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ABSTRACT

We test the hypothesis that the atmospheric circulations of Jupiter are a manifestation of large-scale con-
vective instability brought about primarily by the presence of an internal heat source. This is done by ex-
amining the nature of convection in an unstable rotating atmosphere through numerical integration of the
Boussinesq equations. The general properties of convection are obtained from solutions with laboratory-
scale parameters while particular Jovian characteristics are studied through calculations with planetary-
scale parameters.

In the Jupiter calculations, physical and theoretical constraints on parametric freedom produce a desir-
ably under-determined system in which there remain more observational criteria to be explained than free
parameters to manipulate.

The solutions indicate that a tropical westerly jet can be produced by an axisymmetric flow provided that
the atmosphere is relatively shallow (d <500 km). A strong equatorial westerly flow can occur provided that
there is a strong diffusion of the tropical jet. The strength of such a diffusion is of a magnitude that suggests
that it can only realistically be brought about by large-scale non-axisymmetric disturbances. The axisym-
metry of the convective rolls, i.e., their longitudinal stability, is controlled by the latitudinal variation of Q
cosf. This differential rotation suppresses the organization of large-scale convective motion poleward of 45°
while toward the equator such motions can set in strongly.

The banded structure and zonal velocity field of the most realistic theoretical solution resemble the ob-
served, having five zones (w>0) and four belts (« <0) each with its characteristic differential zonal motion.
The square-shaped form of the mean vertical velocity variation with latitude produces sharply bounded
zones of uniform intensity.

Calculations to test the stability of the axisymmetric flow to longitudinal perturbations indicate that ovals
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and streaks are the natural form of the disturbance elements.

1. Introduction

The question of whether an atmosphere can be
statically unstable everywhere and yet organize itself
into a large-scale flow pattern appears to be a basic
problem in understanding the circulations on Jupiter
and in the Earth’s tropics. We would like to examine
this problem by deriving the possible character of an
unstable atmosphere and then by using the observed
Jupiter flow in a positive comparison, suggest its
existence.

In any study relating to a remote planetary atmo-
sphere, the level of inquiry and understanding pursued
must depend upon two major considerations: 1) the
observational data and 2) the governing physical laws.
Both items are equally important, since physical
simplicity can compensate for limited data and perhaps
allow a reasonable understanding of a remote atmo-
sphere to be attained. In particular, the orderliness
(i.e., the axisymmetry) of the Jovian cloud systems is
suggestive of an underlying simplicity in the dynamics
of that atmosphere that might permit such an under-
standing at this time. With this in mind, our investiga-
tion will take the simplest possible form and will be
more in the nature of examining the classification and

structure of basic dynamical mechanisms than of a
planetary simulation.

It would provide a simplifying reduction and
generalization of planetary atmosphere theory if the
atmospheric circulation systems of the planets could be
classified into some simple scheme, just as stars and
galaxies can be placed within a few spectral categories.
We would like to suggest that two basic broad categories
of planetary dynamical systems may be possible. These,
for lack of better terminology, we shall refer to as the
baroclinic and convective systems. By a baroclinic system
we denote a system whose physical behavior is primarily
determined by the need to transfer heat horizontally
from hot to cold regions. Such a system is associated
with a horizontal (potential) temperature differential
driving the motions so that the system may be denoted
(partly schematically) by the symbol AyT. A convec-
tive system specifies a planetary atmosphere where the
primary need is to transfer heat upward to higher levels
and may be denoted by a positive vertical (potential or
equivalent! potential) temperature differential symbol
AyT. Various fluid dynamical modes can exist within
both categories. A fundamental difference between the

! When condensation effects are important.
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two systems lies in the form of their turbulence fields
with the result that different degrees of predictability
may be expected.

Limited laboratory analogs of the baroclinic and
convective categories occur, respectively, in the well-
known Hide (annulus) and Bénard (with rotation)
experiments. Because of the simple boundary conditions
in these experiments, their flows can also be quantita-
tively classified in terms of the Richardson, Rossby and
Taylor numbers or the Rayleigh and Taylor numbers.
On the planetary scale we are familiar with the baro-
clinic system in the Earth’s extratropical dynamics.
Despite large topographical influences the Earth’s ocean
and the Martian atmosphere may also be essentially
baroclinic. Venus has an intricate circulation (Rivas,
1971), but is nonetheless baroclinic, being driven by a
complex Ay T. However, it has not yet been established
that a convective system can exist on a planetary scale,?
even though there is evidence for it on the solar scale.
Thus, it is the purpose of this paper to hypothesize such
a system and to evaluate the consequences.

Attempts to categorize planetary atmosphere be-
havior are implicit in the recent papers of Golitsyn
(1970) and Stone (1972a). Golitsyn’s derivation of
similarity parameters for the radiative-dynamical sys-
tems of the planets provides a classification of atmo-
spheric energetics that may be too complex to verify
with the small observational sample available. Stone’s
paper involves the derivation of ‘“a theory for the static
stability” of rotating planetary atmospheres and
concentrates on atmospheres where the baroclinic
instability mechanisms could predominate. Such a
theory could provide a more exacting baroclinic
classification. Stone’s theory, however, cannot provide
a complete specification of a planetary atmosphere for
its assumptions are invalid, for example, for the Earth’s
tropical circulation. To classify a particular atmosphere
requires that the relative importance of the two basic
thermal influences, Ay T and AyT, and their associated
sources of available potential energy be evaluated.
Stone’s (1972a) analysis covers the case where the
baroclinic forcing AxzT can be assumed to dominate.
He then seeks the associated —AyT. We suggest that
it is also necessary to consider flows in which AyT
dominates and for which a dependent AT can be
evaluated if desired.

