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Abstract—We examine the role played in annulus flows by mechanisms
dependent upon the Prandtl number, . Solutions are obtained at ¢ = 1 for
both the real annulus system and for the hypothetical “ free annulus  system
(free slip lateral boundaries). These solutions are compared with previously
obtained solutions at o = 7. ‘

In the free annulus, the solution at ¢ = 1 differs radically from that at ¢ = 7.
The ¢ = 1 solution appears to be essentially a finite amplitude mode due to
Solberg instability whereas the solution at ¢ = 7 manifests a flow caused by the
diffusive overturning mechanism.

The variation with ¢ of the real annulus flow is not so fundamental but some
differences in the dynamical structures are noted.

1. Introduction

Some numerical solutions for axisymmetric convection in annulus
systems have been presented in a series of papers“:® which we shall
refer to as Part 1, 2 and 3. The nature of the flows in the solutions
was found to be critically dependent upon the assumed lateral
boundary conditions. For this paper, it is convenient to define 2
annulus systems, one being the standard real annulus and the other
being what we shall term a “ free annulus ”’ system in which the
lateral boundaries are free slip surfaces. Both systems have a free
slip upper surface and a no-slip base. The free annulus system is
hypothetical but may be of geophysical significance because of the
frontal type flows produced in it, see Part 3. The real annulus system
with a rigid upper surface is not considered in this paper.
McIntyre® has shown how the dynamics throughout most of
the free annulus flow can be interpreted as being essentially the same
367
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as that of a flow at a finite amplitude stage of his diffusive over-
turning instability. The réle of the diffusive overturning mechanism
is not so important in real annulus flows whose dynamics are complex
and have yet to be fully explained.

As examples of the 2 flow categories at ¢ = 7, we will refer to the
solutions, A3 for the real annulus and A3B for the free annulus,
which were discussed in Part 3. To examine how active the diffusive
overturning mechanism is in the 2 flow types we recalculate the A3,
A3B (6 = 7) solutions at o = 1 by increasing the conductivity so that
k¥ =v. The resulting flows which we denote as A3S, A3BS respec-
tively, are deprived of the diffusive overturning mechanism which
does not occur when ¢ = 1. The degree of similarity between the
representative o = 1 and ¢ = 7 solutions should therefore depend
on how much the ¢ = 7 solutions rely on the diffusive overturning
mechanism for their existence. (We cannot rule out the possibility
that other ¢ dependent mechanisms may also be present but they
are thought to be secondary.) '

It is found that the solution A3S for the real annulus at ¢ =1 is
essentially the same as A3 for ¢ = 7 although there are some differ-
ences in their dynamics. However, for the free annulus the solution
A3BS for ¢ = 1 differs completely from A3B for ¢ = 7 and as will be
seen it owes its existence to the classical Solberg instability mechan-
ism. This result confirms the importance of the diffusive over-
turning mechanism in the dynamics of free annulus flows like A3B.

2. Equations and Parameters

We consider a fluid bounded by two co-axial cylinders of inner and
outer radii a, b, respectively, and two parallel horizontal planes
which are a distance d apart. The container rotates at a constant
rate Q, where the rotation vector coincides with the vertical axis
of the cylinders. Motion is considered relative to the solid rotation
and is measured in cylindrical coordinates 7, z based on the axis, r
being radial and z vertical. The variables u, v, w denote velocity
components in the zonal, radial and vertical directions. The perfectly
conducting inner and outer lateral boundaries are held at different
constant temperatures 7', and 7', respectively (7, >7T,). This
imposed horizontal temperature differential, AT =T, -7, drives
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the fluid away from a state of solid rotation. The base (z = 0) and
upper surface (z = d) are thermally insulating, i.e., T', = 0.

The following definition of a Boussinesq liquid is taken: that
density variations are negligible except in the buoyancy term and
that the coefficients v, k, B of viscosity, heat diffusivity and thermal
expansion are constants. We also take the centrifugal acceleration
to be negligible compared with gravity: Q%/g <L Then the
governing equations may be written as follows:

c+ (v 5 - g () ofeffeod ] 0

U, +; J(p, w) = ‘%"(20 +%) +‘v[u,, + (% ('ru),)r] (2)
T+1 @ T) = [T,, J}-i(rT,),] 3)
Lyr($), = ¢ - @

m = r(u+ Qr) (5)

where J(¥, ) =¥ )=V )r represents the convection term. The
stream function ¥ and vorticity ¢ describe the flow in the vertical
r. z plane and are defined by '

rv = —-IP,, 5 "Vw'"_“llr 5 C=vz_wr! (6)

and m is the absolute angular momentum.

