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The Field Distributions and  Balances 
in a  Baroclinic Annulus Wave 
GARETH P. WILLIAMS-Geophysical Fluid Dynamics  Laboratory,’ NOAA, Princeton, N.J. 

ABSTRACT-The detailed  structure of a steady wave 
occurring in a  rotating  annulus of  square  cross-section  and 
having a free  surface is presented.  The  field  distributions 
are obtained by numerical  integration of the  three- 
dimensional  nonlinear  Navier-Stokes  equations. 

The  distributions of  pressure,  temperature,  and the  three 
velocity components are displayed  for  the total fields  and 
for the fields  of deviation from the zonal  means.  Their 
dynamical  balances are also  discussed.  The deviation wave 
is a type of Eady  wave  and  the  solution  is  used to discuss 

1. INTRODUCTION 

The modern  picture of the motions of the earth’s 
atmosphere  began  with the acquisition in the 1940s of 
details of the motions in the  upper  atmosphere. These 
and  subsequent  studies showed that large-scale eddies, 
cyclones, and anticyclones play an essential role in  the 
maintenance of the global circulation  against  frictional 
dissipation. These eddies are associated with large-scale 
traveling waves in  the westerly winds of midlatitudes. 
An understanding of the existence and  character of waves 
with the same  properties as those observed is a  major 
problem in forming an understanding of the global 
circulation. 

The emergence of a  consistent  theory  for the global 
circulation began primarily with the identification by 
Charney (1947) and Eady (1949) of the baroclinic insta- 
bility mechanism. This mechanism produced a wave mo- 
tion  indicative of cyclone waves in  the atmosphere. The 
theory of baroclinic instability is now central  to  our 
understanding of the dynamics of the atmosphere. 

The continuing  development of the  theory of baroclinic 
instability  takes  many forms. One of the most  informative 
approaches has been the linearized perturbation  method 
for small  amplitude waves. This approach has  mathemati- 
cal difficulties and was limited initially to  an examination 
of waves with  simple basic states. Since then,  notable 
developments have included (1) Barcilon’s (1964) study 
of the effects of Ekman layers upon baroclinic waves, (2) 
Pedlosky’s (1964) use of the two level model to examine 
the effect of lateral  shear,  and (3) McIntyre’s (1970) study 
of small  lateral  shear effects on the  Eady problem. Most 
of these  studies  have been concerned with infinitesimal 
disturbances of the basic flow and  are  thus of limited ap- 
plication to global atmospheric dynamics. To extend the 
theory  toward  greater realism, one must examine baro- 
clinic waves as  they develop into finite amplitude waves 

the  structure of such  waves in finite  amplitude steady- 
state form  under the influence  of variations  in  baroclinicity, 
shear,  and  boundary  layers. 

The  side  layers  make little contribution to the char- 
acteristics of the  wave  in the deviation field  although 
significant  Ekman  layer  features  do  appear.  The  flow is 
essentially  in  hydrostatic  and  geostrophic  balance except 
in the boundary  layers. Heat conduction  is  important 
only in the side  layers. 

and become affected by nonlinear processes. Pedloskg 
(1970) has begun studies  in  this direction for the two- 
layer model, but  the remaining problems are formidable. 

Another  approach  toward thestudy of baroclinic waves 
developed after  Hide (1953) showed that waves could be 
produced in  the  annulus convection experiments. The 
experiments showed that  the flow types occurring in  the 
system fell into four categories: axisymmetric, steady 
wave, vacillating wave, and  irregular motions. Experi- 
mental  determinations of the occurrence of the different 
flow regimes have been accumulated. 

The  annulus waves were hypothesized by  Lorenz (1956) 
to  be baroclinic waves and  subsequent  theoretical  studies 
to explain the complex regime diagrams (e.g. Lorenz 
1962, 1963, Barcilon 1964) were based on this hypothesis. 
These analyses have  made  an  important  contribution  by 
their classification of various  types of baroclinic waves. 
The experimental difficulties of measuring the  internal 
details of these waves have never been really overcome. 
Thus experimental  and  theoretical  interaction has been 
limited to explaining flow regime transitions,  and the ex- 
periments  have given little  information  as  regards the 
detailed structure of waves. 

The present  stage of development of baroclinic insta- 
bility  ,theory  requires  that we obtain  an  understanding of 
the  character of waves under more general basic states, of 
finite-amplitude waves, and of time-dependent waves. 
This  understanding is necessary if the theory  is to develop 
toward  greater  applicability  to  the  atmosphere. 