The Earth’s atmosphere, being baroclinic in extra-
tropical regions and probably convective in the tropics,
falls into a hybrid category. It is not clear that the
tropical circulation is primarily a statically stable
circulation driven by the tropical AyT or is a large
convective cell driven by conditional convective
instability. The tropics may be equally influenced by
both AT effects and be too idiosyncratic to be a good
example of any basic dynamical mechanism.

? Except perhaps in a highly specialized form in the ITCZ.
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Thus, only on Jupiter and Saturn does it appear that
we could have a manifestation of a simple convective
atmosphere. The alternative possibility, that Jupiter’s
circulation could be explained by a baroclinic mecha-
nism, was first suggested by Stone (1967) and Gierasch
and Stone (1968) but Stone’s (1972b) later analysis has
narrowed down, almost to the point of exclusion, the
possibility that the inertial mode could produce an
equatorial jet® Other authors [notably Lau (1913),
Wasiutynski (1946) and Hide (1969); also see Gierasch
(1970)7] have pointed out the morphological similarity
between the banded structure of Jupiter and that
obtained in certain laboratory experiments on Bénard
convection. Clearly, a convective mode should be
favored In a system with a dominant internal heat
source (Jupiter) or in a system which behaves as if it
was heated from below due to its transparency to solar
radiation (Earth’s tropics?). However, the existence of
such a mode on a planetary scale has not been
established.

The fact that Jupiter has an interior heat source that
exerts a predominant influence on its atmospheric
circulation is loosely suggested by a comparison of the
simple observation features of Jupiter and Saturn, as
follows. First, consider the similarities of the two
atmospheres: 1) axisymmetric banded structure, 2)
strong equatorial jets, and 3) comparable physical
configuration [rotation rate, high albedo (0.6), small
orbit eccentricity |. Second, consider the dissimilarities
between the two planets: 1) the equatorial inclinations
are 3° for Jupiter and 27° for Saturn, and 2) Saturn
receives one-fourth as much solar radiation as Jupiter
but its jet is four times stronger. Now the dissimilarities
are with respect to the solar influence which suggests
that the similarities, i.e., the dynamical system, can
have little correlation with the solar influence and must
be primarily determined by internal heating. The ab-
sence of any apparent seasonal variations in the strongly
inclined Saturn atmosphere points to a weak solar
influence and the strength of Saturn’s jet compared to
Jupiter’s would seem to be more easily explainable by
the presence of an internal energy source [possibly
larger than that observed by Auman et al. (1969)].
Although such arguments based on indirect evidence
are ambivalent if the flow structure is unknown,
quantitative estimates of the Jovian internal heat
sources from the observed effective temperatures do put
their values at about 3/2 times as strong as the solar
supply (Aumann et al.; Trafton and Wildey, 1970).

The best confirmed features of the Jovian motions
that require a theoretical explanation are those that
have been observed long enough to have a climatological
significance. The phenomena, documented by Peek
(1938), are as follows:

# However, a numerical investigation of this mode is required
for completeness.
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1) The axisymmetric, to first order, banded structure
and uniform polar regions.

2) There is a differential rotation within zones (light
color) and belts (dark color) such that positive zonal
motion is associated with the equatorward edges of
belts (poleward edges of zones) and negative zonal
motion with the poleward edges of belts (equatorward
edges of zones). The correlation between zones and
belts and the upper and lower levels of the atmosphere
and then perhaps with vertical motion is unknown.
The consensus opinion seems to be that the zones are
upper level clouds whereas the belts relate to a deeper
level in the atmosphere. The cloud layer models of
Lewis (1969) suggest that clouds may be expected at
three different levels in our region of interest: NH; at
150K, NHHS at 225K and H;0 at 275K, and that the
region between the top and bottom clouds (~80 km)
is convective.

3) There is a strong positive equatorial zonal motion
of ~100 m sec’. A more detailed analysis of the
observations by Chapman (1969) has provided an
estimate of the wvariation of the upper level zonal
velocity with latitude.

4) The shape of the disturbances, i.e., deviations
from the axisymmetric structure is well known and
seems to be dominated by the white ovals.

5) The Great Red Spot.

The calculations made to investigate the form of a
convective atmosphere and its relation to the Jovian
system are presented in four sections. The simplest
question is asked first, that is, how do sphericity and
rotation affect the well-known Bénard convection
characteristics? To answer this, solutions are obtained
in Section 3 that describe Bénard convection on a
rotating sphere for laboratory scale values. Then it is
shown in Section 4 how such convection can be pro-
duced for a planetary-scale shallow atmosphere by the
use of eddy viscosities. In that section it will also be
shown how a tropical jet can be produced and how the
shape of the jet allows the depth of the atmosphere to
be estimated.

In Section 5 more specific Jupiter-related calculations
are made to derive the closest matching solution to the
observed data. We are then led in Section 6 to examine
a basic problem that must be surmounted in under-
standing a convective atmosphere, i.e., how do we
correctly parameterize turbulent convection on a
planetary scale? This is a most difficult question for no
good theoretical links between linear Bénard theory and
the study of thermal turbulence. The only links avail-
able are the concepts of eddy diffusion and mixing-
length theory and in Section 6 the latter is exploited in
the form of nonlinear viscosities in an attempt to deal
with this problem.
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2. The mathematical model

The system of equations to be integrated represents a
highly idealized system. Both the incompressible and
Boussinesq assumptions are made to provide a simple
mathematical system that is convenient for calculations
over a wide range of parameter values. Although these
approximations inhibit a direct simulation of or
accurate quantitative comparisons with Jupiter, the
Boussinesq system does provide the lowest level of
model that can produce most of the important modes
expected to occur in the Jovian atmosphere. By proceed-
ing from the simplest models we can hope to obtain an
understanding of possible later simulations. Such was
the approach in the evolution of the understanding of
the Earth’s global circulation from Eady’s (1949) simple
incompressible Boussinesq model to later simulations.
Simple abstract models have the advantage of general-
ity, so that their basic modes are of interest in them-
selves even if they should prove to be irrelevant to the
particular natural phenomenon under discussion. The
equations are also applied outside the intended range of
the Boussinesq approximation but it is believed that the
resulting distortions are quantitative, not qualitative.

