AKALEMUSA HAYK CCCP

- MEXXAYHAPOJZHAA ACCOLIMALINA
METEOPOJIOTMU U ®dU3IUKU ATMOCDEPBI MITC

ONHAMUKA
KPYMHOMACLUTABHbIX
ATMOCOEPHbIX
MPOLIECCOB

OtpenbHbIM OTTUCK

MU3LATENBCTBO «HAYKA»
Mocksa 1967



A TIME AVERAGE MODEL
OF THE GENERAL CIRCULATION

D. R. DAVIES, G. P. WILLIAMS

In this paper we attempt to construct equations
describing the spatial distribution on a spheri-
cal earth of the mean flow of momentum and heat,
averaged over a long period of time such as a year
and around latitude circles.

We begin by writing down the hydrodynamical
equations in spherical polar coordinates (r — ra-
dial distance, and 6 — colatitude), using axes fixed
at the centre of the earth, and we omit terms in-
volving viscosity because the Reynolds stresses
are generally much greater than viscous stresses.
We then assume that in our model the surface
is uniformly rough, so that when a long period
time average is taken, terms depending on longi-
tude can be neglected. Equations of motion rela-
tive to the surface are next obtained by subtracting
terms describing a uniform solid rotation at con-
stant temperature T, and earth’s angular velo-
city Q (details are given by Davies and Oakes [11]).
Denoting the zonal velocity by u, the meridional
velocity by v, the vertical velocity by w, the tem-
perature by T, and following the Reynolds tech-
nique we write wu=u-+u, v=0v+0,
w=w-+w', T=T + T', where the bar in-
dicates an average over a long time period. The
non-linear inertial terms in the equations of mo-
tion then lead to the three shearing Reynolds

stresses; pu'v’ describing the average meridional
flow of zonal momentum, pu'w’ the vertical flow

of zonal momentum, and pv'w’ the vertical flow
of meridional momentum: normal stresses such

as pu'u are generally considered to be small com-
pared to static pressures and are neglected and so
are p’' terms.

To close the problem mathematically we now
have to decide on a physical premise. The back-
ground physical picture on which our model is
based consists of large scale turbulence in which
angular momentum is directed (on average) along
meridians from low to high latitudes; this is acti-
vated by the mean meridional temperature gra-
dient; the eddy energy is then broken down by the
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effects of surface friction and small scale turbu®
lence and a mean vertical transfer of momentum
ensues. For this large scale turbulence we write
(in the troposphere only)

UV = —kym (§) Q0T /adb, (1)
where a — mean radius of the earth, Q — angu-
lar velocity of the earth, { = (r —a)/h, h —
height of the model troposphere so that 0< ¢<1,
and k. (§) is taken to be a quadratic function

of § to represent the known increase of u"v” with ¢.
We have assumed as a «working» hypothesis a

linear dependence of u'v’ on 4T /@6, but the flow
must of course be strongly influenced by Coriolis
force and we assume a linear dependence on Q
also. The relation (1) then gives us a mean north-
ward eddy transport of angular momentum ex-
cept at high latitudes and there is no need to in-
troduce the artificial device of a negative eddy co-
efficient. A more detailed discussion of (1) is gi-
ven in [2].

For vertical transfer by smaller eddies we follow
classical theory and write

u'w = — K,,0u)or, (2)
and

VW = — Kyydv/or. (3)

The first is generally true with K,, positive (see
e. g. [3]) except in the mean jet region where ther-
mal gradients must become primary factors;
there is evidence [4] that K, depends on the sta-
tic stability, but in a first approach we assume
Kz and other turbulence parameters to be inde-
pendent of T and of 6. The evidence concerning

v'w’ is not so clear cut and it is only possible to
make approximate estimates of K, from an ana-
lysis given by Molla and Loisel [5]. However,
(1), (2), (3) are consistent with the basic physical
model if not with the real atmosphere at all po-
ints. We also need an expression for mean meri-
dional transfer of sensible heat and we take

T = — KnrdT/ad®; (4)



this is not of course applicable in the lower stra-
tosphere. Various analyses of observations sug-
gest approximate values of the turbulence para-
meters to be of the following orders of magnitude:
Q kem = 10" cm-sec, Kz, = 10° cm?. sec, Ky =
= 10® cr-sec, Kmr = 10 cm.- sec.