The purpose of this  paper is to present  details of a 
steady  annulus wave as obtained by numerical  integration 
of the three-dimensional NavierStokes equations 
study  annulus waves because these waves are j 

amplitude baroclinic waves and  are formed under 
tions of general shear  and  baroclinicity. Thus,  the 
provide the  details of the  character of those waves 
sought  theoretically  and may  thus aid in  the develol 
and confirmation of such theories. Numerical integ 
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ide the  details of the waves because 
u1 bllt: ~llllll;ulwcJ observing the pressure and velocity 
fields. It is also hoped that presentation of flow7 det,ails will 
help  in the development of observational  methods as well 
as  in providing an example for  theoretical analysis. 

The numerical solution does confirm the validity of 
Lorenz' hypothesis  as to  the  nature of the waves (Williams 
1971). We  will also see that  the  annulus deviatoric  wave 
fields are  reasonably free of the influence of those  complex 
features peculiar to  the  annulus  system such as  the  side 
boundary layers.2 Because of this, the experiments  provide 
relevant data for baroclinic instability  theory. 

2. THE  PREDICTION  EQUATIONS 
AND  PARAMETER  VALUES 

We  will consider the motion of a fluid bounded by two 
coaxial cylinders of inner  and  outer  radii, a and b ,  re- 
spectively,  and two parallel horizontal  planes which are  a 
distance, d,  apart (fig. 1A). The  container  rotates at  a 
uniform rate, Q, where the  rotation  vector, antiparallel 
to  gravity, g, coincides with the  vertical axis of the 
c$inders. Motion  relative  to  the solid rotation of the con- 
tainer is measured in  cylindrical  coordinates, r,  +, and z, 
with T being the  radial axis and z the vertical axis. The 
velocity components  are u,  v, and w in  the zonal,  radial, 
and vertical directions, respectively. The  angular size of 
the annulus  sector, Qi, is normally 2 r  but for the calcula- 
tions we consider only the sector Qi=2r/5 (fig. lB), for 
reasons discussed in Williams (1971). 

The following definition of a Boussinesq liquid  is  taken 
for convenience: a liquid in which density  variations  are 
negligible except in  the buoyancy  term  and in which the 
coefficients, V ,  K ,  and @, of viscosity, heat diffusivity,  and 
thermal expansion, respectively, are  constant.  We also 
take  the centrifugal acceleration to  be negligible compared 
with gravity;  that is, Q2b/g<<1. As 8: consequence, the 
upper  surface  can  be  taken to  be of constant height and 
the free-slip rigid lid condition  can  be used for  this surface. 

The perfectly conducting  inner  and outer cylinders  are 
held at  different constant  temperatures, T, and Ta, 
respectively. This imposed horizontal .temperature dif- 
ferent,ial, AT= T6- T,, drives the fluid away  from  a state 
of solid rotation.  The base and  upper  surface  are  thermally 
insulating. 

Upon  writing the  hydrostatic  pressure  deviation  as 
u=pipo and the  temperature  deviation  from T, as T,  the 
Navier-Stokes equations  for  this  system  may be expressed 
in  the following form: 

Id 

B 

FIGURE 1.-(A) configuration of the system and (B) pressure wave 
at the upper surface. The container rotates counterclockwise at 
0=0.8 rad/s and the wave rotates counterclockwise relative to the 
container at 0*=0.033 rad/% Domain of interest is +=Oo-72O. 
The pressure is normalized in terms of the maximum  and minimum 
values, which  are 1.8319 and 0.6974 

with  the  heat  transfer  equation  as 

DT,2T, 
Dt 

and  the  equation of mass  conservation as 

where we have defined the  operator  identities 

The  boundary conditions  as used in the calculations 
and which express the  state of the fluid at  the boundaries 

ion from the zonal 
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w=v,=u,=T~=O, rz=&T (9) 

on the free surface, 

w=2)=u=O1 *,=v (vrr+9) (10) 

on the side walls, and T=O, AT, applied at r=a,b, 
respectively. We  assume periodicity in Q. 

The finite-difference procedure for solving the system 
of eq (1)-(10) is  given in Williams (1969). The parameter 
values used in  the calculation to give a  steady wave are 
listed below. 

1. Geometry 

a=2 cm, b=5 cm, d=3 cm. 

2. Physical Properties (water a t  20" C) 

Y= 1.008X10-2 cm2/s, ~=1 .420X cm2/s, 
p=2.054X 10" ("c)". 

3. Resolution 

A~'=1/32,  Ad=1/32, A4'=1/36. 

4. Nondimensional Numbers 

Thermal Rossby number n;l=/3gATd/D2 (b"a)'=0.525, 
Taylor number 7r5=4D2 (b-~)~/v~d=2.041 X lo', and 
coordinates ~'=(r-u) / (b-a) ,  z'=z/d, 4'=4/Q. 

Reasons for this choice of parameters are given in Williams 
(1971). 