To construct an elementary planetary model, simple
but universal boundary conditions on the thermal field
are desirable. Either 7 or T, may be specified, both
forms being general. For simplicity and precision in
providing a fixed AT for evaluating parameters, it
appears more appropriate to specify 7. In observing a
planet, 7 rather than 7, is most likely to be observed
so such a condition is also appropriate for application.
The T and 7. conditions correspond to assuming
infinite heat capacity (ocean-like) and finite heat
capacity (land-like), respectively, for the interface.
For internal heating the 7T condition seems more
appropriate.

Thus, we consider the motion of an incompressible
fluid bounded by a spherical shell of inner radius @ and
outer radius a¢-+d. The fluid is subject to a gravitational
force acting toward the center of the spheres. The inner
sphere rotates with a uniform rate Q. Motion relative
to the solid rotation of the system is measured in
spherical coordinates (r,0,¢), where r is radial distance,
6 the co-latitude measured from the Pole, and ¢ the
azimuthal angle (longitude). The velocity components
are #, v, w in the zonal, co-latitudinal and vertical
directions, respectively.

The Boussinesq fluid is defined as being such that
density variations are negligible except in the buoyancy
term, and that the coefficients », «, 8 of viscosity, heat
diffusivity?, and thermal expansion are constant. The
centrifugal acceleration is taken to be negligible com-
pared with gravity as a consequence of which we can
take the outer sphere to be a free-slip rigid lid surface
of constant height for the fluid. [However, the oblate-

4 Apart from the mixing-length formulation of Section 6.
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ness of Jupiter is relatively large (1:15) and its effects,
although secondary, should be investigated.]

The inner and outer spheres are taken to be perfectly
conducting and held at different constant temperatures
Ty and T, respectively. The imposed radial temperature
differential AT=T,—7T, drives the fluid away from a
state of solid rotation. The lateral boundaries (usually
at the pole or 457 latitude and the equator) are assumed
to have no heat flow across them. Most of the calcula-
tions are made for a hemispheric domain. This system
forms the classical Bénard problem for a spherical shell
(see, e.g., Chandrasekhar, 1961),

In forming the equations of motion considerable
simplification is afforded if the radius e replaces the
variable 7 when undifferentiated. This procedure is
accurate for shallow fluid layers, i.e., when d<<a. Taking
r=a-z, the equations of motion with » — a may be
written as

Du ?4,
Dt - a sinf
u
—(29—1— )[v cosf+(w sin®)* [+F.,, (1)
a sinf.
Dy po u v\ *
—= —~——+<2$H— )u Cos()—<~~) +F, (2)
Dt a @ siné a
Dw 7)2 *
LI
Dt a
u
—]—[29—!— jl(u sind)*+F,, (3)
a sinfé
with the heat transfer equation as
DT
——=FT: (4)
Dt

and the equation of mass conservation as

Uy

W,

(v sinf) 4

=0, (5)

@ sinf a sinf

where we have used the operator identity
Dq v u

—=q,+-qo+
Dt a

qs+wg.. (6)

@ sind

The hydrostatic pressure deviation has been written as
p=1"/po and the temperature deviation from 7'y as 7.
The formulation of the shallow atmosphere approxi-
mation 7 — a to the equations of motion for a fluid has
been discussed by Phillips (1966, 1968) and Veronis
(1968). It is customary in studies of the Earth’s global
circulation to omit the terms marked by an asterisk in
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Eqgs. (1)-(3). Phillips (1966) suggested that the omission
of these terms was consistent with introducing the
shallow atmosphere approximation as a geometric
approximation via the curvilinear scale factors and that
the resulting system of equations had consistent
conservation properties. Veronis, however, indicated
the error of such a formalistic approach in that the
approximated equations excluded certain dynamical
modes. Phillips (1968) then suggested that the approxi-
mation could be justified for stable atmospheres such
as the Earth’s.

As planetary atmospheres need not necessarily be
stable, and indeed the opposite is proposed for Jupiter,
the asterisk-marked terms will be retained for the
planetary-scale calculations. For a very shallow atmo-
sphere the asterisk terms are probably negligible. How-
ever, the equations will be applied to relatively deep
atmospheres (d/a=10"!) in which deep atmosphere
effects become active, although secondary. For such
calculations the shallow atmosphere approximation is
tending toward marginal validity. Because of the
inclusion of deeper atmosphere effects in Egs. (1)-(3),
the equations can be considered to form a “semi-
shallow” atmosphere approximation. For similar rea-
sons of generality the hydrostatic approximation is not
made. The asterisk terms are artificially omitted in the
laboratory-scale calculations so that shallow atmosphere
type convection can be investigated.

The form of the friction terms ¥ =(F, F, F,) varies
for the different calculations. The Navier-Stokes friction
form is used for the laboratory-scale calculations
(Section 3). The planetary-scale calculations utilize
eddy coefficients vy and »y, where the horizontal coeffi-
cient vy differs greatly from the vertical (vv) because of
the different length scales involved. The use of these
coefficients is based.on the assumption that the turbu-
lence can be regarded as being transversely isotropic.
The formulation of such friction terms and their shallow
atmosphere approximated form has been discussed
elsewhere (Williams, 1972). A more complex form of F
using mixing-length theory to parameterize turbulent
convection is discussed later in Section 6.

