drawn through the
points. There is only a slight spread of points about the
line which is due to variations in other factors, in
particular, low s values. On the other hand, the
transition between the lower symmetric and the
steady wave regimes forms a straight line on a wumg
versus mems diagram.
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TasLE 1. Structure of cases computed. Only cases A3 and B2 are discussed in this paper.
Physical Surface Number of grid AT
Case system condition intervalsin 7, 2 (°C) (rad sec™t) T s
Al BE Fixed 4040 6. 0.000 — —
A2 FH Fixed 4060 9.0 0.700 2.863 4.079 X108
A3 FH Free 4080 29.0 1.342 2.510 1.500< 108
B1 FH Fixed 4040 2.3 1.100 0.296 1.010X108
B2 FH Free 4080 29.0 2.125 1.001 3.759 X108
Ci FH Fixed 4040 1.2 0.500 0.748 2.080< 108
C2 FH Fixed 4040 0.1 0.350 0.127 1.020X108
D1 FH Fixed 4040 0.2 1.100 0.026 1.010X 108
System BE: cm, b=3 cm, =10 cm, »=0.941X10"2 cm™ sec?, k=1.420X 1078 cm? sec,

a=3

B8=2.380X10"¢ (°C)™1, T'=23C, mg=6.58.
System FH: a=3

B8=2.050X10"* (°C)™, T=20C, ms=17.19.

For a constant geometry and Prandtl number, a
single transition curve may be drawn. Such a curve is
shown in Fig. 1 for an annulus which has a height equal
to twice the width between its walls. This geometry
was chosen for computational use because my=2 is the
lowest value of the aspect ratio for which observations
were recorded in the Fowlis and Hide (1965) experi-
ments. A low aspect ratio is preferable from the com-
putational point in order that the resolution may be
made as high for both width and height. Although an
aspect ratio of 1.0 would be ideal from the numerical
view point, experimentally a higher aspect ratio has
been favored 1) for easier control of the apparatus, 2) to
produce a similar ratio of Ekman layer to total depth
as for the atmosphere, and 3) for values of 73>2, the
transition between regimes is independent of the actual
depth of the fluid.

The cases computed were located at a variety ot
w4, w5 points in the observed transition diagram (Fig. 1),
so as to give an idea of the types of flow existing in
each region. The cases considered are marked in Fig. 1
by letters corresponding to the region in which they
lie. The cases all lie above the line AT=0.1C which is
the observational limit. Furthermore, the Boussinesq
approximation is only accurate up to values of AT=10C
so that the two flows A3 and B2 can only be regarded
as physically correct to a first approximation. The
resolution is adequate for cases lying between AT=0.1C
and 10C and the upper symmetric regime cases A3 and
B2 are at the practical limit of 40X 80 points.

With the exception of cases A3 and B2, all other flows
are treated as having a rigid surface and will be re-
ported in a subsequent paper. It should be noted that
the transition curve is that of a free surface fluid. The
lower symmetric regime computations were made for
a flow with a rigid surface in order to provide a direct
comparison with Robinson’s (1959) theory for that
regime, The upper symmetric cases A3 and B2 (free
surface flows) were made, despite resolution and
Boussinesq limitations, in order to examine the flow on
both sides of the transition curve in a region in which
w4 appears to tend to the constant value predicted by

48 cm, 5=06.02 cm, d=5 cm, »=1.008 X10~2 cm~2 sec™?, x=1.420X1073 cm? sec,

baroclinic instability theory. This region should
therefore be one of minor boundary layer influence.

An additional case Al (with a zero rotation rate) was
calculated. This case was made identical to that of an
experiment, comprehensively reported by Bowden and
Eden (1965), for which such details as the temperature
field structure are given. This and other experiments
reported by Bowden and Eden (1965) all have a high
aspect ratio of 5 so that only one of their experiments
was duplicated for testing the numerical solution and
technique. Details of the cases calculated are sum-
marized in Table 1.

b. Initial conditions and computational procedure. The
numerical integrations were all performed in the same
way. At time ¢=0 the initial state of the fluid was
assumed to be one of isothermal solid rotation at a
temperature of 20C. At this instant, the temperature
differential across the fluid is imposed by altering the
wall temperatures in such a way that their average
value remains at 20C. (The one exception is case Al,
the mean temperature in this instance being 23C with
the appropriate physical constants of that temperature
being used.) Thus, at (=0, we have ¢ (r,5,0)=¢(r,3,0)
=u(r,2,0)=0 for all 7, z and 6(r,2,0)=0.5, 8(a,2,0) =0,
6(b,2,0)=1. Then, with the appropriate time step
increment, integrations were made until the fluid
system evolved into a steady state of balance. In every
calculation the flow eventually became steady.