The  transition curve between axisymmetric and wave 
flow as estimated from observational data is shown in 
figure 2. The  letter H denotes the solution point. Starting 
from an initial state in which the fluid  is in solid rotation 
and is at  a uniform temperature, T=AT/2, the  equations 
are  integrated  until  a quasi-steady wave motion is 
achieved. The fully developed  wave reaches equilibrium 
and rotates uniformly relative  to  the container at  a rate 
of D*=0.033 radjs. For convenience, the solution is taken 
when the trough of the surface pressure wave is in  the 
+'=O position (fig. 1B). The accuracy aspects of the 
solution are discussed in  the appendix. 

3. THE TOTAL  FIELDS 

The  total pressure, temperature, and component wind 
fields are presented in this section. These fields  could  be 
observed experimentally and for this reason presentation 
in  this form is desirable. In discussing the solution, it is 
useful to look at  the variables in  terms of the zonal mean, 
(-), and deviations therefrom ( )'. The term "devi- 
atonic" is used for the zonal deviation rather  than "eddy" 
because the flow is laminar and has  a finite amplitude. 
This procedure is justified a posteriori by  the  nature of 
the solution but need not necessarily be a meaningful 
procedure for any three-dimensional flow. The  character 
of the zonal mean fields is given in Williams (1971) and is 
not discussed further  in  this paper. 

lo9 
lo5 10 10 

r5 
FIGURE 2.-Transition curve between axisymmetric motion (left) 

and wave motion constructed from data of Fowlis and Hide 
(1965) for the parameters of the calculation. Coordinates  are the 
thermal Rossby (T,) and Taylor (q) numbers. Circled values are 
from the summary curves of Fowlis and Hide interpreted for our 
parameter values. Cross  marks indicate transition poinG  for 
observations with small fluid depth (5 em), and square  marks  are 
likewise for small inner radius. Associated wave numbers  are 
given as a guide. The diagonal line AT=5'C is the locus of 
interest. The solution is obtained at H(n=0.8). 

The three-dimensional fields are displayed by means of 
two-dimensional  cross-sections. It is convenient to map 
some of the  distributions onto a uniform rectangular 
area based  on the mean length scale of the 4 coordinate. 
Thus,  the geometrical distortion should be borne in mind 
(cf.  figs. lB,  3E). 

Total  Pressure 

The pressure wave travels from left to right with the 
isobars acting as streamlines in the horizontal cross- 
sections of figure 3. The low-pressure center on the base 
at +'=ji is associated with the free-surface trough at 
t$'=O; this is the  characteristic )i wavelength slope of a 
baroclinic  pressure  wave with height. Positive (westerly) 
zonal flow exists in  the upper regions  (figs. 3C-3E) whereas 
negative (easterly) zonal  flow  occurs in the  Ekman layer 
(fig. 3A). Near the critical level, the flow forms closed 
circulations (fig. 3B). There  are radial variations  in  the 
pressure  field, but these are more obvious in  the deviatoric 
pressure and will be discussed later. 

Total  Temperature 

The thermal  boundary  layers that form along the lower 
part of the  hot  outer wall  (fig. 4A) and along t.he upper 
part of the cold inner wall  (fig. 4E) are essentially inde- 
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FIGURE 3.-Horizontal sections of total pressure, T (units: 10" 
cm*.s-*), a t  heights of (A) 1/64, (B) 17/64, (C) 33/64, (D) 49/64, 
and (E) 63/64. Solution is mapped onto a  rectangular ares.  The 
length of the 4' abscissa is such that  it  corresponds to the value 
a t  r'= 1/2 relative to  the radial  coordinate length. In each dia- 
gram, the cold inner wall is the top boundary. The wave moves 
from left to right. 
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FIGURE 4.-Horiaontal sections of normalized temperature, (TIAT) 

X 10, at heights (A) 1/64, (B) 17/64, (C) 33/64, (D) 49/64, and 
(E) 63/64. 
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FIGURE 5."HOriZontal sections of vertical velocity, M (units: 10" 

cm/s), at heights of z'= (A) 2/64, (B) 18/64, (C) 34/64, (D) 50/64, 
and (E) 62/64. Reduced' contour  intervals are used in diagrams 
(A) and (E). 

pendent of 4'. The variation of the  temperature, like 
pressure, is smooth and wavelike. 

Total Vertical  Velocity 

Separate  boundary  layer  and  interior flow  regimes exist 
for the vertical velocity (fig. 5). In  the interior region, the 
flow is predominantly upward as the flow moves inward 
(4'=0-0.5) and downward as  the flow moves outward, at  
all heights. Along the side boundaries, there is almost 
pure boundary layer flow as indicated by  the axisymmetry 
of the isolines. However, some interaction occurs  between 
the interior wave  regime and the boundary layer as can be 
seen in figure 5D where at  the cold  wall the downflow due 
to  the wave enhances the boundary layer downflow to 
produce an  area of maximum d o d o w  of 0.14 cm/s near 
4'=0.75. The  jet leaves the inner wall at  this point. 