The following expressions for F are used in the general
planetary-scale convection calculations of Sections 3
and 4:

v % cos26 cotf
Fu=—<VH2u— +2v¢———>+uvu22, @)
a? sin%@ siné
vir cos26 cotd
F,=— VHZv—v———~2u¢——>—!—vv‘vzz, 8)
a? sinZ% sind
vy
sz__vllzw+Vszz; (9)
a?
where the horizontal operator
doe
Va*q= geo+gs cotd+— (10)
sin?f
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TasLe 1. Cases computed for laboratory-scale parameters. Constant parameter values are a=10 cm, d=1.5 cm, »=1.008X 102 ¢m?
sec!, k=142X107% cm? sec™), §=2.054X107* (°C)™?, ¢=981 cm sec™. Resolution was Az'=1/20, Af’=1/80. Notation is such that
letters A, B, D relate to given Rayleigh number value, integers to the rotation rate (multiplied by 10), and the letter S indicates the use
of the varying temperature distribution AT sin’ along the base, so that the parameters marked with asterisks denote maximum or equa-

torial values; parameters with daggers are given by the solutions.

7

AT Q

Case °C) (sec™) R Ta dr Rof Nut BinaxT
A0 0.05 0.0 2376 — — —_ 1.97 —
Al 0.05 0.1 2376 2.0X103 0.66 3.9X1073 1.52 18.3
A2 0.05 0.2 2376 8.0 102 0.47 1.8X1073 1.29 1.1
A2B 0.05 0.2 2376 8.0xX10? 0.47 1.5X 1073 1.30 1.3
A3 0.05 0.3 2376 2.0X 104 0.38 9.7X107? 1.20 0.8
A4 0.05 0.4 2376 3.2X10* 0.33 6.6X 197 1.14 0.5
A8 0.05 0.8 2376 1.3X10% 0.23 3.0X10™* 1.04 0.2
Al2 0.05 1.2 2376 2.9X10% 0.19 3.8X 1075 1.001 0.02
BO 0.1 0.0 4751 — — — 2.63 —
B2 0.1 0.2 4751 8.0X10% 0.47 2.1X107® 1.94 9.8
B4 0.1 0.4 4751 3.2X 104 0.33 -2.0X 10 1.50 1.7
B8 0.1 0.8 4751 1.3X10% 0.23 6.8X 10 1.25 0.9
B16 0.1 1.6 4751 5.1X 105 0.17 3.4X10™ 1.11 0.3
DO 0.2 0.0 9502 — — — 3.27 —
D10 0.2 1.0 9502 2.0X10° 0.21 9.6X10™4 1.55 1.8
D30 0.2 3.0 9502 1.8X% 108 0.12 3.1X10 1.15 0.5
SA0 0.05* 0.0 2376* — e — 1.71 0
SA2 0.05* 0.2 2376* 8.0 108 0.47 1.25% 1073 1.37 1.0
SA8 0.05* 0.8 2376* 1.3X 108 0.23 3.16X10™ 1.06 0.2
SA12 0.05* 1.2 2376* 2.9%X10° 0.19 3.11X107® 1.001 0.01

These equations reduce to the shallow approximated
Navier-Stokes forms if vy=vy=» as in Section 3.
Horizontal and vertical thermal diffusivities xg, kv are
used for (4) so that

(11)

Ky
FTZ*VHZT—l—KVTzz.
a?

Complex radiative transfers are omitted from (11) in
favor of the simpler thermal forcing. In a highly con-
vective atmosphere, heated by the planet’s interior,
details of the radiation balance of the atmosphere may
be of secondary dynamical importance, allowing a
simple model to be adequate.

The boundary conditions as used in the calculations
to express the state of the fluid at the boundaries are:

On the inner sphere, a state of no slip®:

w=v=u=0; p,=gT+vyw..; T=AT (12)
On the outer sphere, a state of free slip:
w=u,=v,=0; p.=0¢T; T=0 (13)
At the pole and equator:
v=wp=(u/sinf)y=0
z>E=<2Q-I— “ >u cosf (14)
a a sinf
Te=0

5 The complexity of the lower Jovian interface is ignored and
idealized as being just a stress bearing surface.

The procedure for solving the system of equations
(1)-(14) numerically is discussed in the Appendix.
Solutions are obtained as functions of space and time,
but we concentrate only on the final steady-state forms.
For most of the calculations, axisymmetric solutions are
obtained by suppressing the ¢-dependency in the above
equations. This allows examination of more points in
parameter space. However, some fully three-dimensional
calculations are made to examine the stability of the
axisymmetric modes and to examine the character of
transient disturbances.

Some pertinent non-dimensional parameters to be
calculated are:

(i) Raleigh number R=gBATd*/ (vyxy)
(ii) Taylor number Ta=40d*/vy?
(iii) Rossby number Ro=ttnax/ (2QL)
(iv) Ekman depth ratio dg=m(vy/Qd?)?
T/2
(T.).—0 sinfdb

d
(v) Nusselt number Nu=—

o
(vi) Barotropic stability = B=ug/ (22 sinb)
parameter

where L=an/2 is taken as the horizontal length scale.
Parameters (ii)—(iv) are global parameters which ignore
the cosf variation of @ and must be modified for
application to local regions.

3. General properties of shallow-layer convection
on a laboratory-scale sphere

To study the general behavior of convective insta-
bility in a spherical gravity field it would be informative
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to perform laboratory experiments to which we can
relate and form concepts under the simplest conditions.
This is impossible for the spherical configuration, and
experiments in the cylindrical system (Rossby, 1969)
are misleading for the spherical context because of the
absence of the important Q cosf variation. However,
hypothetical laboratory experiments can be conducted
by numerical integration of the equations for
laboratory-scale parameters.

a. Parameter values

The solutions are obtained to describe the flow of
water at 20C on a sphere of radius 10 cm with a depth
of 1.5 cm for values of the two variable parameters AT
and Q listed in Table 1. These parameter values lie in
the same range as those of Rossby’s (1969) cylindrical
system.