When the forces attain a balance, the various energy
integrals become constant. In practice, we therefore
define the steady state to be realized when the kinetic
energy integral is constant and the two Nusselt numbers
lie within a few per cent of each other. The diffusive
elements determine the time taken to attain the steady
state. The thermal components usually reach a stead-
iness later than the kinetic elements and the balancing
of the Nusselt numbers constitutes an extremely
sensitive indicator of the degree of balance reached,
whereas the kinetic energy integral is an insufficient
measure. A typical approach to the steady state is
shown in Fig. 15 where the integrals are plotted against
time for case A3.
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Fi1c. 2. The steady state contours of stream function, normalized temperature and
zonal velocity for free surface flows A3 and B2 (see Table 1). Stream function arrows
indicate flow direction and positive zonal velocities indicate westerly flow, all in cm
sec”l, Extreme magnitudes of zonal velocity and stream function are marked.
r'=(r—a)/(b—a), the non-dimensional radial coordinate, commences at the inner

cylinder (left of diagram).

In certain instances, the above type of integration
was made with a given grid and its steady state solu-
tions used as the initial state for a further integration
for a grid with double the previous resolution. Such an
approach succeeded in saving time only if the coarser
grid gave a steady state solution close to that given by
the finer grid. At various time stages, contour plots of
the streamline pattern, the zonal isotachs, the iso-
therm pattern and vorticity were made, and these will
be used in presenting the results.

¢. Solutions of the two free surface cases. The steady
state solutions of the two free surface cases A3 and B2,
presented in Fig. 2, are qualitatively similar. They

differ from each other only in their rotation rates.
According to observation (directly applicable in this
instance) A3 should lie in the upper symmetric regime
and B2 in the steady waves regime. The effects of
having a free surface are examined by comparing these
flows with that of the rigid surface case A2 which will
be presented in Part 2.

1. Meridional flow. The stream function contours of
Fig. 2 show a meridional flow made up of a direct
(Hadley) cell and two weaker secondary cells. The
direct cell flows through boundary layers on the inner
cylinder and base and, to a lesser extent, on the outer
cylinder. Unlike the rigid surface flows, the free surface
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cannot maintain a boundary layer so that the meridional
flows of the free and rigid surface systems differ. In
fact, free surface flows resemble a distorted version of
the rigid surface flow. Because the free surface cannot
viscously support a flow along it, the upward moving
fluid leaves the outer cylinder, falls under gravity, and
then flows up and across the interior section of the
annulus, where it completes the circuit by being
entrained into the boundary layer on the inner cylinder.
The region of maximum transport occurs near the
middle of the inner cylinder, whereas in rigid surface
flows this region is located near the bottom of the outer
cylinder.

The secondary system is made up of 2 interior cells,
one associated with the hot wall boundary layer, and
the other with the cold wall boundary layer. These cells
strengthen the mass transport near the wall. The
countercurrent cell is much smaller on the outer cylinder
than on the inner; this difference contrasts with the
equal cells of rigid surface flows. The inner cylinder cell,
strengthened by the interior cross flow, tapers toward
the top. Faller (1958) has observed the meridional flow
structures of flows with a free surface and his radial
velocity profiles agree qualitatively with that of case
A3, presented in Fig. 3. The maximum of mass transfer
occurs in the boundary layer along the base, and is
compensated for by an almost constant return flow.