Total Radial  Velocity 

The radial velocity contours that we see in figure 6 
are produced mainly by  the wave motion, as there is 
only a weak radial velocity associated with the mean 
fields  (see  Williams [1971, fig. 4b(i)]).  The regions of 
inflow (v < 0) and outflow (v > 0) slope backward with 
height. A geostrophic relation to  the isobars (fig. 3) is also 
apparent. 
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FIGURE 6.-Horizontal sections of radial velocity, v (units: 10-2 
cm/s), at heights of z'= (A) 1/64, (B) 17/64, (C) 33/64, (D) 49/64, 
and (E)  63/64. A smaller contour interval is used in diagrams (A), 
(B), and (C). 
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FIQURE 7.-Vertical sections of zonal velocity, u (units: 10" cm/s), 

along the wave at &=(A)  0, (B) 10/72, (C) 18/72, (D) 28/72, 
(E) 36/72, (F) 46/72, (G) 54/72, (H) 60/72, and (I) 64/72 (Le., 
0-1.0 in intervals of approximately l/S). 

@ 
FIQURE 8.-Horizontal sections of zonal velocity, u (units: 1 0 - 2  

cm/s), at heights of z'= (A) 1/64, (B) 17/64, (C) 33/64, (D) 49/64, 
and (E) 63/64. 

Total Zonal Velocity 

The zonal velocity pattern varies considerably along the 
wave, and it is of interest to examine vertical cross-sections 
(fig. 7) as well as the horizontal ones  (fig. 8). In  the trough 
region  (fig. 7A), the  jet is nearest the  outer wall, its axis 
is vertical, and the  jet magnitude weakest at  0.32 cm/s. 
With increasing 4', the  jet moves to  the inner wall and its 
axis takes on a diagonal slope. The  jet  attains a maximum 
value of 0.52 cm/s at  the ridge, 4'=0.5, and a  strong 
momentum boundary layer forms along part of the  top 
wall  (see  also  fig. 8E). A very small isolated region of 
negative zonal flow occurs at  the upper surface, on the 
cold  wall near +'= (fig. 8E). It is linked to larger 
regions of negative flow at lower depths (fig. 7A). 

4. THE  DEVIATORIC  FIELDS 

The deviatoric fields  define and reveal the  nature of the 
wave flow more incisively than  any  other  set of variables. 
Thus,  this section will be concerned with discussing the 
phase and amplitude behavior of the  deviatoric fields. 
This behavior can be represented to  a good approxima- 
mation by two-dimensional quasi-phase, quasi-amplitude 
diagrams. These may be obtained from the coefficients of 
the first mode of a  Fourier analysis in the 4' direction 
and such diagrams  are given in Williams (1971, figs. 
11 and 12). 
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FIGURE 9.--Norizontal sections of deviatoric pressure, R' (units: 

10-2 crn%-2), at heights of z'= (A) 1/64, (B) 17/64, (C) 33/64, 
(D) 49/64, and (E) 63/64. A smaller contour interval is used in 
diagrams (A)+). 

#' 
FIQURE 10.-Azimuthal sections of deviatoric pressure, T' (units: 

1 0 - 2  cmZ.s-Z), at radii of I'= (A) 3/64, (B) 17/64, (C) 33/64, 
(D) 49/64, and (E) 63/64. A smaller contour interval is used in 
diagrams (A) and (E). 

However, we  would like in  this section to present  the 
nonapproximated form of the  deviatoric wave behavior 
and  thence  to provide a realization of the complex phase 
behavior of this  quasi-Eady,  finite  amplitude,  steady-state 
wave with its underlying  variable shear, baroclinicity, 
and  boundary  layer effects. The  nonapproximated form 
also reveals the  extent of nonlinear  and  higher mode 
effects  not exhibited by  the approximated forms. 

Deviatoric Pressure 

The deviatoric  pressure has a very  smooth wavelike 
behavior (fig. 9).  The phase  variation  can  be realized 
from the zero-value contours  with  the  radial phase 
variations given by figure 9  and  the  vertical  variations by 
figure 10. The amplitude  behavior is straightforward  with 
largest  amplitudes being confined to  the  central (~'=0.5) 
zone. Low pressure regions have  larger  amplitudes than  the 
high  pressure regions. As regards  the  interior region of the 
fluid,  the  chartxteristic 9; wavelength back-slope with 
height is well established. In  the  upper  one-third of the 
interior region, t,he phase varies  weakly  with  height 
(figs. 10C-1OE). The more  significant  variation occurs in 
t,he radial  direction witah the wave in  the middle zone 
leading those in adjacent regions in the  upper half  of 
the fluid [cf.  fig. 12, Williams (1971)j. This wave shape 
is  characteristic of angular  momentum  transfer into the 
middle zone. 
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As regards  boundary regions, there is a more markedly 
variable phase behavior than  in  the interior.  Strong 
radial  variations  in  phase occur near the free surface 
region of the inner wall where the wave appears  to be 
rapidly  retarded (fig. 9E).  In  the vertical  direction, 
however, the pressure wave on the inner wall has its 
phase lines leaning backward  with  height (fig. 10A). The 
situation  is different near  the  outer wall where the phase 
variability is mostly a function of height,  the phase 
becoming rapidly  horizontal at  z'=0.4 and sloping 
forward with  height in  the lower region (fig. 10E).  This 
indicates the presence of higher wave numbers. 