For convection in a Cartesian system with one free
and one rigid horizontal boundary, theory predicts that
instability will arise in a non-rotating system if the

~
\L \&\5\L—_//

@@@ QoIE

F1c. 1. Case AO: (i) streamfunction ¢ X 10° [cm? sec™!] defined
as wsind=yy/a, vsind=—y.; (ii) temperature 7X103)[°CJ;
(iit) vertical velocity wX 10® [cm sec™]; (iv) meridional velocity
9X10% [cm sec™]. Normalized coordinates are z'=z/d and R’
(==e/(1r/2)), the latter going from the pole (R’=0) to the equator

R'=1.0).
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vy

F16. 2. Case A2: (i) ¢ X10® [cm? sec™]; (if) 7102 [°C]; (iii)
#X10% [cm sec™1]; (iv) wX 103 [cm sec™]; (v) 9)X10% [cm sec™!].

Rayleigh number exceeds a critical value of R,=1100
(see, Chandrasekhar, 1961). With rotation present, the
critical Rayleigh number increases such that, for
example, it is doubled when the Taylor number
Ta=2X10% Thus, the lowest Rayleigh number cases
(set A) were chosen as having a Rayleigh number which
lies well but not excessively beyond the Q=0 critical
value. Set A provides the reference set of laboratory-
scale solutions.

The effects of increasing the Rayleigh number are
examined by doubling and quadrupling the Rayleigh
number of set A to give sets B and D. At even higher
Rayleigh numbers the convection becomes three-
dimensional and calculations for such values are
avoided as being inappropriate to the present study.
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In each set Q is increased from zero to examine its
effect in limiting the extent of the convection.

To examine how crucial the form of the base tempera-
ture distribution is to the type of flow produced, calcula-
tions are made with A7 sin% along the base (set SA).
All calculations were made by assuming an initial
condition of isothermal fluid at rest. A small random
disturbance induces cell development and integrations
to steadiness are completed.

b. Equation system

As Bénard cells have an aspect ratio (cell wavelength
to depth) of about 3, the overall aspect ratio L/d cannot
be made too large or a large number of cells would occur.
To examine such a system would be computationally
extravagant and, as we shall see later, of less relevance
to Jupiter. To yield a reasonable number of cells re-
quires L/d= 10.
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However, for L/d=10, although the d<a approxima-
tion is still valid, the equatorial region of influence
(defined by the angle at which the tangent to the inner
sphere at the equator intersects the outer sphere) is
large (~25°). While such a configuration can produce
convection of interest (for deep solar atmospheres
perhaps) its form® is not related to planetary-scale
convection with its small equatorial region of influence.

This problem may be circumvented and the above
parameter values used to provide laboratory-scale
experiments to shallow planetary-type convection,
provided that the prediction equations are modified to
exclude the influence of the equatorial or deep atmo-
sphere type terms, i.e., @ sinf and related terms marked
by asterisks in Eqs. (1)-(3). Thus, these terms are
suppressed for the laboratory-scale calculations of this
section.

6 With rolls aligned parallel to the rotation axis.

W we* =1.205
we = L1922} 1= 3978
T+ = 23876 u* = 1219
1 T | m— T T T T T A T 1
0 fa) R 1 0 ®)
. ]
' J
¢] 0
w* =1.200 WwW* = 1106
T = 3.806 ™=a758
U* = 185} ut=0923
-1 T | B T T -1 — T T T T T T T ]
Y % R’ ¢ @ R

F1c. 3. Set A latitudinal profiles of normalized zonal velocity #=u/u* [cm sec™'] at z=d, normalized vertical velocity
w=w/w* [cm sec™'] at 2=4d/2, and normalized temperature 7/7T* [°C] at z=d/2. Variables are normalized with respect
to their extrema so that they never exceed +1. Normalizing constants w*, #*, T* are in units of 1072 Normalizing constants
are shown as moduli of negative values when extremum is a minimum ; otherwise, it is a maximum. Part (i) refers to the first

set of four panels, part (ii) to the second.
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¢. Discussion of solution set A

For a given set of parameters, two steady-state solu-
tions are possible for flow in a hemisphere, each differing
from the other by a half wavelength. The solution with
upflow at the equator will be defined as the positive
solution and that with downflow as the negative solu-
tion. In a global domain of integration, anti-symmetric
modes can also arise (see Section 5). For this section the
discussion will concentrate on the positive hemispheric
{(symmetric) mode.

The contours of two typical solutions, A0 and A2, one
without rotation and one with, are given in Figs. 1 and 2.
The convection in AQ is fairly uniform with latitude
R’'=6/(27) even though the streamfunction, reflecting
mass transport, decreases with increasing latitude.” The
presence of rotation (Fig. 2) suppresses convection in
higher latitudes because with the higher local Taylor
number in higher latitudes the critical Rayleigh number
exceeds the imposed Rayleigh number there. Thus,
convection is favored in the equatorial region.

7In a non-rotating system the axis of symmetry is arbitrary if
rolls exist, as the system has no preferred direction.
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Although convection is limited to the equatorial half
of the hemisphere in Fig. 2, a comparison with Fig. 1
indicates that the amplitude and shape of the equatorial
cell is unchanged by the rotation. The zonal flow
produced by the rotation [ Fig. 2 (iii) ] has a progression
at the equator for this positive solution and a regression
poleward of it, at upper levels. The regions of alternating
positive and negative zonal velocity jets are produced
by the thermal wind balance.

To display the remaining results concisely, latitudinal
profiles of # at z=d and w, T at z=d/2 are presented
in Figs. 3-6. The complete flow patterns are similar to
those in Figs. 1 and 2. The reference set A (Fig. 3)
illustrates most thoroughly the effect that increasing Q
has upon convection. When 2=0.1 (case A1) the maxi-
mum Taylor number of 2X10° (at the pole) is associ-
ated with a critical Rayleigh number whose value is
close to that imposed. Thus, in this case rotation just
suffices to dampen but not eliminate the convection in
the polar half of the hemisphere. As & is increased to
0.2 and 0.3, convection is suppressed in the polar region
and damping is extended toward lower latitudes. When

1
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6. 3. (continued).
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F16. 4. Set B latitudinal profiles. Legend and units as in Iig. 3.