The upper surface is taken as a free slip surface and the base as a
rigid surface. There are two sets of lateral boundary conditions:
(i) the real annulus system has non-slip sides and (ii) the free annulus
has free slip sides by definition.

The equations are solved for the following set of parameters under

the two boundary systems:-
a = 3.48cm, b=6.02cm, d = 5.0 cm,
AT — 29°C, Q = 1.342radsec™, T =20°C,
y = k = 1.008 x 10~2cm?sec™?, f = 2.054 x 1074 (°C)71,
g = 981 cm sec™™.

The associated external Rossby and Taylor numbers are m,=
(BgATd)[[Q2(b — a)*] = 2.510 and 7, = 4Q%b —a)5/(vid) = 1.5 x 10°.
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Except for the value of « these are identical parameter values to
those used in Part 3 for the A3 and A3B solutions for water.
Equations (1)~(4) can be set up as a computational finite difference
scheme and solutions obtained as detailed in Parts 1 and 3. The
equations are integrated to a steady state from an initial state of
isothermal solid rotation. A resolution of 40 x 60 grid points in the
7, z directions was used for the calculations.

(We might document here that the solution A3B has also been
obtained under a different numerical scheme and program, that of
Williams.® The differences between the two solutions is negligible,
thus confirming the accuracy of the calculations.)

3. The Nature of the A3S Solution

‘The steady state solution A3S for the real annulus at ¢ =1 is
given in Fig. 1. The flow is not radically different from that of the
A3 (o = 7) solution, see Part 3. :

The outward radial flow takes place in an Ekman layer on the base.
The return cross-flow is not direct but makes a large dip down into
the center of the fluid before rising to the top of the cold wall
Associated with this dipping motion is the formation of two distinct
secondary cells at the sidewalls. The meridional velocities in A3S
are about double those of A3 in magnitude and the sidewall momen-
tum layers are broader. The temperature fields of A3S and A3 are
different in that only a weak thermal boundary layer forms on the
cold cylinder in A3S whereas in A3 strong thermal boundary layers
form on both cylinders, The zonal velocity has a positive upper and
a negative lower flow. The magnitude of this flow exceeds that in

Figure 1. The steady state contours of (i) stream function, (ii) temperature,
(iii) zonal velocity and (iv) absolute angular momentum of the case A3S. In
all diagrams each variable is normalized with respect to its maximum and
minimum values. The normalized maximum and minimum have the respec-
tive values of 1.0 and 0.0 and the other contours are at intervals of 0.1. The
absolute value of any contour, e.g. T, may be determined from the relation
T = T'min +contour value x (T'max — T'min). The absolute maximum and mini-
mum values are (i) 0.0 and - 0.3147 cm? gec-! for y, (ii) 34.5 and 5.5 °C for T,
(iii) 3.144 and -0.8414 cm sec-! for w and (iv) 48.63 and 16.25 cm? sec-! for
m. The non-dimensional co-ordinate 7’ = (r—a)/(b ~a) commences at the
cold inner cylinder (on the left of each diagram) and 2’ = z/d.







362 GEOPHYSICAL FLUID DYNAMICS

60 10

VORTICTY INCREASE ( /SEC?)
5

TEMPERATURE INCREASE (102! SE(;)

0
o

0 3.0

&

00 05 10 00 05 10
o 4
(i) (ii)

204

o

o
°

g

ZONAL VELOCITY INCREASE (107 CM/SECZ)

[
o
r

00 i 05 i 10
o
(iii)
Figure 2. The radial distributions at z =d/2 of the balanced component
terms of the (i) vorticity, (ii) temperature and (iii) zonal velocity equations for
the case A3S. The vorticity terms are (a) 2Qu,, (b) 1/r(u?),, (c) w2¢,
(d) -pgT, and (e) -J(w,/r). The temperature terms are (a) —'vT,f,
(b) —wTy, (¢) x(Tyy + Ty/r) and (d) «T,, where T” is the normalized tempera-
ture T'/AT. The zonal velocity terms are (@) -vu,, (b) —wu,, (c) (2Q+
ufr)( -v) and (d) vy2u.