We now substitute (1), (2), (3) into the equation
of flow, carry out some lengthy manipulation using
boundary layer approximations, assume time de.
rivatives can be neglected in a first approxima-
tion, on the grounds that the main climatological
characteristics change only very slow from year
to year, and take 4 to be independent of 6. We
then derive a set of differential equations descri-
bing the mean flow. We express these in terms of
non-dimensional velocities (z, v) by multiplying
(4, v) by Kpno/gh®writing Q h%/Kmy = P, and re-
taining only the dominant terms (the details are
given by Williams and Davies [2] and by Wil-
liams [6]).

So we obtain the set
2 4
“;_R—?‘o) (g—; —}—%- u’ctg6 - 2Puc056) =

mv

_ h 0 [P, (aK37w> . 0 D, -
= =2l i P251n8c05652(p°), (5)
where p, is a deviation from a reference value Po in
the uniform rotation, p,/p, has been neglected by
comparison with unity in the inertial terms, and

a?u _ Kmv>
Tg?— 2 <E Pucos —
kzm(g) szvP 0T aT
— K, o T 20 gy) (©)

We clearly need an analytically convenient rela-
tion between p, and T; using hydrostatic equilib-
rium and the gas law we obtain (the details being
given by Williams and Davies [2]) by integration
that

P 1 - %exp{g%i(l—%d@}' @

Finally by considering the meridional flux of
heat through a thin zonal ring, a thermodynamic
equation can be constructed in the form

o8 9 im0 [0 — oKr 22 = aQ 0, 1),

(8)
where Q is a total heating function.

The main calculations were based on the fotal
heating function given by Smagorinsky [7] as
a function of latitude, together with a linearized
variation in the vertical. However, an attempt
was also made to consider Q as composed of two
factors, the [irst consisting of total heating (witho-

ut a contribution due to the flux of latent and
sensible heat) and the second consisting of this
latent and sensible heat flux. The latter was cont-
rolled by the model variable themselves at the
surface, the surface flux being given by the form
(QS:L)O =cC I vs ] (Tg - Ts)’
where T, — mean surface temperature (assumed
known empirically), Ty — model surface air tem-
perature, Vs — model surface velocity: (Qsip)e
is then multiplied by an empirical function J ©
to give Qur = (Qsir)o/(§). Our mathemati-
cal method of solution is applicable, but choice
of ¢ value is difficult, as it has to be chosen so
that the balance condition of the atmosphere
§Qsin® = 0 is satisfied. This difficulty has not yet
been overcome but an estimate of this feed-back
effect was made by considering a total Q with
a small feedback c value. :
Boundary conditions at { = 0 were chosen in
the form (K0),0u/0C = ku, (Kmy),0v/0C = kv
with & (depending on the viscosity of air) known
from climatological values and the surface values
of K, being taken at 10® cm. units. Then at the up-
per surface, L= 1, we assumed 0u/0{ = dv/dt=0
in an attempt to allow for the damping effect of
the stratosphere. We also need to use the condition
of zero net annual mass flux across a latitude

1
circle, i. e. [pvdf = 0. Then at § = 0.we use

0

the temperature form T,/T, = 1 4- (AT/T ) F,y(0),
where AT denotes the mean temperature contrast
between pole and equator so that if AT =0,
Ty = To; Fg (0) is matched to available observa-
tions on the sea surface. It was also necessary to
prescribe the temperature distribution in the ver-
tical at the equator.

We now obtain a solution of equations (5), (6),
(7), (8) as double expansions in powers of the

fundamental parameters P and (AT/T,). We
write:
T/To=1+ 2 X (AT/To)’ P'T;;(6,), (9)
i=1 j=0
v =2 D) (AT]T,)" PV 6, ¢), (10)
=1 ;=0
and
u= ) X (AT/To) PU;(8,7). (1)
i=1j=0
Substituting (9) into (7) we obtain
0./po =2 ) (AT/To)" Pix
=1 j=0
X[=Tu+ b Tude+s5], (12
1
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where b = gh/RT, and S;; are products of velo-
city and temperature but depend on lower order
coefficients of 7. Substitutions of (9), (10), (11),
(12) into (5), (6), (8) and comparison of like powe-
red coefficients leads to a system of linear diffe-
rential equations (the details are given by Wil-
liams and Davies [2]). If we write d/d{ = D,
a characteristic equation of the system is

(D——b) D2V,'j —_ CI:V[]' —b StV[j dC} =R(§, 9), (13)

where ¢ = gh®/KnrKmy and R (€, 9) is a forcing
function known numerically at grid-points in (g, 6)
from the Q function and a solution of the differen-
tial equations of order lower than (j, i). Differen-
tiating we obtain