Q is raised to 0.4 (case A4) the equatorial progression
becomes a stronger zonal flow than its adjacent regres-
sion and a further increase of Q to 0.8 makes the zonal
motion a predominantly positive equatorial flow. The
maximum amplitudes of the variables do not vary much

with rotation when ©<0.8. However, increasing Q to
1.2 does not alter the basic flow pattern reached in A8
but the amplitude does become greatly diminished. This
indicates that the flow always consists of at least one
equatorial cell, never anything less, but that the ampli-
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tude of this cell gradually decreases with increasing
to reach complete flow extinction.

Fig. 3(1)d indicates that the negative solution A2B
has a similar latitudinal range but a weaker amplitude
than the corresponding positive solution A2.

d. Discussion of solution sets B and D

Increasing the Rayleigh number through values of
AT produces solutions (sets B and D, in Figs. 4 and 5)
similar to those of set A. The contours in the 2=0 case
DO display a different shape to those of A0 and BO,
indicating the presence of greater nonlinear activity as
the Rayleigh number increases toward values that
produce three-dimensional convective elements.

Comparing the three sets of solutions shows, for
example, that cases A8, B16 and D30 have similar
distributions and activity ranges. The amplitudes of
their variables vary approximately as AT and the
latitudinal range of activity as AT/Q, i.e., as R/Tal
Thus, whereas ¢ affects mainly the range of activity,
AT determines both the range and amplitude of the
convection.

The shape of the equatorial progression does not
alter over the parameter range of the solutions. Neither
does the size of the cells change very much with
increasing Rayleigh number. The Rossby number is
slightly lower than that observed for Jupiter.

e. Discussion of solution set SA

Specifying a latitudinal temperature variation
AT sin?) along the base introduces a #-varying Rayleigh
number. In the non-rotating case SAQ (Fig. 6) the
Rayleigh number has a value close to the 1100 critical
value at R'=0.5 so that convection only occurs in
the R'=0.5-1.0 range.

In cases with rotation, the latitudinal temperature
variation produces an additional positive zonal motion
in the subcritical region through the thermal wind
balance. For high rotation rates the combined effects
prevent the formation of the small negative zonal flow
and produce completely positive (but weak) zonal flow
at the top level.

1. Stability of the solutions

For the above solutions to exist physically, they must
be stable to disturbances in the ¢-direction. The study
of non-rotating, planar Bénard convection indicates
that for the Rayleigh numbers of the above solutions
that two-dimensional rolls are the preferred mode.
However, the analysis of Busse (1970) suggests that in
the rotating shallow-shell system, three-dimensional
cells are the preferred convective mode irrespective of
Rayleigh number. This latter analysis is limited to
small Taylor numbers. [ The analyses of Roberts (1968)
and Gilman (1972) for large Taylor numbers are not
applicable to the shallow-shell system.] To resolve the
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ambiguity between the Cartesian and Busse results we
carried out three-dimensional integrations, discussed
below, which show that the Busse results only hold for
very small rotation effects and do not apply to our flows
where rotation effects are large and sufficiently
dominant to suppress convection in some regions.

It would seem that we could obtain a rough estimate
of the validity of Busse’s theory and of the axisymmetric
theory by evaluating the barotropic instability criterion
for the solutions. This instability can arise because the
rotation produces shears between the positive and
negative zonal jets. The criterion for the instability to
occur is that the relative vorticity parameter,?
B=u4/(2Qa sind), pass through the value 1.0 (Kuo,
1949). The criterion B was calculated as a function of 8
for the upper surface zonal velocity of all solutions, as
shown in Fig. 7. The maximum values of B are listed
in Table 1. These values suggest that the lower the
rotation rate, the higher the value of B and the greater
the possibility of instability. The case A2 represents a
marginal state for the set A flows as cases with ©>0.2
are barotropically stable whereas those with 0<2<0.2
are unstable. These results suggest that axisymmetric
convection cannot exist poleward of 45° for the set A
flows (the range of A2) and that axisymmetric convec-
tion is essentially an equatorial phenomenon.

However, the barotropic instability criterion is
derived for a frictionless fluid so that values of B may

8 An approximate form for spherical geometry.
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not be an accurate predictor of instability in a real fluid.
To resolve the issue more definitively, we test the
stability of some key flows by three-dimensional (3-D)
integration. To make the test, the axisymmetric solution
is significantly disturbed by adding a random (in 4, ¢, z)
distribution with an amplitude of 0.2 AT to the tem-
perature field. Then the 3-D integration is continued
for a length of time comparable to the time scale for
the formation of the steady axisymmetric solution.
The 3-D calculations indicate that the axisymmetric
flows A2 and A1l are stable so there is no doubt that
such flows can exist physically. However, we have also
found stable 3-D solutions at the same parameter
values. The solutions are essentially combinations of
the positive and negative axisymmetric solutions. This
degeneracy of uniqueness—a characteristic of Bénard
convection—greatly complicates the question of sta-
bility. For the flow Al, the B parameter reaches a
value of 18 near the pole and has a value of 2 over
most of the sphere, yet the flow remains stable. We
must therefore conclude that in these flows the friction
is sufficiently large to prevent the growth of barotropic

instability and that the parameter B is not a good guide
to laboratory-scale flow stability.