The physical explanation of the phase  behavior is 
unknown and, because of the weak amplitudes  near  the 
the sides, the meaningfulness of local phase  changes is not 
established. However,  recent studies  by  Saltzman seem 
to indicate that such  features as phase  layering  are an 
inherent  property of generalized baroclinic. waves? The 
whole phase behavior is summarized by  the quasi-phase 
diagrams of Williams 21971, fig. 12(a)]. 

Deviatoric  Temperature 

The deviatoric temperature field  possesses a certain 
degree of detail  and  asymmetry  partlcularly  in  the 
sidewall regions (figs. 11 and 12).  Although the side 
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FIGURE 11.-Horizontal  sections of deviatoric  temperature, 
(T’/AT) X 102, at heights of z’= (A) 1/64, (B) 17/64, (C) 33/64, 
(D) 49/64, and (E) 63/64. 

D 

regions display large phase variability, the associated 
amplitudes are small. This indicates that thermal bound- 
ary layers play only a secondary role in the formation of 
the deviatoric wave. 

In  the interior region the phase leans forward with 
height, a characteristic of the baroclinic wave. The 
maximum amplitude occurs at  midheight. 

A region of enhanced cooling occurs near  the  inner 
wall near 4’=% (fig. 12A) and is correlated with  the 
maximum downflow  region. 

Deviatoric  Vertical  Velocity 

The deviatoric vertical motion is closely related to the 
deviatoric temperature field with upward motion coin- 
ciding with positive temperature anomalies. This produces 
the vital release of potential energy. Thus, the  patterns 
of figures 13 and 14 closely  resemble the  temperature 
patterns (figs. 11, 12). The amplitude asymmetries of the 
vertical velocity occur predominantly in the inner side- 
wall  region. The maximum upward velocity occurs just 
ahead of the low  pressure area on the base as in atm.05- 
pheric  cyclone systems. 

In both  the T’ and w’ fields, it is clear that the wfwe 
patterns, although less  well ordered, are divided into 
2 regimes-the interior and sidelayer systems. Whereas 

E F 

H I 

F I G ~ E  12.-Aeimuthal sections of deviatoric temperature, (T’IAT) X W ,  for (A)-(C), the inner  boundary  region rf=l/64, 5/64, and 
9/64; (D)-(F), the interior  region r f =  17/64,33/64, and 49/64; and (G)-(I), the outer  boundary  region r‘=55/64, 59/64, and 63/64. 
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FWURE 13.-Horizontal  sections of deviatoric  vertical velocity, 

w’ (units: 1 0 - 2  cm/s), at heights of z’= (A) 2/64, (B) 18/64, 
(C) 34/64, (D) 50/64, and (E) 62/64. A smaller  contour  interval 
is used  in  diagrams (A) and (E). 

A 

the wave is different  in the boundary layers, the main 
interior wave retains its own character and is not  funda- 
mentally affected by the localized boundary influences. 

At  the base there seems to be an almost separate wave 
system (of weak amplitude) occurring in  both sidewall 
regions (fig. 13A). This produces strong phase changes in 
those regions. This phenomenon may represent a con- 
servation requirement. 

Deviatoric Radial Velocity 
The horizontal sections for 8’ (fig. 15) are similar to 

those for total v (fig. 6) except in  the  Ekman  layer.  This 
reflects the fact  that ii is relatively small except near the 
base. The  patterns  form  a well structured wave similar 
to the deviatoric pressure pattern (fig. 9) but being 
approximately wavelength out of phase in the interior 
regions. This indicates geostrophy. The  shape of the 
velocity  wave is somewhat different, however, particularly 
in  the side regions. 

Although the w’ wave generally leans backward with 
height, this  variation is modified by  the  Ekman layers 
which cause a  retardation of the wave in  the  outer region 
(fig. 16E) and an advancement in  the inner region  (fig. 
16A). 