2. Temperature field. The distinctive features of the
isotherms of A3 and B2 lie in their pronounced line-
arity over the fluid interior, and in their concentration
into thermal boundary layers over short and narrow
sections of fluid near the cylinders. In case A3, approxi-
mately one-fourth of the fluid lies at almost constant
temperature in a very stable region between the 0.9 and
1.0 isotherms. The larger rotation rate of B2 causes the
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Fie. 3. A typical vertical distribution of radial velocity for
a free surface flow (A3). Values are in cm sec™! in a plane midway
between cylinders.
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F1G6. 4. Representative radial distributions of the forces con-
tributing to the balance of terms in the vorticity equation for
flow A3 at heights of d/4 and 3d/4. For the meaning of the terms,
consult the vorticity prediction equation (7). Geostrophic balance
of the interior is indicated.

isotherms to slope more vertically and form smaller
thermal boundary layers for that case. The streamlines
of B2 also slope more strongly than those of A3 in
keeping with the tendency of the fluid in the interior to
flow parallel to and along isotherms.

3. Zonal flow. The zonal flow consists of westerly
flow in the upper three-fourths of the annulus and
easterly flow near the base: by westerly flow we mean
flow in the same sense as the rotation. The maximum
westerly flow reaches a value roughly 4 times that of
the maximum easterly. This contrasts with the equal
extent and extrema of westerly and easterly flow in
rigid surface flows. The maximum westerly flow occurs
at the core of a jet stream type of flow on the fluid sur-
face near the point #’=1/4. The line separating the east-
west flow, #=0, inclines upward toward the inner cyl-
inder even more so for the flow with the larger rotation
rate. Bowden and Eden (1965) have observed similarly
shaped conical regions of zonal flow. The constant tem-
perature of the upper region produces zonal isotachs
which lie parallel to the outer cylinder.

4. Vorticity balance. One of the assets of a numerical
solution is that one can study the balance of terms in
the equations at each point of the system. The forces
balancing in the vorticity equation are shown in Fig. 4
at ’=1/4 and 3/4. These are typical radial variations
and the meaning of the terms may be grasped from Eq.
(25). Although the interior region of the fluid lies in a
balance between the Coriolis term 2Qu, and the buoy-
ancy term —pBgAT@,, i.e., a geostrophic balance, the
non-linear term (#?/r), makes a significant contribution
to the vorticity balance in the upper half of the fluid.
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F1c. 5. Representative radial distributions of the forces con-
tributing to the balance of terms in the zonal velocity equation
for flow A3 at heights of d/4 and 3d/4. Note the different scales
used and lack of convection in the fluid interior.

In the boundary layers on the cylinders, the vorticity
components constitute a balance between the buoyancy
term =BgAT8, and the friction term »[ .o+ (1/7(#0) ).
The buoyancy force vanishes in the upper half of the
fluid near the outer cylinder because of the region of
constant temperature that occurs there. Thus, no
boundary layer exists in that region.

5. Zonal velocity balance. The components of the
zonal velocity equation, Fig. 5, exhibit a balance be-
tween the Coriolis term, —2Qv, and the viscosity term,
v[u..+ (1/r(rw),)-]. The non-linear term uv/r being
negligible, is absent.

The boundary layers on the lower part of the cylinders
exist under a balance between the Coriolis term
—2Qv and the convection term —7r~1J(x) of the zonal
velocity equation. However, in the upper half the
boundary layer on the inner cylinder, the viscous term
v[u..+ (1/r(ru).),] replaces the Coriolis term in the
balance. As noted in the vorticity balance, no boundary
layer exists on the upper half of the outer cylinder.

It is important to note the vanishing of the zonal
friction term at all parts of the side walls except the
upper part of the inner cylinder. This implies that the
angular momentum and kinetic energy have a sink
region of dissipation only on one limited part of the
container, namely on the upper half of the inner
cylinder, close to the jet stream. A single source region

occurs over the base of the annulus. The absence of a
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momentum source at the hot wall indicates that this
potentially greatest source does not contribute to the
general fluid structure; this is not true, however, of the
transient flow as will be seen later.

The picture that these facts suggest is one in which
the meridional circulation transports the momentum
generated by the easterlies at the base, upward and
inward to the top of the inner cylinder. There the flow
down the wall dissipates the momentum. A composite
diagram of the stream function and the zonal isotachs
(Fig. 7) indicates that the fluid flows across the jet
stream in most regions. The strongest regions of merid-
ional momentum transport #v occur in the uppermost
part of the boundary layer on the inner cylinder
(the momentum sink region) and in the boundary layer
along the base and in the upward sloping streamlines
of the interior.