(D—0b)(D*—c)V;; = DR
and, writing ¢ = y® the solution is then
1

Vi = A+ Apett + ¢ 20y
X {Ascos (V'8v/2) + A, sin (V/3¢v/2)} +
DR
T =0 (15)

The four constants are determined from the
three boundary conditions and by substituting
(15) into (13). We used a 15 X 11 grid in the re-
gion { =0to 1 with the step 0,1 and 6 = 0to70°
with the step 5° and the complementary functi-
on in (15) was computed following an inversion
of a 4 X 4 matrix for each (c, b, K) data set. At
each stage of the computation the R function was
represented in g, for each 6, by a Fourier series
(with 9 terms) and the method of trigonometric
nterpolation (see e. g. [8]) used; we write

s=9

R =d; + dof + D) bysin (ast).

s=1
The particular integral of (14) is then easy to eva-
luate formally and (16) is convenient to handle
numerically. The U; and T coefficients in
(9) and (11) are easy to compute once Vi are
known; the details are given in [6]. We have
DWyy =S 6), 2Ty=T(E 0, S and T
being known at each stage. Five terms were needed
in the P expansions and three in the (AT/T,) ex-
pansions to obtain convergence, but the successi-
ve terms become extremely complicated and quite
a large storage computer (an I. B. M. 7090) was
required for the calculation.

A number of computations were carried out over
the range from 20° to 90° in 6 using several di-
stributions of turbulence parameters. Using a to-
tal heating function and e. g. the set K, = 3,4
¢ 108; KZU = 7)5' 105, KmT — 2:7°1010, kzmQ =
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=1,2.10", we obtain the calculated «, v, T distri-
butions shown in Figs 1, 2, 3; these are quite rea-
listic. We also attempted a feed-back calculation
using a total Q function plus a (Qssz)eT (§) term
with a small ¢ value. Its effect was to produce
higher temperature in midtroposphere, as expec-
ted. Hence it has been shown that it is possible to
reproduce realistic (long time average) mean



flows on the basis of quite simple physical assump-
tions, using numerical values of turbulence para-
meters, suggested by various analysis of obser-
vations. Finally, it is clear that there are many
ways in which the model can be improved; the

work is only a stepping stone (a small one) to

a more complete statistical theory.
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Discussion
J. Van Isacker touk part in the discussion.

IeNd W TPENCTaBJAKIHA HEKOTOPYIO XapaKTepH-
CTHKY OOMeHa SIBHOH H CKPBITOH TeIIOTOH C moBepx-
HOCTBIO.

B ofoux cayyasx HOJNyYeHO pelleHHe, Halolee
pacmpenesenie TeMIepaTypbl H CKOPOCTH. Peluenne
HCKaloCh B (opme IBOHHOTO pasjoOkKeHHS B psil
[0 CTENeHsIM ABYX OCHOBHBIX IapaMeTpoB (OXHH
3aBuce] oT Q, a apyroi ot AT, cpexHeil rogoBoi
Da3HOCTH TeMIlepaTyp MeXIy 3KBaTOpOM U IIOJIO-
COM); BBIBOX YDaBHEHHMil IJISI YHCJEHHOTO peIleHHs
NpoBOJHJICS O MeTony Dyphe.

Hafineno, 4To 3TH pas/oxeHHsT HOCTATOYHO XO-
pOIO CXOASTCS IJIs OTBeYalOUIHX JeHCTBHTENbHO-
CTH BEJHYHH pAa3/JHYHBIX HCCJIeNyeMBbIX IapaMeT-
poB. (ITpu 3TOM OKasbiBaeTcsi NOCTATOYHBIM B pas-
JoxeHHH 1o AT ocTaBIATh JIMIIb TPU UIEHa, a B
pasJoKeHHH N0 Q — nATh wieHOB.) TeM He MeHee
noTpe6OBaNiCh JIOBOJBHO GOJIBLIHE UHCJIEHHbBIE
BolyHC/ieHHss Ha OBM. PaccmarpuBaemas o6macTb
OrpaHHYHMBaJachb TPONOMAY30H H Jexkala MexXILy
skBaTopoM H 70° c. w. IloncunTaHHasi 30HaJbHAsS
CKOPOCTh HMeeT peasbHYI0 BeJHYHHY C XapakTep-
HBIMH H3MEHEeHHSIMH HaIpaBJeHHs: BOCTOK — 3a-
nan — BOCTOK, MepPHIHOHAJNbHAas CKOPOCTb HMeeT
XapaKTepHYI0 TpexbsyeHKOBYIO CTPYKTYpY, H pac-
npeleleHHe TeMIlepaTyphl BIIOJHE peasibHO.