Deviatoric Zonal Velociiy 
The phase-amplitude behavior of u‘ is more  difficult to 

I 

FIQURE 14.-Azimuthal sections of deviatoric vertical velocity, so’ (units: lo” cm/s), for (A)-(C), the inner  boundary  region r’= 1/64, 5/64, 
and 9/64; (D)-(F), the interior  region r‘= 17/64,33/64, and 49/64; and (G)-(I), the outer  boundary  region r‘=55/64,59/64, and 63/64. 
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FIGURE 15.-Horizontal sections of deviatoric radial velocity, u' 

(units: 10-2 cm/s),  at heights of z'= (A) 1/64, (B) 17/64, ( C )  33/61, 
(D) 47/64,  and (E) 63/64. 

d' 
FIGURE 16.-Azimuthal sections of deviatoric radial velocity, u' 

(units: 1 0 - 2  cm/s), at radii of r'= (A) 4/64, (B) 18/64, ( C )  34/64, 
(D) 50/64, and (E) 60/64. A smaller contour interval is used in 
diagrams (A) and (E). 
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FIGURE 17.-Horizontal sections of deviatoric zonal velocity, u' 

(units: 1 0 - 2  cm/s),  at heights of z'= (A) 1/64, (B) 17/64, (C) 33/64, 
(D) 49/64, and (E) 63/64. A smaller contodr interval is used in 
diagrams (A)-(C). 

determine than  that of other  variables because the 
amplitude vanishes in a  transition  from positive to nega- 
tive  values  near r'=0.4, allowing higher modes to  enter 
in  the  interior (fig. 17). Apart from  this  transition zone, 
the u' pattern is dominated by  the first mode. The  variable 
also leans  backward  with  height,  indicating  a degree of 
geostrophy in  its production (fig. 18). 

The maximum  amplitude occurs in  the free surface 
jet  near  the  inner wall where momentum  boundary  layers 
form along the  upper one-fourth of the wall  (fig. 17E). 

5. THE  DYNAMICAL  BALANCES 

To determine how the above wave is produced and 
maintained  dynamically, we conclude with  a discussion of 
some representative  diagrams of the component  terms of 
the basic prediction and vertical  vorticity  equations.  The 
behavior of the  terms a t  z'=0.5 is reasonably  representa- 
tive of the  dominant  interior  and side region balances but 
further frictional forces enter in the  Ekman  layer  to  modify 
these balances. 

The  Vertical  Velocity Components 

The variation of the components of eq (3) a t  z'=O.5 
and 4'=0 (fig. 19) indicates that  the fluid is in a  hydro- 
static balance in the interior. The  deviation from hydro- 
static balance is greater in the side  boundary  layers than 
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d' 
FIQURE 18.-Aaimuthal sections of deviatoric zonal velocity, u' 

(units: 10-9 cm/s), a t  r'= (A) 3/64, (B) 17/64, (C) 33/64, (D) 49/64, 
and (E) 61/64. 

this figure suggests because both layers are relatively 
weak at  z'=O.5. Since the balance varies so slowly with 
4', one diagram is sufficient to show the overall balance 

The  Zonal  Velocity  Components 

The representative components of eq (2) for  the zonal 
velocity reveal a predominant balance between the 
Coriolis term and the pressure gradient at  all 4' values 
(fig. 20). The u field forms a stronger side boundaq- layer 
at 2'=0.75 than  at this height so the friction term is 
under-represented. The remaining terms of the equation 
are smaller but  not negligible and will  be  examined  again 
in the vorticity equation. 

The  Radial  Velocity  Components 

The components of eq (1) shown in figure 2 1 also displaJ 

0 

L.2{ I , I s 0 .o 
c 0.5 1 .o 

-? 1 

i 

' A '  I 

r' 
FIGURE 20.-Radial distribution of components of the u equation at 

midheight (z '= 33/64) for =$I= (A) 0, (B) 18/72, (c) 36/72, and (D) 
54/72. Terms  are (a) --ut, (b) - (vu,+uu&!-U)uz), (c ) - - (23  
+u/r)v ,  (d) - r6/r ,  and (e) V V U .  Units  are cm r 2 .  Coordinates 

a predominant balance between the Coriolis term and the 
pressure gradient at all 4'. The balances of the u, and v 
equations together form a geostrophic balance so that  the vertical vorticity is formed: 
isobars can be regarded as streamlines for horizontal flow. (11) 

The  Vertical  Vorticity  Components where 

The dominance of the geostrophic balance in the u and v 
equations obscures the balance between the  other  terms 
in the two equations. To circumvent, this, the equation  for are the (2, r,  4) vorticity components, respectively. 

1 
r r T 

p- (m),-% t=%- u,, Tl=vz-w7, 
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FIGURE Zl.-Radial distribution of components of the u equation a t  
midheight (zf=33/64) for +f= (A) -1/72, (B) 17/72, (C) 35/72, 
and (D) 53/72. Terms are (a) -ut ,  (b) -(w,+uu+/r+wu,), (c) 
+ (2~+u/r)u,  (d) -x,,  and (e) VV*U. Units  are cm s-2. Coordi- 
nates  are all as in ( C ) .  