6. Heat balance. The component terms of the tem-
perature equation (Fig. 6) confirm that the flows A3
and B2 are essentially along or parallel to the isotherms.
Heat transfer by conduction is significant only in the
small thermal boundary layers. In the interior, the
convection conveys the heat inward and upward with
a balance between the so-called horizontal convection
term — (v4), and vertical convection term — (wf)..
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F1c. 6. Representative radial distributions of the balancing
terms of the normalized temperature equation for flow A3 at 2
heights. Notice the lack of conduction in the interior.
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F16. 7. Composite of interior streamlines and the zonal velocity
contours of flow B2 illustrating their interaction and momentum
transport (see text for further discussion).

The steady state Nusselt numbers given by the
solutions of A3 and B2 are 8.25 and 5.30, respectively.
Thus, the Nusselt number is proportional to Q~%, to
within 2 per cent for these two experiments. This
clearly indicates the way in which rotation inhibits the
heat transfer properties of a free surface fluid in the
convective regime.

7. Analogue implications. A side issue of the present
study is the question of what conclusions can be drawn
from the solution of the axisymmetric flow toward
explaining the resemblance between the more complex
annulus flows and the atmosphere. The cases being
considered (A3 and B2) have parameter values ap-
proaching those applicable to the atmosphere.

On the structural side, the temperature fields obtained
resemble the potential temperature distribution in the
atmosphere. Although the annulus system is heated
from the side walls, the flow so arranges itself that the
heating and cooling are isolated to two limited regions
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in the vicinity of the bottom of the hot wall and top of
the cold wall. The atmosphere possesses a complex heat-
ing structure in which the earth’s surface plays a crucial
role. However, the atmospheric heat source and sink
are, as far as the dynamics are concerned, located at
the equatorial surface and polar tropopause, so there
is some similarity, albeit over-simplified. The momen-
tum balance and flow structure of the two systems are
different. However, allowing for the enforced axisym-
metry of the solutions, the results may then be justifi-
ably compared to the zonally symmetric solutions
obtained for atmospheric flow prior to its being dis-
turbed [see Smagorinsky (1963)]; as such there exist
basic similarities between both flow systems in that both
have easterlies at the base and westerlies in the upper
fluid, and similar meridional flow and temperature
patterns.

To assess the role of the boundary layers in forming
the flow features, we examine the energy transformation
integral E,: E,. This integral describes the transforma-
tion of potential energy into kinetic energy, the basic
mechanism that maintains the flow in the annulus. The
sidewall boundary layers and the interior cross flow
contribute the greater part of the integral Ey: E,. The
radial distribution of the contributions to the integral
(Fig. 8) shows that the boundary layer contributions
oppose each other. If the boundary layers are mutually
compensating as energy mechanisms, as Fig. 8 indicates,
then the analogy of annulus to atmosphere improves.
A significant conversion of potential energy into kinetic
energy is accomplished by the fluid in its motion from
the outer cylinder to the inner one, rising as it does
along paths less inclined to the horizontal than the
isotherms.

A direct examination of the stability of the flows A3
and B2 to see if the symmetry is physically real, would
involve excessive additional computation. Instead, we
examine the stability with the aid of the criterion

1.6+

ENERGY CONVERSION (CM/SECY

164 T
0.0

1.0

Fic. 8. Radial composition, BgAT fo?6wdz, of the potential
energy conversion to kinetic energy, Ex:Ep. This integral is
weighted by 7 in forming the net conyession.
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F1G. 9. The vertical distribution of normalized temperature at non-
dimensional radii, »'=0.1, 0.3, 0.5, 0.7 and 0.9, for flow A3.

derived by Eady (1949). Use of this criterion presup-
poses that the instability is geostrophic baroclinic
instability, that the boundary layers play no part in
the process, and that the idealizations of Eady’s model
befit the annulus. The assumptions of the model are:
that viscosity and thermal conduction can be ignored;
the impressed horizontal and vertical temperature
gradients are constant, which with the geostrophic
assumption gives a basic zonal flow of uniform vertical
shear; the curvature is unimportant; the thermal
Rossby number defined as 8,74 is much less than 1/4;
and the slope of the isotherms is of the order of this
number multiplied by d/(b—a). Under these assump-
tions, linear perturbation theory states that the basic
flow is stable or unstable to small-amplitude wave-like
disturbances according as to whether the normalized
temperature gradient, o,=7./(ATd), exceeds or falls
short of the value 2.32/7s.