To try to find a flow to which Busse’s analysis might
apply, we have made 3-D calculations with very small
values of Q starting from initial conditions of no motion.
Since these motions do seem to be 3-D, we must there-
fore conclude that Busse’s analysis is valid only for very
small Taylor numbers and thus does not apply to the
flows considered in this paper. The axisymmetric flows
of this paper are geostrophic with low Rossby numbers,
whereas the Busse flows have zonal motions that are
predominantly inertially produced.

g. Conclusions from laboratory-scale calculations

The flows depicted in the above solutions, although
simple, possess in some cases common characteristics
with the Jupiter circulations. Related features are
1) the axisymmetric banded pattern (e.g., Fig. 2),
2) the same differential rotation of the w>0 zones and
w<0 belts, and 3) a jet-like tropical zonal flow in high-
rotation cases. The existence of stable axisymmetric
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convection only at higher rotation rates, and then only
equatorward, is consistent with the observed uniformity
of the planetary polar regions.

Apart from certain atmospheric similarities, the
following general results emerge:

1) A tropical ‘“jet” can be produced by a stable
axisymmetric flow [ Fig. 3(ii)c].

2) Axisymmetric flow is favored in higher rotation
cases and their associated equatorward confined regions
of activity.

3) The variation of Qcosf in the Taylor number
aligns the rolls parallel to the equator by producing
higher Taylor numbers and then greater convection
suppression at higher latitudes.

4) The range of convective activity is determined
by R/Ta? and the maximum amplitude of the convec-
tion by R.

4. Basic planetary-scale convection

There is, of course, a great deal of difference between
the flow of the simple hypothetical laboratory cases of
Section 3 and the actual Jovian circulations. However,
the similarities lead us to inquire whether such con-
vective modes can organize themselves and be recon-
structed on a planetary scale and whether the required
formulation is a reasonable representation of the real
turbulent process. These questions will be considered
in this and the following two sections.

a. Transversely-isotropic convective instability: Linear
theory

To produce flows like A2 on a planetary scale the
fluid has to form convective cells whose horizontal
length scale is much greater than their vertical length
scale. If the zone-belt structure is an indication of large
convection cells, then the cell aspect ratio v is of the
order of 200 when the depth is 100 km. The atmosphere
has an overall aspect ratio of O(10?).

Although classical convection theory for laminar
motion and the solutions in Section 3 predict a cell
aspect ratio =3, it can be shown that the aspect ratio
can be altered when the fluid has non-isotropic diffusi-
vities. Linearized perturbation analysis for the non-
isotropic convection problem (Williams, 1972) gives
that the cell aspect ratio is y=2m?, where vy =mvy and
kr=mxy with m being the relative mixing factor. (This
result for free slip boundaries in a non-rotating Cartesian
system indicates the general behavior.) The associated
critical Rayleigh number is R,=4n*n.

In a shallow atmosphere the horizontal length scale
is much larger than the vertical, and it is customary to
invoke eddy diffusivities such that vy >>vy, ie., m is
large. Such diffusivities could therefore produce the
desired elongated cells. However, it has not been
possible to establish whether such diffusivities are a
valid representation of the multi-scale mixing of a
turbulent convective atmosphere. This problem of
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turbulence theory will be discussed later (Section 6),
and for present purposes we invoke the validity of the
eddy diffusivities and apply formally the system of
Eqgs. (7)-(11) to Jupiter-scale calculations.

b. Parameler selection routine

In designing the calculations, values must be chosen
for the parameters

a, g, Q, T(), 6, d, AT, vi, Vv, Kg, Kvy.

For Jupiter, a=7X10* km, g=2.6X10"2 km sec™2, and
2=1.76X10"* sec! are well-established values. (The
unit of length of the parameters and variables is taken
in the calculations to be the kilometer because of the
large values involved). The effective planetary tem-
perature is estimated to be 130K, and such a value is
taken for 7 to give B=T;'=8X10~* (°K)~! as the
expansion coefficient.

Since the atmospheric depth d remains an unknown
quantity, solutions will be obtained with values of d
within the speculated range d=20, 50, 100, 500, 1000
and 5000 km. To make these calculations, which include
cases with relatively deep atmospheres, the asterisk
terms in (1)-(3) are retained and the full axisymmetric
equations integrated each time.

For an assumed d, values of AT, vg, vy, &z, xy must
then be selected. There are no observational estimates
for these parameters so their values must be deduced
by indirect inference using our theoretical framework.

Consider the quantitative data items that are
available:

1) The range of maximum activity spans §=70°-90°.
This provides an approximate mean latitude measure
8 for this region given by cos™ 0.1.

2) The equatorial progression and its adjacent
regression have a width of Lg= 25,000 km.
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TasLE 2. Cases computed for basic planetary convection. Letters A, B, C, etc., denote increasing fluid depth. Calculations use Jovian
geometric configuration, i.e., a=7X10* km, =1.76X 1074 sec?, g=2.6X 1072 km sec™?, 3=8x107% (°C)~%. Ta=7.7X10% and dz=0.15
are constant. Cases PC and PE are solved for positive and negative flow. Ro=t#max/(2QL,), where L= awr/4. The domain of integration
is 45°—90° except for PF which is 0°—90°. Values with daggers are those given by solutions.

Resolu-

d AT vy, Ky UmaxT tion

Case (km) (°K) (km? sec™) m R Nut (km sec™) Rot Braxt 6,z
PA 20 150 1.6X 104 3 X108 9.8X10° 1.17 0.108 5.6 1073 0.98 40, 32
PB 50 60 1.0X1073 5 X105 1.6X10° 1.13 0.098 5.0 1073 0.79 60, 32

PC{+ [1.14 0.091 5.0X107® 0.81

— 100 30 4.0X1073 1.25X 105 3.9%108 11.19 —0.124 6.4X 1073 0.59 40, 32
PD 500 6 0.1 5 X108 1.6X 107 1.12 0.082 4.2X1073 0.62 40, 32
PE{+ 1.16 0.099 5.1X1073 0.83 .
— 1000 3.5 0.4 1.25%X103 4.6X 108 1.14 —0.133 6.9X 1072 0.74 40, 32
PF 5000 3 10.0 50 7.8X10° 1.28 —0.367 1.9X1073 4.40 80, 32

3) The tropical jet has an amplitude of 0.1 km sec™.
4) The variation of » with latitude at cloud level has

a definitive profile (Chapman, 1969).