! ' A  I 

U J  > - 1 2 L  0.0 1 

1 
I ' B  I 

r ' D  ' I 

r) 
FIGURE 22.-Radial distribution of components of the vertical 

vorticity (f= ( r u )  ,/r-u+/r) equation at midheight (z'=33/64) for 
4f= (A) 0, (B) 18/72, (C) 36/72, and (D) 54/72. The  terms are 
(a) -ft, (b) - ( u f ~ + u f + / r + w f , ) ,  (c) ( 2 ~ + f ) w , + € w , + ~ w + / r ,  and 
(d) vv*f. Units  are s-*. 

The representative components (fig. 22), do not indicate 
any predominant balance. An important  feature of the 

0 

r' 

1 
0 C 1 

9' 
FIGURE 23.-Example of the vertical vorticity field, (units: 10-1 

s-l), in  three sections: (A) azimuthal section at r'=34/64, (B) 
vertical section a t  # = O ,  and (C) horizontal section at z'= 33/64. 
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FIGURE 24.-Radial distribution of components of the normalized 
temperature (T/AT) equation at midheight (z1=33/64) for @ f =  
(A) -1/72, (B) 17/72, (C) 35/72, and (D) 53/72. Terms are (a) 
-T,,  (b) - (uT , fuT~/r+wT, ) ,  (c) &T, and individual con- 
vection terms (d) -UT,, (e) -UT&, and (f) - wT,. All are 
normalized by AT. Coordinates are all as in (C). 

balance is the strong viscous term. This  is  to be expected 
for we know that in the balances for axisymmetric flow 
(Williams 1967) the viscous term is large in the balance of 
the u equation, and r is essentially the gradient of u. 

Three sections of the vertical vorticity { itself are given 
in figure 23. Positive spin occurs mainly in the trough 

4.52-659 0"72----6 
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(# ’=O)  and  negative  spin  mainly near  the ridge (#’=0.5). 
The positive  values  have the larger  amplitude. 

The  Temperature  Components 

The components of eq (4), the  temperature  equation, 
are presented in figure 24. In  addition  to  the  three basic 
terms of the  equation,  the  three  component  terms of con- 
vection are also given separately because each  term  is im- 
portant  in itself in  this  predominantly  convective flow. 

Conduction is negligible in  the  interior where the balance 
is between the time term - T, and  the convection term 
V*VT. In  the side boundary  layers,  the  conduction  term 
becomes large whereas the  terms - T, and uT,lr become 
secondary;  this reflects the axisymmetry of the  thermal 
boundary layers. Thus  the  thermal  layer on the inner ~vall 
is  mainly formed by  a  balance between the vertical con- 
vection term “WT, bringing  warm fluid down the wall and 
the  terms -UT,, KV’T removing heat  out of the region at  
z’=0.5. The balance of the  thermal  boundary  layers  is 
essentially the same as that of comparable  axisymmetric 
solutions. 

6. CONCLUDING  REMARKS 

Detailed characteristics of a steady  annulus wave have 
been presented. The solution provides an indication  of 
the form of steady, finite amplitude, baroclinic waves of 
the  Eady  type under the influence of lateral  shear  and 
baroclinicity variations  and viscosity. A major  aspect  of 
the deviatoric fields is the smallness of side boundary 
layer  features which shows that  the interior wave is only 
slightly modified by the side regions. Although the 
deviatoric wave is essentially a  quasi-Eady wave, it does 
possess some peculiarities of its own as  regards  phase 
behavior  in  boundary regions. This phase behavior still 
lacks a physical explanation. The phenomenon of phase 
layering  near boundaries could be of consequence in 
determining the influence of midlatitude  disturbances 
upon tropical ones in  the earth’s  atmosphere. 

The dynamical balances of the interior region are 
essentially hydrostatic  and geostrophic. These conditions 
are in agreement  with the usual assumptions  made in 
theoretical  studies. 

Although the deviatoric wave possesses a certain 
amount of complexity which makes it difficult to define, 
i t  is still possible to define it by  means of the quasi-phase, 
amplitude  diagrams given in Williams (1971). A com- 
parison of tjhese diagrams  with the field distributions of 
t,his paper  indicates that this  is  an  accurate procedure. 
Having been able to “define” the  steady wave in this way, 
n-e must  next consider whether a similar technique nil1 
allow us t,o define the vacillating wave. Clearly,  these 
waves need to be defined, but untsil a better theoretical 
basis is established, it will  be difficult t~o  provide a thorough 
analysis of eit,her steady or vacillating waves. The  same 
numerical techniques are  appropriate for obtaining the 
details of vacillat,ing waves, but  the probIem of defining 
and analyzing t.he wave is more difficult. It map be 
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FIQURE 25.--Comparison  of (a) an analytical solution and (b) 
numerical values of the axisymmetric solution at r’= 1/2 for the 
Ekman layer on the base. Abscissa  scale 10-2 cm/s and ordinate K 
indicates the grid points of the numerical  scheme that start 
at one-half  grid interval above the base. (A) zonal velocity and 
(B) radial velocity. 

possible to extend the quasi-phase, amplitude diagrams 
into t,hree-dimensional diagrams  by using time as one  of 
the axea. 