Thus, the flow remains stable when the vertical
temperature gradient induces sufficient vertical static
stability to overcome the instability caused by the
zonal shear associated with the horizontal temperature
difference.

Examination of the criterion from cases A3 and B2
is most conveniently made by reference to Figs. 9, 10,
11, and 12, which show separately the temperature
variation with  and z. The condition of constant
temperature gradient holds only in the interior region.
Assuming the criterion applies, the condition for case
A3 to be a stable flow is that 9, exceed 0.9. This stipula-
tion is complied with over that part of the fluid interior
where o, can be regarded as constant. However, if o is
evaluated as the mean temperature difference between
surface and base, its value at 0.88 is less than the critical
value. The large isothermal layer near the free surface
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Fic. 10. The radial distribution of normalized temperature at
normalized heights of 0.1, 0.2, 0.4, 0.6 and 0.8, for flow A3.

causes this reduction in ¢,. This indecisiveness suggests
that case A3 is a stable flow lying close to the actual
transition curve. This fact is in keeping with observa-
tion. The critical value for case B2 is 2.3. The flow is
definitely unstable as ¢, has an overall mean value of
0.8 and localized values which exceed the critical value
only in a small region near the outer wall boundary
layer. Thus, the flow B2 is definitely unstable according
to Eady’s criterion.

The solutions suggest that the instability depends on
the quantitative, not qualitative, properties of the
flow. However, there are some qualitative differences.
Flow B2 has a more variable vertical temperature
field (Fig. 11) than flow A3 (Fig. 9) and exhibits little
of the latter’s linearity. It is interesting to compare
both these distributions with the temperature profiles
of a fixed surface experiment A2 shown in Fig. 13. The
profiles of the fixed surface flow exhibit far less vari-
ability and the static stability is almost constant
throughout the fluid. The effect of the variability of
temperature gradient upon the stability characteristics
is still unknown. It has been suggested that radial
variations in the vertical gradient of the isotherms in
the annulus could function in the same way as the varia-
tions of the Coriolis parameter do in the atmosphere.

8. Accuracy. The accuracy of the solutions is most
conveniently examined by comparing the values of the
various integral quantities as given by the actual
grid system, (40X80) points, and by a coarser grid,
(30X 60) points, at an identical stage in the integrations,
i.e., 21.5 sec (or approximately 7 annulus days). The
ratio of the (30X60) to (40X80) values of the Ej,
E:W), Ew:Ep, e, Nu(a) and Nu(b) integrals are,
respectively, 1.062, 1.040, 1.066, 1.018 and 1.013. This
indicates a maximum difference of 7 per cent between
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Fic. 11, Same as Fig. 9 for flow B2.

the solutions so that the 40X80 solution is probably
accurate.

d. Transient aspects of the solutions. A feature of
the technique of integrating to a steady state in discrete
time steps is that the intermediate flow fields are given
as a by-product of the calculations. A set of the evolving
flow patterns of case A3 (Fig. 14) is given at those
instances which best illustrate the essential stages of
growth. Time graphs (Fig. 15) of the various integral
expressions aid the discussion of the flow changes.

1. t=1.5 sec. The imposed initial conditions are
responsible for the concentration of isotherms, near the
two cylinder walls, visible at £=1.5 sec. The meridional
flow at this stage takes place along these isotherms,
forming separate cells in the sidewall regions. The two
cells are in the process of forming at this stage; some
cross flow is evident, but this vanishes as the cells
develop to the stage shown at /=11.5 sec. The cells can
exist separately because the viscous effects induced by
the container have not yet had enough time to transmit
their influence to the interior regions of the fluid. As
another consequence of this inviscidness, the meridional
flow reaches its largest value, as is verified by stream
function values and by the peak in the energy curve
E,(¥) of Fig. 15a, at about =8 sec. The maximum
conversion of potential energy to kinetic energy,
E;:E, at this instant also is associated with the
maximum meridional flow.