A3 due to a thermal wind balance with an effectively larger internal
temperature differential. This increase is also reflected in the larger
amplitudes of the thermal wind balance of the velocity components
Fig. 2(i).

The component balances, Fig. 2, tell us which of the dynamical
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mechanisms are active in the formation of the A3S flow. In these
diagrams (and those of Fig. 4) the convective terms are given in the
form of e.g. —wT, rather than as — (wT),, the form used in earlier
papers. Although these figures give the balances at z = d/2 only they
do provide a good representation of the interior dynamical structure.

The vorticity balance of the interior is essentially a thermal wind
balance, Fig. 2(i), with a modification by viscous and nonlinear
processes. As noted, the amplitude of this balance is larger than that
of the comparable balance for the A3 solution.

In the temperature balance, Fig. 2(ii), the separate components
of the convection and conduction processes are given. The smallness
of the vertical diffusion reflects the linearity of the isotherms at mid-
height. The Nusselt number, defined as in Part 1, has a value of
2.20 which is well below the value of 8.25 for the A3 solution. This
reflects the difficulty the fluid seems to have in getting across the
upper region and accomplishing the heat transfer. ‘

The zonal velocity balance, Fig. 2(iii), is complex. Viscous effects
are important throughout most of the flow, as they are for the A3
solution. However, we note that in the region between 7’ = 0.2
and 0.4 viscous effects are secondary to a balance between Coriolis
and inertia terms i.e. angular momentum is conserved in this region
and the flow is parallel to the m contours.

4. The Nature of the A3BS Solution

The steady state solution A3BS (¢ =1) for the free annulus
system with its free slip lateral boundaries displays characteristics
not met in other solutions, Fig. 3. _

The meridional velocity field consists of a large, almost vertical,
direct cell in the inner half of the fluid together a weaker, smaller in-
direct cell near the bottom of the hot wall. The velocities in all these
cells are small. The cause of this motion will be discussed in Sec. 5. ‘

The temperature field has only a weak vertical variation although
it is not entirely conductively determined. There is a small radial
variation linked with the cell motion. Thezonal velocity is principally
a function of height only and displays only a weak radial variation.
The angular momentum contours are linear, Fig. 3(iv).

The vorticity component balance, Fig. 4(i), displays a thermal
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Figure 3. The steady state contours for case ASBS. The absolute maximum
and minimum values are (i) 0.03572 and — 0.08291 cm? sec~! fory, (ii) 34.5 and
5.5°C for T, (iii) 3.896 and — 0.06804 cm sec for « and (iv) 67.83 and 16.25 cm?
sec-! for m.
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wind balance between the buoyancy and Coriolis terms that has an
appreciable modification by the nonlinear terms. These main terms
have little radial variation.

The amplitude of the temperature components, Fig. 4(ii), is small
compared to for example A3S (} of values) reflecting the conductive
nature of the temperature field. The horizontal conduction term
that we see in this balance x(7",, + (1/r)T',) is not a complete measure
of the conductive nature but indicates the departure of the tempera-
ture field from a purely conductive variation of 7' « logs’. The
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Figure 4. The component balances of case A3BS.
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Nusselt number, 1.057 for this flow, indicates more clearly the low
level of convective heat transfer. :

The vertical inertia component and the Coriolis term dominate the
balance of the zonal velocity equation, Fig. 4(iii), indicating that
angular momentum is conserved in this flow. The viscous term acts
as a modifying force but the horizontal inertia component is negligible.

The predominant Coriolis-inertia balance most clearly distinguishes
this flow, which is due to the classical Solberg mechanism, from flows
due to the diffusive overturning mechanism, such as A3B, which have
a Coriolis-viscous balance.

5. Discussion of the Solutions

The real annulus solutions A3 and A3S are essentially of the same
type. This lack of a dependence on the Prandtl number must mean
that the diffusive overturning mechanism is relatively unimportant
in the dynamics of real annulus flows, An interpretation of the
dynamics of these flows in terms of analytical expressions is not easy
and no attempt will be made here. We note, however, that the
angular momentum contours and isotherms, Fig. 1, shows that A3S
is free of the classical Solberg instability. Thus that mechanism can
be discounted for the ¢ = 1 case of real annulus flows in this range
of Rossby and Taylor numbers.