The above data can be used to estimate parameter
values if the results of linear anisotropic convective
instability theory are invoked. Since observational

evidence is insufficiently sensitive to infer the Prandtl
number, ¢ =v/k, values are therefore taken to be unity,
1.e., vg=kg=mvy. The linear theory predicts that for
high Taylor numbers the cell wavelength-to-depth
aspect ratio is given by vy=2mmiTy !, where T'g
=Ta cos®g defines a local Taylor number on the
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F1c. 8. Set P planetary-scale cases: latitudinal profiles of #/#* [km sec™] at z=d and w/w* [km sec*], T/T* [°C] at
z=d/2. Units of w*, T*, u*, respectively, are for Fig. 8(i) : a. 104, 10, 10~1; b. 107, 10,1072; c. 107, 10, 1072; d. 1073, 1, 10°2;
and for Fig. 8(ii): a. 1073, 1, 102; b. 103, 1, 1071; c. 1072, 1, 107,
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sphere. If Lg/d is a measure of the planetary v, then
we have
Tgt/Lp\?
e
472\ d

so that m is known in terms of »y. Data items 1) and 2)
from above are required in (15).

Furthermore, the limited range of convective activity
indicates that the Rayleigh number for the large-scale
mean motion is close to the critical value for the given
Taylor number as the flow becomes subcritical at the
end of the activity range. From linear theory,
R.=2n'mTg* for a free-free boundary system. For a
rigid-free boundary system we assume that the situation
resembles the classical Bénard one and introduce a fac-
tor of 2 so that R.=4x*mT g% Substituting R and Ta
into this R, equation gives

(15)

4Q2
dAT =—Lg? cos?0g,
Bg

(16)

with the unknown »y canceling out. Data items 1) and
2) and the ¢=1 assumption also enter (16) and for an
assurned d provide an estimate for AT. Eq. (16) also
indicates that JAT is a constant, a result also suggested
by Stone (1967) and Ingersoll and Cuzzi (1969) but for
a completely different reason (namely the thermal
wind balance) and for a¢AyT rather than for eAyT as
in this case.

The above argument indicates that for a given depth
there is but one free parameter, vy, within the observa-
tional and theoretical framework. However, data items
3) and 4) have not yet been used. Although these data
cannot provide a direct estimate of vy, item 3) can be
used a posteriori to improve an initial guess. A first
approximation to vy can be taken to be such that the
grid Reynolds number Re=wAz/vy is of the order unity,
and in practice item 3) is needed to give a value
of w.

The routine for estimating parameter values provides
only a first approximation to their values because the
quantity 0z is ill-defined and the procedure is based on
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a limited linear theory. However, the routine does form
a good first step from which to iterate the parameters
toward values giving more realistic solutions.

The observational item 4), on the shape of the
profile, is not used in determining parameter values and
so remains as the main test of the solutions. If alterna-
tive observations had been available, the parameter
selection procedure would have followed a different
logie, e.g., if AT is known, Eq. (16) gives an estimate
for d.

¢. Parameter values

Solutions were obtained for the range of parameter
values listed in Table 2. These values were chosen to be
related to parameters of a reference case PB. This case
was taken to be the basic one as its depth, 50 km,
seemed to represent the most realistic estimate of the
planetary-scale height.

The routine of Section 4b provided the parameter
values for PB. To estimate vy from the grid Reynolds
number Re=wAz/vy=1, w is taken from the conserva-
tion equation to be w=wud/Lg so that vy=udAzLg™
== 1073 km? sec™*. Then with a value of vy,=1X1073
km? sec™!, we obtain from Eqs. (15) and (16) m=~5X10°
and AT7T=60K. Calculations made with parameter
values so estimated, provide a realistic zonal velocity
maximum of 0.1 km sec™! and are maintained as the
final choice for case PB. No iteration of parameters is
necessary but this is fortuitous in view of the ill-defined
0k quantity.
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The parameter values for the other cases in Table 1
are derived from the PB values by keeping dAT and Ta
constant. This gives vy and AT values in terms of the
PB values. The resulting solutions then all have a
maximum #=0.1 km sec™! because of (16) and a thermal
wind balance. One exception to this was the case PF
where a higher temperature than that predicted by
dAT =constant is necessary to make the flow critical.
The difference is due to the fact that at the depth of
case PF the flow exhibits a different convective mode,
that discussed by Busse (1970) and Gilman (1972), for
which the linear theory no longer applies.

d. Discussion of solution set P

The solutions for the cases of Table 2 are shown in
Figs. 8-11. The flows of PA, PB, PC, PD are similar in
most respects [Fig. 8(i)], so that only the reference
case PB requires detailed attention. Its contours are
given in Fig. 9. Case PD with its smaller # value at the
equator is indicative of a transition to the PE flow tvpe
that occurs as the depth and the influence of the
equatorial region through the Qsinf terms increases.
At a depth of 5000 km the flow PF enters a completely
different convective regime, one that is associated with
a deep atmosphere [Fig. 8(ii)c].

The PE contours (Fig. 10) display a slight vertical
sloping, a characteristic which is more apparent in the
deep convection flow PF (Fig. 11). The positive and
negative solutions PE, PE— indicate that a strong

U
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F1c. 9. Case PB: contours in equatorial region of (1)¥X10! [km? sec™']; (ii) #X10? [km sec™'];
(i) T [°CT; (iv) wX 10 [km sec1].
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