The initial zonal velocity forms two bands of upper
region westerlies, and lower region easterlies, with
magnitudes reaching about 10 per cent of their final
values. The maxima and minima are all located at the
corners of fluid. The easterly maxima are roughly equal,
with the slightly larger value occurring near the inner
cylinder. The westerlies, on the other hand, have a
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Fi1G. 12. Same as Fig. 10 for flow B2.

pronounced maximum on the surface near the outer
cylinder.

2. t=11.5 sec. As the flow progresses to ¢=11.5 sec,
the 4 strong zonal velocity regions grow in size and
reach 50 per cent of their final strengths. The individual
nature of the two meridional cells causes the indepen-
dent growth of these 4 regions. The region of maximum
zonal velocity forms a jet whose core moves toward
the inner cylinder as the flow evolves.

The isotherms display the effects of convection.
Their lining up in the horizontal, near the base of the
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Fic. 13. The vertical distribution of normalized temperature
at non-dimensional radii, #'=0.1, 0.5, and 0.9, for flow A2 with a
fixed upper surface. Compare reduced spread of isotherms of A2
with those of A3 (Fig. 9).
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t =115

t =315

F16. 14. The contours of stream function, temperature and zonal velocity at times
of 1.5, 11.5, 31.5, 71.5, 111.5 and 151.5 sec illustrating the critical stages of the flow
evolution of case A3. The steady state field at 286 sec is given in Fig. 2.
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t = 151,5

Fi1c. 14. (Continued).
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F1c. 15. a, b. The integral quantities as functions of time for
flow A3. The time scale alters at 50 sec and is denoted by circles
on the curves. The kinetic energy Ex has a separate scale. Ex ()
is the meridional kinetic energy, Ex:Ep the potential to kinetic
energy conversion, ex the kinetic energy dissipation, er the tem-
perature variance dissipation, ep the potential energy dissipation,
Ep the potential energy, and or2 is the temperature variance.
The Nusselt numbers Nu(a) and Nu(b) measure the heat transfer
through the inner {(cold) cylinder and outer (hot) cylinder.

inner cylinder and upper surface of the outer cylinder,
is associated with the broadening of the meridional cells
in those regions.

3. t=31.5 sec. The thermal boundary layers lead a
separate existence for the first 31.5 sec, after which
the isotherms of the cold wall layer merge into the hot
wall layer, the latter being in the process of detaching
itself from the upper part of the wall. The 0.5 isotherm
acts as the dividing line between the two thermal
boundary layers.

At 31.5 sec, an Ekman layer starts to form at the
base and viscous forces become more active within the
fluid. The viscously induced meridional flow spreads
along the base and leads to a junction of the 2 cells.
The meridional streamlines then take on the appearance
of a tricellular system with the axis of the center cell
coinciding with the 0.5 isotherm. The convection of the
cold wall isotherms into the hot wall layer is associated
with the joining of these cells.

The flow of the middle cell clearly parallels the iso-
therms, being, for example, downward along the 0.6
isotherm and upward along the 0.4 isotherm. The
widening of the sidewall cells, at the upper surface for
the hot wall and base for the cold wall, is associated with
the joining of the base flow. The zonal flow, in joining
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up its jet-like regions, directly mirrors the meridional cell
system. The maximum value of # continues to increase
and approach the cold wall along the free surface.

4. t=71.5 sec. During the next 40 sec, the Ekman
layer gathers strength, becoming fully formed at 71.5
sec. The isotherms continue to part from the walls and
to slope linearly across the fluid, forming a fairly
uniform pattern at this stage. The broadening of the
sidewall boundary layers under the control of the iso-
therm field continues until the middle cell is more or less
eliminated. The flow in the upper region no longer just
dips down after rising up the hot wall, but penetrates
along the free surface into the cold wall boundary layer.
The zonal velocity undergoes a general smoothing out.

From Fig. 15 we notice that the kinetic energy has
reached about 60 per cent of its final value and the
energy conversion Ex:E, has become more or less
constant. The Nusselt number for heat extraction
Nu(e) reaches the bottom of its decline at this stage.