The free annulus solution at ¢ = 1, A3BS, has a relatively simple
structure and can be interpreted analytically in terms of Solberg’s
instability theory for a baroclinic vortex. The component terms of
Fig. 4 with their Coriolis-inertia balance and sinusoidal variation
provide the best evidence that the Solberg instability mechanism is
responsible for this flow. The linear theory is most conveniently
applied by taking the special case, ¢ = 1, of McIntyre’s analysis. @)
This form of the theory allows for the diffusion effects which modify
the Solberg instability mechanism and which lead to the definition
of a theoretical length scale and a small scale cutoff, two features
absent in Solberg’s theory.

In McIntyre’s® theory we are given a baroclinic vortex having
mean basic 0, T fields which vary linearly and uniformly in space and
which are related by the thermal wind formula. Axisymmetric
motions can grow exponentially from rest within this vortex pro-
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vided that the isotherms are more vertically inclined than the C
contours (the latter are related to the angular momentum contours).
The solution A3BS, Fig. 3, clearly has this unstable configuration.

The solution in Fig. 3 can be regarded as being made up of the
basic fields plus the disturbance at some finite amplitude. The ¥
field is due to the disturbance only. To obtain the details of the
instability, we must first extract plausible basic C, T distributions.
To do this the solution is averaged and an adjustment to the Cartesian
co-ordinates of the theory is made in the manner detailed in the
Appendix of McIntyre.® This procedure yields values for the angles,
T, ® made with the vertical by the C, T contours respectively as
tan T = 0.2090 and tan ® = 0.0561. These are small angles.

The characteristic equation for the growth of a disturbance of the
form exp (ik(r cos ¢ +2 sin ¢) + wt), when ¢ = 1, is

(@+k) (0 +k2)2+(F+S)) =0, (7)
where : . ‘
&= s;’;’:% sin (@ - ¢), F = s:;‘;‘;:sin (¢-T), s=sgn(tanT). (8)

@ and S represent gravitational and inertial restoring forces
respectively and are functions of ¢, the inclination of the disturbance
streamlines to the vertical (see McIntyre® for full details). The
disturbance is associated with the root

0= —i(F+F) k2 9)

of Eq. (7). This root is positive for all valuesof p as ¥ ~® -T <0,
# ~0 for the small angles involved in A3BS. The trivial root
o = —k? is a degenerate form of that root which gives the diffusive
instability when o # 1.

For a fixed wave number & the maximum growth rate for this root
occurs at an inclination ¢ given by ‘

d
d_gb?(g +4) =0,
ie..
2cot2¢ =cotT —tan ©. (10)

For small angles this gives ¢ ~T. The solution A3BS do3s have
streamlines that lie parallel to the angular momentum contours in
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this way. Thus the streamfunction of the solution is aligned in that
direction which provides (theoretically) the maximum growth rate
for a given k.

The absolute maximum growth rate would have k& = 0 but as this
is not observed we conclude that k& must be determined by the
boundary constraints instead. There is a distribution of about
5/2 wavelengths in the component balances, Fig. 4. This suggests
a value for the activating k of k = 576/(b —a) where a timescale
7 = (BgT,)"*/2 and a length scale § = (vr)1/2 have values close to those
of A3B as calculated by McIntyre.®

Thus the dimensionless growth rate corresponding to the solution
A3BSis

o= (C-8)2-k?=0.39-0.27 = 0.12

This growth rate is about four times larger than that for the diffusive
instability associated with A3B. The substantial %* contribution
indicates that this disturbance is near.the small scale cut-off. It
is important, however, to remember that the solution is a steady
state solution so the correspondence to the theoretical instability is
limited. We could perhaps best regard the solution as being at that
stage where the exponential growth has been balanced by effects
omitted by linear theory.

6. Conclusions

The solutions at ¢ = 1 and ¢ = 7 lead us to believe that Prandtl
number effects are only a minor contributor to the mechanics of the
real annulus (as the system is defined in this paper) but for the free-
annulus system they are of major importance. The diffusive
overturning mechanism is the mechanism of the Prandtl number
effects and is responsible for the A3B flow.

The numerical solution A3BS is an example of the classical Solberg
instability of a baroclinic vortex (with some modification by diffusion).
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