It is hoped that presentation of field distributions will 
assist also in  the development of observational  techniques 
as has been the case with  axisymmetric  studies. We have 
presented a solution at  one parameter  point only and  there 
remains a need to determine the  structure of the flow over 
the whole regime for wide parameter ranges. Observational 
studies would be most  suitable for this purpose. 

APPENDIX:  ACCURACY LIMITATIONS 
OF THE  NUMERICAL  SOLUTION 

Although the accuracy of the solution  presented  in this 
paper  cannot be directly  evaluated, we can perform anal- 
yses that suggest that good accuracy has been achieved. 
For instance, the axisymmetric  solution at  the same  param- 
eter values may be obtained a t  the  same resolution as 
the wave solution  and at  higher resolution. This was done 
and  the  solutions were found to be very  accurate; that is, 
integral  quantities differed by less than 5 percent.  Two 
further  tests will be discussed in  this section. 

Ekman  Layer  Analysis 

The  most convincing test of a  numerical  solution that 
can be made is a comparison with  analytical solutions. 
This is clearly impossible for the complicated wave 
solution. However, in the axis-pmetric solution at  point 
H {see Williams [1971, fig. 4(a)]], the  boundary  layer 
on the base is close to being an  Ekman  layer  at r’=0.5 
where minimum sidewall and  buoyancy  effects occur 
(i.e., w = 0) .  

The  equations governing the flows at  that point  are to a 
good approximation 

-2Qu= - *,+ yz)zp) 2Qv= + V U Z Z .  (12) 

The boundary  conditions  are that u=v=O at z=O and 



that v-0,u-G for large z. An analytical  solution  exists 
for  this problem provided that G is linear in z or 
constant. As G increases with z (Williams [1971, fig. 
4(a)] 1, we assume G to be linear in the region just above 
the  Ekman layer. The solution is then 

U= G(z) (1 -e-’ cos 7 )  , v= - G(z)e-T sin y (13) 

where y = ~ ( f t / v ) ~ ~  and G(z) =U,Z+%. The constants ul, uz 
are  obtained  by  matching G(z) with  the  numerical  values 
of u a t  the grid  points K=4 and 7 (fig. 25)”one  point 
being just inside the  layer  and  one  just outside the layer. 

The analytical  solution (based on two match points) 
and  the  numerical  solution at  r’=0.5 are shown in figure 
25. The  Ekman  layer extends up  to K = 5  to 6 which is 
consistent  with the simple Ekman layer  depth  formula 
6=u(~ /9 )*~=0 .35  cm  which is close to  K=5.  The two 
solutions  are close despite the approximation,  and it is 
clear that  the numerical  solution has  adequate resolution 
for accurate  representation of the  Ekman  boundary layer. 

Resolution  and  Reynolds  Number 

The limit of meaningful numerical  integration  depends 
on specified resolution. Flows at  a  higher  Reynolds 
number  or of irregular  character  require  higher  resolution 
than flows at  lower Reynolds  number. We will derive  a 
relationship that gives an idea of the resolution  required 
for accurate  solution of flows at  a given Reynolds  number 
and, hence, we will  shorn that  the wave solution  meets 
the criterion. The criterion for accuracy  depends  on the 
choice of finite differencing so as an example me take a 
simplified equation  for w as differenced in  the calculation. 
Using standard  central differencing notation, consider the 
discrete  equation 

- t  -2  
-2  

6,w +w 6,w =v6,,w. (14) 

A Taylor expansion gives the continuous  form of eq (14) as 

where for the  sake of argument  only  the  truncation  terms 
of the nonlinear  term  are  retained. 

For accurate  calculation  and  a  proper  representation 
of the inertia-frictional balance in  the fluid, the  truncation 
term  must be smaller than  the friction  term (i.e., RA= 
( A ~ ) ~ w ~ / v < <  1 ) .  This defines a local grid Reynolds  number 
Ra. If the fluid has a  bulk  Reynolds  number  Re=wd/v, 
then we can write Ra/Re= l /Nz  where N is the  number of 
grid  points over the length, d. If we specify that Ra=l/lO 
is  a sufficient accuracy  requirement, then a  resolution of 
N2=10 Re  must be used. An example would  be that, for 
Re=100, N=30 is  required. 

The accuracy  condition Rb<< 1 is met  by  the  steady 
wave solution. Although the above  criterion is somewhat 
arbitrary, it does give an idea of the  order of magnitude 
of the resolution. More  importantly,  the analysis suggests 
that resolution varies as  for  a fixed accuracy which 
is more  favorable than  varying  as Re. 
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