From now on, the fluid changes occur under the slow
acting diffusion processes. The strong shearing flow
associated with opposing currents along the 0.5 iso-
therms at 71.5 sec cannot exist and decays through the
action of friction forces. However, the Ekman layer on
the base maintains the cell associated with the inner
wall so that the resulting flow is one in which this cell
dominates. The destruction of the central shear layer
leads to the extinction of the hot wall cell, and results
in a smooth upflow across the fluid interior.

The asymmetry of the flow is undoubtedly due to the
free surface and its inability to form an Ekman layer.
The hot wall flow then tends to separate from the outer
cylinder and the Ekman layer at the base consequently
supports a secondary cell of a size corresponding to the
diminished boundary layer length. In the fixed surface
experiments, the cells were consistently symmetric so
that the absence of an Ekman layer on the upper surface
leads to the asymmetric shape of the cell on the inner
cylinder.

The final stage of the flow is essentially one of changes
by conductive processes, there being a longer time scale
for conductive processes than for frictional ones. Thus,
whereas the kinetic processes (Fig. 15a) approach
constant values near the 150-sec mark, the thermal
processes continue to change for about 300 sec. A
comparison of the contours at 151.5 sec (Fig. 14) and
those at 286.5 sec, given in Fig. 2 (case A3), illustrates
this distinction; for whereas the flow fields remain the
same, the isotherms, particularly the 0.9 one, have
continued to diffuse through the fluid.

The maximum zonal velocity at the jet core finally
settles up at ’=1/4, having moved in from its initial
starting point near '=1.0.

4. Concluding remarks

A detailed representation of the structure of annulus
convection can be constructed by numerical techniques.
By experimenting with the finite difference resolution,
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we have shown that the solutions obtained are accurate.
In a subsequent paper, the accuracy of the numerical
technique will be further verified by comparing directly
with experimental observation. The boundary layers
are incorporated explicitly into the scheme and together
with the free flow are dealt with as a single system.
Placing 3 grid points within each boundary layer
provided ample representation of the layers as far as
the total fluid system was concerned. The results
confirm the practicality of obtaining numerical solutions
for the more complex three-dimensional flows and of
including their boundary layers explicitly.

Although the axisymmetric flow is not an atmospheric
analogue, its solutions indicate what can be expected
in those systems that are. The sidewall boundary
layers form the most artifical element of the analogue.
If the boundary layers play a passive rdle in other
regimes, the annulus would better simulate the atmo-
sphere. The boundary layers are most active in the
angular momentum balance, forming a sink region at
the inner cylinder and source on the base. The isotherms
so arrange themselves that small source and sink regions
of heat form in locations similar to those of the effective
heat field of the atmosphere.

The application of Eady’s criterion for geostrophic
baroclinic instability decides one flow as being stable,
the other unstable, in agreement with observation.
The solutions also show the strong meridional flow
across the isotherms that produces the energy trans-
formation. Although Eady’s model is barely valid for
the annulus, it does indicate that baroclinic instability
is the process leading to the wave regime.

Although the countercurrents associated with the
sidewall boundary layers are weak, they do extend the
influence of the boundary layers into the fluid interior.
Robinson (1959) has explained the existence of such
countercurrents for a conductively determined tem-
perature field but it has not been determined whether
his explanation can be extended to the convective
type of flow. Whereas Robinson’s theory associates the
countercurrents with the rotational constraint of the
Ekman layer, the transient contours indicate that the
currents are associated with sidewall momentum
layers but depend on the Ekman layer for their equi-
librium existence.

In the transient flow the zonal jet forms on the outer
cylinder and moves inward to its equilibrium point.
This occurs despite the fact that in the steady state, the
outer cylinder makes no contribution to the angular
momentum balance. The zonal velocity is strongly
coupled to the temperature field by the essentially
geostrophic nature of the flow. However, the nonlinear
term (u?/7), also makes a significant contribution to
the vorticity balance. The complex balance of forces
emphasizes the difficulty of forming an analytical
theory for this problem.

The inhibiting effect of rotation upon heat transfer is
clearly illustrated by the @' dependency of the Nusselt
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numbers for the two free surface flows. The Nusselt
number also serves as an indicator of the attainment
of a steady state, whereas the kinetic integrals reach
steadiness before the final fields are formed.
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